
Learning Structured Classifiers with Dual
Coordinate Ascent

Andre F. T. Martins†‡ Kevin Gimpel† Noah A. Smith†

Eric P. Xing† Mario A. T. Figueiredo‡ Pedro M. Q. Aguiar]

June 2010
CMU-ML-10-109

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

†School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA,
‡Instituto de Telecomunicações /]Instituto de Sistemas e Robótica, Instituto Superior Técnico,
Lisboa, Portugal

A. M. was supported by a grant from FCT/ICTI through the CMU-Portugal Program, and also by Priberam
Informática. K. G. was supported by NSF grant IIS-0844507. N. S. was supported in part by Qatar NRF NPRP-08-
485-1-083. E. X. was supported by AFOSR FA9550010247, ONR N000140910758, NSF CAREER DBI-0546594,
NSF IIS-0713379, and an Alfred P. Sloan Fellowship. M. F. and P. A. were supported by the FET programme (EU
FP7), under the SIMBAD project (contract 213250).

Keywords: Structured prediction, online learning, dual coordinate ascent

Abstract

We present a unified framework for online learning of structured classifiers that handles a wide
family of convex loss functions, properly including CRFs, structured SVMs, and the structured
perceptron. We introduce a new aggressive online algorithm that optimizes any loss in this family.
For the structured hinge loss, this algorithm reduces to 1-best MIRA; in general, it can be regarded
as a dual coordinate ascent algorithm. The approximate inference scenario is also addressed. Our
experiments on two NLP problems show that the algorithm converges to accurate models at least
as fast as stochastic gradient descent, without the need to specify any learning rate parameter.

1 Introduction
Learning structured classifiers discriminatively typically involves the minimization of a regularized
loss function; the well-known cases of conditional random fields (CRFs, [Lafferty et al., 2001])
and structured support vector machines (SVMs, [Taskar et al., 2003, Tsochantaridis et al., 2004,
Altun et al., 2003]) correspond to different choices of loss functions. For large-scale settings, the
underlying optimization problem is often difficult to tackle in its batch form, increasing the pop-
ularity of online algorithms. Examples are the structured perceptron [Collins, 2002a], stochastic
gradient descent (SGD) [LeCun et al., 1998], and the margin infused relaxed algorithm (MIRA)
[Crammer et al., 2006].

This paper presents a unified representation for several convex loss functions of interest in
structured classification (§2). In §3, we describe how all these losses can be expressed in variational
form as optimization problems over the marginal polytope [Wainwright and Jordan, 2008]. We
make use of convex duality to derive new online learning algorithms (§4) that share the “passive-
aggressive” property of MIRA but can be applied to a wider variety of loss functions, including
the logistic loss that underlies CRFs. We show that these algorithms implicitly perform coordinate
ascent in the dual, generalizing the framework in Shalev-Shwartz and Singer [2006] for a larger
set of loss functions and for structured outputs.

The updates we derive in §4 share the remarkable simplicity of SGD, with an important ad-
vantage: they do not require tuning a learning rate parameter or specifying an annealing schedule.
Instead, the step sizes are a function of the loss and its gradient. The additional computation
required for loss evaluations is negligible since the methods used to compute the gradient also
provide the loss value.

Two important problems in NLP provide an experimental testbed (§5): named entity recogni-
tion and dependency parsing. We employ feature-rich models where exact inference is sometimes
intractable. To be as general as possible, we devise a framework that fits any structured classifi-
cation problem representable as a factor graph with soft and hard constraints (§2); this includes
problems with loopy graphs, such as some variants of the dependency parsers of Smith and Eisner
[2008].

2 Structured Classification and Loss Functions

2.1 Inference and Learning
Denote by X a set of input objects from which we want to infer some hidden structure con-
veyed in an output set Y . We assume a supervised setting, where we are given labeled data
D , {(x1, y1), . . . , (xm, ym)} ⊆ X × Y . Each input x ∈ X (e.g., a sentence) is associated with
a set of legal outputs Y(x) ⊆ Y (e.g., candidate parse trees); we are interested in the case where
Y(x) is a structured set whose cardinality grows exponentially with the size of x. We consider
linear classifiers hθ : X → Y of the form

hθ(x) , argmax
y∈Y(x)

θ>φ(x, y), (1)

1

where θ ∈ Rd is a vector of parameters and φ(x, y) ∈ Rd is a feature vector. Our goal is to
learn the parameters θ from the data D such that hθ has small generalization error. We assume a
cost function ` : Y × Y → R+ is given, where `(ŷ, y) is the cost of predicting ŷ when the true
output is y. Typically, direct minimization of the empirical risk, minθ∈Rd

1
m

∑m
i=1 `(hθ(xi), yi), is

intractable and hence a surrogate non-negative, convex loss L(θ;x, y) is used. To avoid overfitting,
a regularizer R(θ) is added, yielding the learning problem

min
θ∈Rd

λR(θ) +
1

m

m∑
i=1

L(θ;xi, yi), (2)

where λ ∈ R is the regularization coefficient. Throughout this paper we assume `2-regularization,
R(θ) , 1

2
‖θ‖2, and focus on loss functions of the form

Lβ,γ(θ;x, y) ,
1

β
log

∑
y′∈Y(x)

exp
[
β
(
θ>
(
φ(x, y′)− φ(x, y)

)
+ γ`(y′, y)

)]
, (3)

which subsumes some well-known cases:
• The logistic loss (in CRFs), LCRF(θ;x, y) , − logPθ(y|x), corresponds to β = 1 and γ = 0;

• The hinge loss of structured SVMs, LSVM(θ;x, y) , maxy′∈Y(x) θ>(φ(x, y′) − φ(x, y)) +
`(y′, y), corresponds to the limit case β →∞ and any γ > 0;

• The loss underlying the structured perceptron is obtained for β →∞ and γ = 0.

• The softmax-margin loss recently proposed in Gimpel and Smith [2010] is obtained with β =
γ = 1.

For any choice of β > 0 and γ ≥ 0, the resulting loss function is convex in θ, since, up to a scale
factor, it is the composition of the (convex) log-sum-exp function with an affine map.1 In §4 we
present a dual coordinate ascent online algorithm to handle (2), for this family of losses.

2.2 A Framework for Structured Inference
Two important inference problems are: to obtain the most probable assignment (i.e., to solve (1))
and to compute marginals, when a distribution is defined on Y(x). Both problems can be challeng-
ing when the output set is structured. Typically, there is a natural representation of the elements of
Y(x) as discrete-valued vectors y ≡ y = (y1, . . . , yI) ∈ Y1 × . . . × YI ≡ Ȳ , each Yi being a set
of labels (I may depend on x). We consider subsets S ⊆ {1, . . . , I} and write partial assignment
vectors as yS = (yi)i∈S . We assume a one-to-one map (not necessarily onto) from Y(x) to Ȳ and
denote by S(x) ⊆ Ȳ the subset of representations that correspond to valid outputs.

The next step is to design how the feature vector φ(x, y) decomposes, which can be con-
veniently done via a factor graph [Kschischang et al., 2001, McCallum et al., 2009]. This is a

1Some important non-convex losses can also be written as differences of losses in this family. By defining δLβ,γ =
Lβ,γ − Lβ,0, the case β = 1 yields δLβ,γ(θ;x, y) = log Eθ exp `(Y, y), which is an upper bound on Eθ`(Y, y), used
in minimum risk training [Smith and Eisner, 2006]. For β = ∞, δLβ,γ becomes a structured ramp loss [Collobert
et al., 2006].

2

Non-projective Dependency Parsing using Spanning Tree Algorithms

Ryan McDonald Fernando Pereira

Department of Computer and Information Science

University of Pennsylvania

{ryantm,pereira}@cis.upenn.edu

Kiril Ribarov Jan Hajič

Institute of Formal and Applied Linguistics

Charles University

{ribarov,hajic}@ufal.ms.mff.cuni.cz

Abstract

We formalize weighted dependency pars-

ing as searching for maximum spanning

trees (MSTs) in directed graphs. Using

this representation, the parsing algorithm

of Eisner (1996) is sufficient for search-

ing over all projective trees inO(n3) time.
More surprisingly, the representation is

extended naturally to non-projective pars-

ing using Chu-Liu-Edmonds (Chu and

Liu, 1965; Edmonds, 1967) MST al-

gorithm, yielding an O(n2) parsing al-
gorithm. We evaluate these methods

on the Prague Dependency Treebank us-

ing online large-margin learning tech-

niques (Crammer et al., 2003; McDonald

et al., 2005) and show that MST parsing

increases efficiency and accuracy for lan-

guages with non-projective dependencies.

1 Introduction

Dependency parsing has seen a surge of inter-

est lately for applications such as relation extrac-

tion (Culotta and Sorensen, 2004), machine trans-

lation (Ding and Palmer, 2005), synonym genera-

tion (Shinyama et al., 2002), and lexical resource

augmentation (Snow et al., 2004). The primary

reasons for using dependency structures instead of

more informative lexicalized phrase structures is

that they are more efficient to learn and parse while

still encoding much of the predicate-argument infor-

mation needed in applications.

root John hit the ball with the bat

Figure 1: An example dependency tree.

Dependency representations, which link words to

their arguments, have a long history (Hudson, 1984).

Figure 1 shows a dependency tree for the sentence

John hit the ball with the bat. We restrict ourselves

to dependency tree analyses, in which each word de-

pends on exactly one parent, either another word or a

dummy root symbol as shown in the figure. The tree

in Figure 1 is projective, meaning that if we put the

words in their linear order, preceded by the root, the

edges can be drawn above the words without cross-

ings, or, equivalently, a word and its descendants

form a contiguous substring of the sentence.

In English, projective trees are sufficient to ana-

lyze most sentence types. In fact, the largest source

of English dependency trees is automatically gener-

ated from the Penn Treebank (Marcus et al., 1993)

and is by convention exclusively projective. How-

ever, there are certain examples in which a non-

projective tree is preferable. Consider the sentence

John saw a dog yesterday which was a Yorkshire Ter-

rier. Here the relative clause which was a Yorkshire

Terrier and the object it modifies (the dog) are sep-

arated by an adverb. There is no way to draw the

dependency tree for this sentence in the plane with

no crossing edges, as illustrated in Figure 2. In lan-

guages with more flexible word order than English,

such as German, Dutch and Czech, non-projective

dependencies are more frequent. Rich inflection

systems reduce reliance on word order to express

Figure 1: Example of a dependency parse tree (adapted from [McDonald et al., 2005]).

bipartite graph with two types of nodes: variable nodes, which in our case are the I components
of y; and a set C of factor nodes. Each factor node is associated with a subset C ⊆ {1, . . . , I};
an edge connects the ith variable node and a factor node C iff i ∈ C. Each factor has a potential
ΨC , a function that maps assignments of variables to non-negative real values. We distinguish
between two kinds of factors: hard constraint factors, which are used to rule out forbidden par-
tial assignments by mapping them to zero potential values, and soft factors, whose potentials are
strictly positive. Thus, C = Chard ∪ Csoft. We associate with each soft factor a local feature vector
φC(x,yC) and define

φ(x, y) ,
∑

C∈Csoft
φC(x,yC). (4)

The potential of a soft factor is defined as ΨC(x,yC) = exp(θ>φC(x,yC)). In a log-linear prob-
abilistic model, the feature decomposition in (4) induces the following factorization for the condi-
tional distribution of Y :

Pθ(Y = y | X = x) =
1

Z(θ, x)

∏
C∈C

ΨC(x,yC), (5)

where Z(θ, x) =
∑

y′∈S(x)

∏
C∈C ΨC(x,y′C) is the partition function. Two examples follow.

Sequence labeling: Each i ∈ {1, . . . , I} is a position in the sequence and Yi is the set of possible
labels at that position. If all label sequences are allowed, then no hard constraint factors exist. In a
bigram model, the soft factors are of the form C = {i, i+ 1}. To obtain a k-gram model, redefine
each Yi to be the set of all contiguous (k − 1)-tuples of labels.

Dependency parsing: In this parsing formalism [Kübler et al., 2009], each input is a sentence
(i.e., a sequence of words), and the outputs to be predicted are the dependency arcs, which link
heads to modifiers, and overall must define a spanning tree (see Fig. 1 for an example). We let
each i = (h,m) index a pair of words, and define Yi = {0, 1}, where 1 means that there is a link
from h to m, and 0 means otherwise. There is one hard factor connected to all variables (call it
TREE), its potential being one if the arc configurations form a spanning tree and zero otherwise.
In the arc-factored model [Eisner, 1996, McDonald et al., 2005], all soft factors are unary and the
graph is a tree. More sophisticated models (e.g., with siblings and grandparents) include pairwise
factors, creating loops [Smith and Eisner, 2008].

3

3 Variational Inference

3.1 Polytopes and Duality
Let P = {Pθ(.|x) | θ ∈ Rd} be the family of all distributions of the form (5), and rewrite (4) as:

φ(x, y) =
∑

C∈Csoft
φC(x,yC) = F(x) · χ(y),

where F(x) is a d-by-k feature matrix, with k =
∑
C∈Csoft

∏
i∈C |Yi|, each column containing the

vectors φC(x,yC) for each factor C and configuration yC ; and χ(y) is a binary k-vector indicating
which configurations are active given Y = y. We then define the marginal polytope

Z(x) , conv{z ∈ Rk | ∃y ∈ Y(x) s.t. z = χ(y)},

where conv denotes the convex hull. Note that Z(x) only depends on the graph and on the speci-
fication of the hard constraints (i.e., it is independent of the parameters θ).2 The next proposition
(illustrated in Fig. 2) goes farther by linking the points of Z(x) to the distributions in P . Be-
low, H(Pθ(.|x)) = −∑y∈Y(x) Pθ(y|x) logPθ(y|x) denotes the entropy, Eθ the expectation under
Pθ(.|x), and zC(yC) the component of z ∈ Z(x) indexed by the configuration yC of factor C.

Proposition 1 There is a map coupling each distribution Pθ(.|x) ∈ P to a unique z ∈ Z(x) such
that Eθ[χ(Y)] = z. Define H(z) , H(Pθ(.|x)) if some Pθ(.|x) is coupled to z, and H(z) = −∞
if no such Pθ(.|x) exists. Then:

1. The following variational representation for the log-partition function holds:

logZ(θ, x) = max
z∈Z(x)

θ>F(x)z +H(z). (6)

2. The problem in (6) is convex and its solution is attained at the factor marginals, i.e., there is a
maximizer z̄ s.t. z̄C(yC) = Prθ{YC = yC} for each C ∈ C. The gradient of the log-partition
function is∇ logZ(θ, x) = F(x)z̄.

3. The MAP ŷ , argmaxy∈Y(x) Pθ(y|x) can be obtained by solving the linear program

ẑ , χ(ŷ) = argmax
z∈Z(x)

θ>F(x)z. (7)

Proof: [Wainwright and Jordan, 2008, Theorem 3.4] provide a proof for the canonical over-
complete representation where F(x) is the identity matrix, i.e., each feature is an indicator of the
configuration of the factor. In that case, the map from the parameter space to the relative inte-
rior of the marginal polytope is surjective. In our model, arbitrary features are allowed and the
parameters are tied, since they are shared by all factors. This can be expressed as a linear map

2The marginal polytope can also be defined as the set of factor marginals realizable by distributions that factor ac-
cording to the graph. Log-linear models with canonical overcomplete parametrization—i.e., whose sufficient statistics
(features) at each factor are configuration indicators—are studied in Wainwright and Jordan [2008].

4

Parameter�space Factor�log-potentials�
space�������

Marginal�polytope�

Figure 2: Dual parametrization of the distributions in P . The original parameter is linearly mapped
to the factor log-potentials, the canonical overcomplete parameter space Wainwright and Jordan
[2008], which is mapped onto the relative interior of the marginal polytope Z(x). In general only
a subset of Z(x) is reachable from our parameter space.

θ 7→ s = F(x)>θ that “places” our parameters θ ∈ Rd onto a linear subspace of the canonical
overcomplete parameter space; therefore, our map θ 7→ z is not necessarily onto riZ(x), unlike in
Wainwright and Jordan [2008], and our H(z) is defined slightly differently: it can take the value
−∞ if no θ maps to z. This does not affect the expression in (6), since the solution of this opti-
mization problem with our H(z) replaced by theirs is also the feature expectation under Pθ(.|x)
and the associated z, by definition, always yields a finite H(z).

3.2 Loss Evaluation and Differentiation
We now invoke Prop. 1 to derive a variational expression for evaluating any loss Lβ,γ(θ;x, y) in
(3), and compute its gradient as a by-product.3 This is crucial for the learning algorithms to be
introduced in §4. Our only assumption is that the cost function `(y′, y) can be written as a sum
over factor-local costs; letting z = χ(y) and z′ = χ(y′), this implies `(y′, y) = p>z′ + q for some
p and q which are constant with respect to z′.4 Under this assumption, and letting s = F(x)>θ be
the vector of factor log-potentials, Lβ,γ(θ;x, y) becomes expressible in terms of the log-partition
function of a distribution whose log-potentials are set to β(s + γp). From (6), we obtain

Lβ,γ(θ;x, y) = max
z′∈Z(x)

θ>F(x)(z′ − z) +
1

β
H(z′) + γ(p>z′ + q). (8)

Let z̄ be a maximizer in (8); from the second statement of Prop. 1 we obtain the following expres-
sion for the gradient of Lβ,γ at θ:

∇Lβ,γ(θ;x, y) = F(x)(z̄− z). (9)

For concreteness, we revisit the examples discussed in the previous subsection.

3Our description also applies to the (non-differentiable) hinge loss case, when β →∞, if we replace all instances
of “the gradient” in the text by “a subgradient.”

4For the Hamming loss, this holds with p = 1− 2z and q = 1>z. See Taskar et al. [2006] for other examples.

5

Sequence Labeling. Without hard constraints, the graphical model does not contain loops, and
therefore Lβ,γ(θ;x, y) and ∇Lβ,γ(θ;x, y) may be easily computed by setting the log-potentials as
described above and running the forward-backward algorithm.

Dependency Parsing. For the arc-factored model, Lβ,γ(θ;x, y) and∇Lβ,γ(θ;x, y) may be com-
puted exactly by modifying the log-potentials, invoking the matrix-tree theorem to compute the
log-partition function and the marginals [Smith and Smith, 2007, Koo et al., 2007, McDonald and
Satta, 2007], and using the fact that H(z̄) = logZ(θ, x) − θ>F(x)z̄. The marginal polytope is
the same as the arborescence polytope in Martins et al. [2009]. For richer models where arc inter-
actions are considered, exact inference is intractable. Both the marginal polytope and the entropy,
necessary in (6), lack concise closed form expressions. Two approximate approaches have been
recently proposed: a loopy belief propagation (BP) algorithm for computing pseudo-marginals
[Smith and Eisner, 2008]; and an LP-relaxation method for approximating the most likely parse
tree [Martins et al., 2009]. Although the two methods may look unrelated at first sight, both opti-
mize over outer bounds of the marginal polytope. See [Martins et al., 2010] for further discussion.

4 Online Learning
We now propose a dual coordinate ascent approach to learn the model parameters θ. This approach
extends the primal-dual view of online algorithms put forth by Shalev-Shwartz and Singer [2006]
to structured classification; it handles any loss in (3). In the case of the hinge loss, we recover the
online passive-aggressive algorithm (also known as MIRA, [Crammer et al., 2006]) as well as its
k-best variants. With the logistic loss, we obtain a new passive-aggressive algorithm for CRFs.

Start by noting that the learning problem in (2) is not affected if we multiply the objective by
m. Consider a sequence of primal objectives P1(θ), . . . , Pm+1(θ) to be minimized, each of the
form

Pt(θ) = λmR(θ) +
t−1∑
i=1

L(θ;xi, yi).

Our goal is to minimize Pm+1(θ); for simplicity we consider online algorithms with only one pass
over the data, but the analysis can be extended to the case where multiple epochs are allowed.

Below, we let R̄ , R ∪ {+∞} be the extended reals and, given a function f : Rn → R̄, we
denote by f ? : Rn → R̄ its convex conjugate, f ?(y) = supx x>y − f(x) (see Appendix A for
a background of convex analysis). The next proposition, proved in [Kakade and Shalev-Shwartz,
2008], states a generalized form of Fenchel duality, which involves a dual vector µi ∈ Rd per each
instance.

Proposition 2 ([Kakade and Shalev-Shwartz, 2008]) The Lagrange dual of minθ Pt(θ) is

max
µ1,...,µt−1

Dt(µ1, . . . ,µt−1),

where

Dt(µ1, . . . ,µt−1) = −λmR?

(
− 1

λm

t−1∑
i=1

µi

)
−

t−1∑
i=1

L?(µi;xi, yi). (10)

6

Algorithm 1 Dual coordinate ascent (DCA)
Input: D, λ, number of iterations K
Initialize θ1 = 0; set m = |D| and T = mK
for t = 1 to T do

Receive an instance xt, yt
Update θt+1 by solving (11) exactly or ap-
proximately (see Alg. 2)

end for
Return the averaged model θ̄ ← 1

T

∑T
t=1 θt.

Algorithm 2 Parameter updates

Input: current model θt, instance (xt, yt), λ

Obtain zt from yt
Solve the variational problem in (8) to obtain
z̄t and Lβ,γ(θt, xt, yt)
Compute∇Lβ,γ(θt, xt, yt) = F(xt)(z̄t− zt)

Compute ηt = min
{

1
λm
, L(θt;xt,yt)
‖∇L(θt;xt,yt)‖2

}
Return θt+1 = θt − ηt∇L(θt;xt, yt)

If R(θ) = 1
2
‖θ‖2, then R = R?, and strong duality holds for any convex L, i.e., Pt(θ∗) =

Dt(µ
∗
1, . . . ,µ

∗
t−1) where θ∗ and µ∗1, . . . ,µ

∗
t−1 are respectively the primal and dual optima. More-

over, the following primal-dual relation holds: θ∗ = − 1
λm

∑t−1
i=1 µ∗i .

We can therefore transform our problem into that of maximizing Dm+1(µ1, . . . ,µm). Dual co-
ordinate ascent (DCA) is an umbrella name for algorithms that manipulate a single dual coor-
dinate at a time. In our setting, the largest such improvement at round t is achieved by µt ,
argmaxµDt+1(µ1, . . . ,µt−1,µ). The next proposition, proved in Appendix B, characterizes the
mapping of this subproblem back into the primal space, shedding light on the connections with
known online algorithms.

Proposition 3 Let θt , − 1
λm

∑t−1
i=1 µi. The Lagrange dual of maxµDt+1(µ1, . . . ,µt−1,µ) is

min
θ

λm

2
‖θ − θt‖2 + L(θ;xt, yt). (11)

Assembling these pieces together yields Alg. 1, where the solution of (11) is carried out by
Alg. 2, as explained next.5 While the problem in (11) is easier than the batch problem in (2), an
exact solution may still be prohibitively expensive in large-scale settings, particularly because it has
to be solved repeatedly. We thus adopt a simpler strategy that still guarantees some improvement
in the dual. Noting that L is non-negative, we may rewrite (11) as

minθ,ξ
λm
2
‖θ − θt‖2 + ξ s.t. L(θ;xt, yt) ≤ ξ, ξ ≥ 0. (12)

From the convexity of L, we may take its first-order Taylor approximation around θt to obtain the
lower bound L(θ;xt, yt) ≥ L(θt;xt, yt) + (θ − θt)

>∇L(θt;xt, yt). Therefore the true minimum
in (11) is lower bounded by

min
θ,ξ

λm
2
‖θ − θt‖2 + ξ

s.t. L(θt;xt, yt) + (θ − θt)
>∇L(θt;xt, yt) ≤ ξ, ξ ≥ 0.

(13)

5The final averaging step in Alg. 1 is an online-to-batch conversion with good generalization guarantees Cesa-
Bianchi et al. [2004].

7

This is a Euclidean projection problem (with slack) that admits the closed form solution θt+1 =
θt − ηt∇L(θt;xt, yt), with

ηt = min
{

1
λm
, L(θt;xt,yt)
‖∇L(θt;xt,yt)‖2

}
. (14)

Example: 1-best MIRA. IfL is the hinge-loss, we obtain from (9)∇LSVM(θt;xt, yt) = F(xt)(z̄t−
zt) = φ(xt, ŷt)− φ(xt, yt), where ŷt = argmaxy′t∈Y(xt) θ>t (φ(xt, y

′
t)− φ(xt, yt)) + `(y′t, yt). The

update becomes θt+1 = θt − ηt(φ(xt, ŷt)− φ(xt, yt)), with

ηt = min

{
1

λm
,
θ>t (φ(xt, ŷt)− φ(xt, yt)) + `(ŷt, yt)

‖φ(xt, ŷt)− φ(xt, yt)‖2

}
. (15)

This is precisely the max-loss variant of the 1-best MIRA algorithm [Crammer et al., 2006, §8].
Hence, while MIRA was originally motivated by a conservativeness-correctness tradeoff, it turns
out that it also performs coordinate ascent in the dual.

Example: CRFs. This framework immediately allows us to extend 1-best MIRA for CRFs,
which optimizes the logistic loss. In that case, the exact problem in (12) can be expressed as

minθ,ξ
λm
2
‖θ − θt‖2 + ξ s.t. − logPθ(yt|xt) ≤ ξ, ξ ≥ 0.

In words: stay as close as possible to the previous parameter vector, but correct the model so
that the conditional probability Pθ(yt|xt) becomes large enough. From (9), ∇LCRF(θt;xt, yt) =
F(xt)(z̄t− zt) = Eθtφ(xt, Yt)−φ(xt, yt), where now z̄t is an expectation instead of a mode. The
update becomes θt+1 = θt − ηt(Eθtφ(xt, Yt)− φ(xt, yt)), with

ηt = min
{

1
λm
,

θ>t (Eθt
φ(xt,Yt)−φ(xt,yt))+H(Pθt

(.|xt))

‖Eθt
φ(xt,Yt)−φ(xt,yt)‖2

}
= min

{
1
λm
,

− logPθt
(yt|xt)

‖Eθt
φ(xt,Yt)−φ(xt,yt)‖2

}
. (16)

Thus, the difference with respect to standard 1-best MIRA (15) consists of replacing the feature
vector of the loss-augmented mode φ(xt, ŷt) by the expected feature vector Eθtφ(xt, Yt) and the
cost function `(ŷt, yt) by the entropy function H(Pθt(.|xt)).

Example: k-best MIRA. Tighter approximations to the problem in (11) can be built by using the
variational representation machinery; see (8) for losses in the family Lβ,γ . Plugging this variational
representation into the constraint in (12) we obtain the following semi-infinite quadratic program:

min
θ,ξ

λm
2
‖θ − θt‖2 + ξ

s.t. θ ∈ H(z′t; β, γ), ∀z′t ∈ Z(x)
ξ ≥ 0.

(17)

whereH(z′; z, β, γ) , {θ | a>θ ≤ b} is a half-space with a = F(x)(z′−z) and b = ξ−γ(p>z′+
q)−β−1H(z′). The constraint set in (17) is a convex set defined by the intersection of uncountably

8

many half-spaces (indexed by the points in the marginal polytope).6 Our approximation consisted
of relaxing the problem in (17) by discarding all half-spaces except the one indexed by z̄t, the dual
parameter of the current iterate θt; however, tigher relaxations are obtained by keeping some of the
other half-spaces. For the hinge loss, rather than just using the mode z̄t, one may rank the k-best
outputs and add a half-space constraint for each. This procedure approximates the constraint set
by a polyhedron and the resulting problem can be addressed using row-action methods, such as
Hildreth’s algorithm [Censor and Zenios, 1997]. This corresponds precisely to k-best MIRA.7

5 Experiments
We report experiments on two tasks: named entity recognition and dependency parsing. For each,
we compare DCA (Alg. 1) with SGD. We report results for several values for the regularization
parameter C = 1/(λm). To choose the learning rate for SGD, we use the formula ηt = η/(1 +
(t−1)/m) [LeCun et al., 1998]. We choose η using dev-set validation after a single epoch [Collins
et al., 2008].

Named Entity Recognition. We use the English data from the CoNLL 2003 shared task [Tjong
Kim Sang and De Meulder, 2003], which consist of English news articles annotated with four
entity types: person, location, organization, and miscellaneous. We used a standard set of feature
templates, as in [Kazama and Torisawa, 2007], with token shape features [Collins, 2002b] and
simple gazetteer features; a feature was included iff it occurs at least once in the training set (total
1,312,255 features). The task is evaluated using the F1 measure computed at the granularity of
entire entities. We set β = 1 and γ = 0 (the CRF case). In addition to SGD, we also compare with
L-BFGS [Liu and Nocedal, 1989], a common choice for optimizing conditional log-likelihood.
We used {10a, a = −3, . . . , 2} for the set of values considered for η in SGD. Fig. 3 shows that
DCA (which only requires tuning one hyperparameter) reaches better-performing models than the
baselines.

Dependency Parsing. We trained non-projective dependency parsers for three languages (Ara-
bic, Danish, and English), using datasets from the CoNLL-X and CoNLL-2008 shared tasks [Buch-
holz and Marsi, 2006, Surdeanu et al., 2008]. Performance is assessed by the unlabeled attachment
score (UAS), the fraction of non-punctuation words which were assigned the correct parent. We
adapted TurboParser8 to handle any loss function Lβ,γ via Alg. 1; for decoding, we used the loopy
BP algorithm of Smith and Eisner [2008] (see §3.2). We used the pruning strategy in [Martins
et al., 2009] and tried two feature configurations: an arc-factored model, for which decoding is
exact, and a model with second-order features (siblings and grandparents) for which it is approxi-
mate. The comparison with SGD for the CRF case is shown in Fig. 4. For the arc-factored models,

6Interestingly, when the hinge loss is used, only a finite (albeit exponentially many) of these half-spaces are neces-
sary, those indexed by vertices of the marginal polytope. In this case, the constraint set is polyhedral.

7The prediction-based variant of 1-best MIRA [Crammer et al., 2006] is also a particular case, where z̄t is the
prediction under the current model θt, rather than the mode of LSVM(θt, xt, yt).

8Available at http://www.ark.cs.cmu.edu/TurboParser.

9

http://www.ark.cs.cmu.edu/TurboParser

0 10 20 30 40 50
87

88

89

90

91

No. Iterations

D
ev

el
op

m
en

t S
et

 F
1

0 10 20 30 40 50
83

84

85

86

No. Iterations

T
es

t S
et

 F
1

DCA, C = 10
DCA, C = 1
DCA, C = 0.1
SGD, η = 1, C = 10
SGD, η = 0.1, C = 1
SGD, η = 0.1, C = 0.1
L-BFGS, C = 1

Figure 3: Named entity recognition. Learning curves for DCA (Alg. 1), SGD, and L-BFGS. The
SGD curve forC = 10 is lower than the others because dev-set validation chose a suboptimal value
of η. DCA, by contrast, does not require choosing any hyperparameters other than C. L-BFGS
ultimately converges after 121 iterations to an F1 of 90.53 on the development data and 85.31 on
the test data.

β 1 1 1 1 3 5 ∞
γ 0 (CRF) 1 3 5 1 1 1 (SVM)

NER BEST C 1.0 10.0 1.0 1.0 1.0 1.0 1.0
F1 (%) 85.48 85.54 85.65 85.72 85.55 85.48 85.41

DEPENDENCY BEST C 0.1 0.01 0.01 0.01 0.01 0.01 0.1
PARSING UAS (%) 90.76 90.95 91.04 91.01 90.94 90.91 90.75

Table 1: Varying β and γ: neither the CRF nor the SVM are optimal. We report only the results for
the bestC, chosen from {0.001, 0.01, 0.1, 1}with dev-set validation. For named entity recognition,
we show test set F1 after K = 50 iterations (empty cells will be filled in in the final version).
Dependency parsing experiments used the arc-factored model on English and K = 10.

the learning curve of DCA seems to lead faster to an accurate model. Notice that the plots do not
account for the fact that SGD requires four extra iterations to choose the learning rate. For the
second-order models of Danish and English, however, DCA did not perform as well.9

Finally, Table 1 shows results obtained for different settings of β and γ.10 Interestingly, we
observe that the higher scores are obtained for loss functions that are “between” SVMs and CRFs.

6 Conclusion
We presented a general framework for aggressive online learning of structured classifiers by op-
timizing any loss function in a wide family. The technique does not require a learning rate to be
specified. We derived an efficient technique for evaluating the loss function and its gradient. Exper-

9Further analysis showed that for ∼15% of the training instances, loopy BP led to very poor variational approxi-
mations of logZ(θ, x), yielding estimates Pθt(yt|xt) > 1, thus a negative learning rate (see (16)), that we truncate
to zero. Thus, no update occurs for those instances, explaining the slower convergence. A possible way to fix this
problem is to use techniques that guarantee upper bounds on the log-partition function Wainwright and Jordan [2008].

10Observe that there are only two degrees of freedom: indeed, (λ, β, γ) and (λ′, β′, γ′) lead to equivalent learning
problems if λ′ = λ/a, β′ = β/a and γ′ = aγ for any a > 0, with the solutions related via θ′ = aθ.

10

Figure 4: Learning curves for DCA (Alg. 1) and SGD, the latter with the learning rate η = 0.01
chosen from {0.001, 0.01, 0.1, 1} using the same procedure as before. The instability when training
the second-order models might be due to the fact that inference there is approximate.

iments in named entity recognition and dependency parsing showed that the algorithm converges
to accurate models at least as fast as stochastic gradient descent.

References
Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden Markov support vector machines. In ICML,

2003.

S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.

S. Buchholz and E. Marsi. CoNLL-X shared task on multilingual dependency parsing. In CoNLL,
2006.

Y. Censor and S. A. Zenios. Parallel Optimization: Theory, Algorithms, and Applications. Oxford
University Press, 1997.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning
algorithms. IEEE Trans. on Inf. Theory, 50(9):2050–2057, 2004.

M. Collins. Discriminative training methods for hidden Markov models: theory and experiments
with perceptron algorithms. In EMNLP, 2002a.

M. Collins. Ranking algorithms for named-entity extraction: Boosting and the voted perceptron.
In ACL, 2002b.

11

M. Collins, A. Globerson, T. Koo, X. Carreras, and P.L. Bartlett. Exponentiated gradient algorithms
for conditional random fields and max-margin Markov networks. JMLR, 2008.

R. Collobert, F. Sinz, J. Weston, and L. Bottou. Trading convexity for scalability. In ICML, 2006.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-aggressive
algorithms. JMLR, 7:551–585, 2006.

J. Eisner. Three new probabilistic models for dependency parsing: An exploration. In COLING,
1996.

K. Gimpel and N. A. Smith. Softmax-margin CRFs: Training log-linear models with cost func-
tions. In NAACL, 2010.

S. Kakade and S. Shalev-Shwartz. Mind the duality gap: Logarithmic regret algorithms for online
optimization. In NIPS, 2008.

J. Kazama and K. Torisawa. A new perceptron algorithm for sequence labeling with non-local
features. In Proc. of EMNLP-CoNLL, 2007.

T. Koo, A. Globerson, X. Carreras, and M. Collins. Structured prediction models via the matrix-
tree theorem. In EMNLP, 2007.

F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs and the sum-product algorithm.
IEEE Transactions on information theory, 47(2):498–519, 2001.

S. Kübler, R. McDonald, and J. Nivre. Dependency Parsing. Morgan & Claypool, 2009.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In Proc. of ICML, 2001.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization.
Math. Programming, 45:503–528, 1989.

A. F. T. Martins, N. A. Smith, and E. P. Xing. Concise integer linear programming formulations
for dependency parsing. In Proc. of ACL, 2009.

A. F. T. Martins, N. A. Smith, E. P. Xing, P. M. Q. Aguiar, and M. A. T. Figueiredo. Turbo parsers:
Dependency parsing by approximate variational inference. In Proc. of EMNLP, 2010.

A. McCallum, K. Schultz, and S. Singh. Factorie: Probabilistic programming via imperatively
defined factor graphs. In NIPS, 2009.

R. McDonald and G. Satta. On the complexity of non-projective data-driven dependency parsing.
In IWPT, 2007.

12

R. T. McDonald, F. Pereira, K. Ribarov, and J. Hajic. Non-projective dependency parsing using
spanning tree algorithms. In Proc. of HLT-EMNLP, 2005.

S. Shalev-Shwartz and Y. Singer. Online learning meets optimization in the dual. In COLT, 2006.

D. A. Smith and J. Eisner. Minimum risk annealing for training log-linear models. In ACL, 2006.

D. A. Smith and J. Eisner. Dependency parsing by belief propagation. In EMNLP, 2008.

D. A. Smith and N. A. Smith. Probabilistic models of nonprojective dependency trees. In EMNLP,
2007.

M. Surdeanu, R. Johansson, A. Meyers, L. Màrquez, and J. Nivre. The CoNLL-2008 shared task
on joint parsing of syntactic and semantic dependencies. Proc. of CoNLL, 2008.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In NIPS, 2003.

B. Taskar, S. Lacoste-Julien, and M. I. Jordan. Structured prediction, dual extragradient and Breg-
man projections. JMLR, 7:1627–1653, 2006.

E. F. Tjong Kim Sang and F. De Meulder. Introduction to the CoNLL-2003 shared task: Language-
independent named entity recognition. In Proc. of CoNLL, 2003.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for
interdependent and structured output spaces. In Proc. of ICML, 2004.

M. J. Wainwright and M. I. Jordan. Graphical Models, Exponential Families, and Variational
Inference. Now Publishers, 2008.

13

A Background on Convex Analysis
We briefly review some notions of convex analysis that are used throughout the paper. For more
details, see e.g. Boyd and Vandenberghe [2004]. Below, ∆d , {µ ∈ Rd | ∑d

j=1µj = 1, µj ≥
0 ∀j} is the probability simplex in Rd, and Bγ(x) = {y ∈ Rd | ‖y − x‖ ≤ γ} is the ball with
radius γ centered at x.

A set C ⊆ Rd is convex if µx + (1− µ)y ∈ C for all x,y ∈ C and µ ∈ [0, 1]. The convex hull
of a set X ⊆ Rd is the set of all convex combinations of the elements of X ,

convX =

{ p∑
i=1

µixi

∣∣∣∣∣ µ ∈ ∆p, p ≥ 1

}
;

it is also the smallest convex set that contains X . The affine hull of X ⊆ Rd is the set of all affine
combinations of the elements of X ,

aff X =

p∑
i=1

µixi

∣∣∣∣∣
p∑
j=1

µj = 1, p ≥ 1

 ;

it is also the smallest affine set that contains X . The relative interior of X is its interior relative to
the affine hull X ,

relintX = {x ∈ X | ∃γ > 0 : Bγ(x) ∩ aff X ⊆ X}.

Let R̄ , R ∪ {+∞} be the extended reals. The effective domain of a function f : Rd → R̄ is
the set dom f = {x ∈ Rd | f(x) < +∞}. f is proper if dom f 6= ∅. The epigraph of f is the set
epif , {(x, t) ∈ Rd × R | f(x) ≤ t}. f is lower semicontinuous (lsc) if the epigraph is closed in
Rd×R. f is convex if dom f is a convex set and

f(µx + (1− µ)y) ≤ µf(x) + (1− µ)f(y), ∀x,y ∈ dom f, µ ∈ [0, 1].

The (Fenchel) conjugate of f is the function f ? : Rd → R̄ defined as

f ?(y) = sup
x∈Rd

x>y − f(x).

f ? is always convex, since it is the supremum of a family of affine functions. Some examples
follow:

• If f is an affine function, f(x) = a>x + b, then f ?(y) = −b if y = a and −∞ otherwise.

• If f is the `p-norm, f(x) = ‖x‖p, then f ? is the indicator of the unit ball induced by the dual
norm, f ?(y) = 0 if ‖y‖q ≤ 1 and +∞ otherwise, with p−1 + q−1 = 1.

• If f is half of the squared `p-norm, f(x) = ‖x‖2p/2, then f ? is half of the squared dual norm,
f ?(y) = ‖y‖2q/2, with p−1 + q−1 = 1.

• If f is convex, lsc, and proper, then f ?? = f .

• If g(x) = tf(x− x0), with t ∈ R+ and x0 ∈ Rd, then g?(y) = x>0 y + tf ?(y/t).

14

B Proof of Proposition 3
From (10),

max
µ

Dt+1(µ1, . . . ,µt−1,µ)

= max
µ
− 1

2λm

∥∥∥∥∥
t−1∑
i=1

µi + µ

∥∥∥∥∥
2

− L?(µ;xt, yt)−
t−1∑
i=1

L?(µi;xi, yi)

= max
µ
− 1

2λm
‖−λmθt + µ‖2 − L?(µ;xt, yt) + constant

=(i) max
µ
− 1

2λm
‖−λmθt + µ‖2 −max

θ
(µ>θ − L(θ;xt, yt)) + constant

=(ii) min
θ

max
µ
− 1

2λm
‖−λmθt + µ‖2 − µ>θ + L(θ;xt, yt) + constant

= min
θ

(
max

µ
µ>(−θ)− 1

2λm
‖µ− λmθt‖2

)
+ L(θ;xt, yt) + constant

=(iii) min
θ

λm

2
‖θ − θt‖2 + L(θ;xt, yt) + constant, (18)

where in (i) we invoked the definition of convex conjugate; in (ii) we interchange min and max
since strong duality holds (as stated in [Kakade and Shalev-Shwartz, 2008], a sufficient condition
is thatR is strongly convex, L is convex and domL is polyhedral); and in (iii) we used the facts that
R(θ) = ‖θ‖2/2 is conjugate of itself, and that g(x) = tf(x−x0) implies g?(y) = x>0 y+tf ?(y/t).

15

	1 Introduction
	2 Structured Classification and Loss Functions
	2.1 Inference and Learning
	2.2 A Framework for Structured Inference

	3 Variational Inference
	3.1 Polytopes and Duality
	3.2 Loss Evaluation and Differentiation

	4 Online Learning
	5 Experiments
	6 Conclusion
	A Background on Convex Analysis
	B Proof of Proposition 3

