
KERNELS AND SIMILARITY MEASURES FOR TEXT CLASSIFICATION

Andŕe T. Martins

Priberam Inforḿatica,
and

Instituto de Telecomunicações
Instituto Superior T́ecnico,

Lisboa, Portugal

Mário A. T. Figueiredo

Instituto de Telecomunicações
Instituto Superior T́ecnico,

Lisboa, Portugal

Pedro M. Q. Aguiar

Instituto de Sistemas e Robótica
Instituto Superior T́ecnico,

Lisboa, Portugal

ABSTRACT

Measuring similarity between two strings is a fundamental step
in text classification and other problems of information retrieval.
Recently, kernel-based methods have been proposed for this
task; since kernels are inner products in a feature space, they
naturally induce similarity measures. Information theoretic
(dis)similarities have also been the subject of recent research.
This paper describes some string kernels and information theo-
retic mesures and shows how they can be efficiently implemented
via suffix trees. The performance of these measures is then eval-
uated on a text classification (authorship attribution) problem,
involving a set of books by Portuguese writers.

1. INTRODUCTION

Many applications in areas such as bioinformatics and natural
language processing (NLP) require some kind of similarity
measure between strings. In NLP, strings are sequences of al-
phabet characters and represent text in natural language. Text
classification (e.g., categorization, authorship attribution, pla-
giarism detection) is a class of NLP problems that require the
computation of string similarities [7].

In recent years, with the emergence of kernel-based meth-
ods for pattern classification [12, 13], many string kernels
have been proposed, tailored to the specificities of particu-
lar tasks and domains. Since kernels are inner products in a
feature space, they naturally induce similarity measures.

In a different perspective, there has been recent interest in
using information theoretic measures of (dis)similarity be-
tween sequences of symbols. Different methods distinguish
themselves on how they estimate the “divergence” between
the two sequences. Particularly, variations of the well-known
Lempel-Ziv algorithm for compression [16, 17] have been
used for this task. The idea of using compression algorithms
to estimate string similarity is also present in the formal defin-
ition of the non-computable “information distance” [9] based
on the algorithmic notion of Kolmogorov complexity.

The goals of this paper are the following: to provide a brief
overview of string kernels and information theoretic string

dissimilarities; to show how they can be implemented effi-
ciently (in linear time) by resorting to suffix trees; finally, to
assess their performance on a (Portuguese) author attribution
problem. Our experiments show that all the methods consid-
ered achieve a similar and very high accuracy; the key dif-
ference is that the kernel-based measures require fine-tuning
of parameters, whereas the information theoretic techniques
are parameter free, thus being promising new tools for NLP
problems.

2. STRING KERNELS

Given an input spaceX , a (positive definite)kernelis a func-
tion κ : X × X → R satisfyingκ(x, y) = κ(y, x) and

n
∑

i=1

n
∑

j=1

cicjκ(xi, xj) ≥ 0, (1)

for anyn ∈ N, {ci}
n
i=1 ∈ R

n, and{xi}
n
i=1 ∈ Xn. Given a set

of points{xi}
n
i=1, then × n matrixK = [kij] := [κ(xi, xj)]

is calledGram matrix. A direct consequence of Mercer’s the-
orem is thatκ is a (positive definite) kernel if and only if there
is a feature spaceF endowed with an inner product〈., .〉 and
a mapφ : X → F satisfying, for allx, y ∈ X ,

κ(x, y) = 〈φ(x), φ(y)〉. (2)

The now famous “kernel trick” allows performing non-linear
computations in the input spaceX by using linear algorithms
in a feature spaceF , often with high (possibly infinite) di-
mension, without having to explicitly compute in that feature
space [12, 13]. Support vector machines (SVMs) are the best
known example of the application of the kernel trick, although
there are many otherkernel methods[12, 13].

Several string kernels (i.e., operating on the space of
strings) were recently proposed [8, 15, 13]. Denote byΣ the
underlying alphabet, and byΣ∗ the set of all finite strings
formed by characters inΣ together with the empty stringǫ.
Thep-spectrum kernel(PSK) [8] is associated with a feature
space indexed byΣp (the set of length-p strings). The feature

representation of a strings, Φp(s) ≡ (φp
u(s))u∈Σp , counts the

number of times eachu ∈ Σp occurs as a substring ofs,

φp
u(s) = |{(v1, v2) : s = v1uv2}|. (3)

The PSK is then defined as the standard inner product in
R

|Σ|p , κp(s, t) = 〈Φp(s),Φp(t)〉. A more general kernel is
theweighted all-substrings kernel(WASK) [15], which takes
into account the contribution of all the substrings weighted by
their length. The WASK can be viewed as a convex combina-
tion of PSKs and can be written as

κ(s, t) =

∞
∑

p=1

αpκp(s, t), (4)

whereαp is often chosen to decay exponentially withp and
truncated; for example,αp = λp, if pmin ≤ p ≤ pmax, and
αp = 0, otherwise, where0 < λ < 1 is the decaying factor.

A remarkable fact (see Section 4) is that both the PSK and
the WASK may be computed inO(|s| + |t|) time (i.e., with
cost that is linear in the length of the strings) by using suf-
fix trees. Moreover, withs fixed, any kernelκ(s, t) may be
computed in timeO(|t|), which is particularly useful for clas-
sification applications.

3. INFORMATION THEORETIC DISSIMILARITIES

3.1. Introduction

Some compression methods, namely the Ziv-Lempel (LZ) al-
gorithm [16, 17], are said “universal”,i.e., are asymptotically
distribution independent. Inspired by this fact, information
theoretic “universal” dissimilarities, based on the algorithms
underlying “universal” compression, have been proposed [18]
and used in classification problems [4], [11].

The concepts of compression and string similarity also
come together in the definition ofinformation distance(ID)
[9]. The ID is built on the concept ofKolmogorov complexity
or algorithmic entropyof a string. The idea of using compres-
sion algorithms to estimate string similarity is also present in
theGenCompress-based algorithm to measure the relatedness
of two DNA sequences [2], and in a recent approach that uses
the Burrows-Wheeler transform [1].

3.2. Kullback-Leibler divergence

Let p andq be two probability functions of discrete random
processes (discrete sources, either memoryless stationary or
Markovian of arbitrary order) with values in an alphabetΣ.
Let the Kullback-Leibler divergence(DKL) betweenp and
q be denoted asDKL(p‖q) (see [3] for formal expressions
and further details). The DKL may be regarded as a dissim-
ilarity measure betweenp andq, sinceDKL(p‖q) ≥ 0 and
DKL(p‖q) = 0 if and only if p = q. However, it is not a met-
ric, due to lack of symmetry and failure to satisfy the triangle

inequality. TheJensen-Shannon divergence(JSD), defined as

DJS(p‖q) = DKL

(

p
∥

∥

∥

p + q

2

)

+ DKL

(

q
∥

∥

∥

p + q

2

)

, (5)

was recently proved to be the square of a metric [5].

3.3. Lempel-Ziv parsing and entropy estimation

Consider a stringx ∈ Σn emitted by a stationary source. Let
c(x) denote the number of phrases inx resulting from the
sequential LZ parsing ofx into distinct phrases,i.e., such that
each phrase is the shortest string which is not a previously
parsed phrase. Whenn → ∞, the average LZ code length for
x may be approximated by

1

n
c(x) log2 c(x); (6)

it is well-known that this converges almost surely (a.s.) tothe
entropy rate of the source producingx [3]. This suggests us-
ing the output of a LZ encoder as an estimate of the entropy of
a stationary source, without estimating any model parameters.

3.4. The Ziv-Merhav method

The idea of using a LZ encoder as an entropy estimator was
extended by Ziv and Merhav (ZM) [18] to estimate relative
entropy, by using a variation of the LZ algorithm to perform
the “cross-parsing” of two strings. Letz andx be two strings
of lengthn. First,z is parsed by the incremental LZ parsing
algorithm intoc(z) distinct phrases (see the previous section);
e.g., if n = 11 andz = abbbbaaabba, then the self incremen-
tal parsing yieldsa|b|bb|ba|aa|bba, that is,c(z) = 6. Then,
one applies a variation of the LZ algorithm which performs a
sequential cross-parsing ofz with respect tox: each phrase is
the longest substring ofz which was parsed inx. For exam-
ple, if x = baababaabba, parsingz with respect tox yields
abb|bba|aabba, that is,c(z|x) = 3. It was proved in [18] that,
for two sequencesx, z of lengthn → ∞, produced by two
Markovian sources, the quantity

∆(z‖x) =
1

n
[c(z|x) log2 n − c(z) log2 c(z)] (7)

converges a.s. to the DKL between the sources. Notice that
[c(z) log2 c(z)]/n can be seen as a measure of the entropy of
the source that emittedz, while [c(z|x) log2 n]/n provides an
estimate of the code length obtained when codingz using a
model forx. In Section 4 we show how the ZM method can
be implemented in linear time (i.e.,O(|x|+ |z|)) using suffix
trees.

4. IMPLEMENTATION ASPECTS

4.1. Suffix trees

Basically, asuffix tree(ST) it is a data structure containing all
the suffixes of a given strings, that allows answering queries

such as “ist a substring ofs?” in time O(|t|). The ST for
s may be built in timeO(|s|) using, e.g., Ukkonen’s algo-
rithm [14]. A generalized ST(GST) for stringss1, . . . , sn

contains all the suffixes of these strings and may be built in
time O(|s1| + . . . + |sn|). Reference [6] is a comprehensive
text on STs and related data structures and algorithms.

4.2. Implementing the PSK and WASK with suffix trees

Let s andt be strings whose similarity one wants to measure;
a GST fors$ and t# (where$ and# are unique terminat-
ing characters) allows computing the PSK and the WASK in
time O(|s| + |t|). We first count, for each nodev in the tree,
how many times the string pathS(v) occurs as a substring
in s andt. Denoting these occurrences asns(v) andnt(v),
respectively, this can be done recursively,i.e.,

ns(v) =

1 if v is a$-leaf,
0 if v is a#-leaf,
∑

w∈Child(v) ns(w) otherwise,
(8)

and analogously fornt(v). Now, let π(v) denote the parent
node ofv if v is not the root. There is ap-gram in the edge
that connectsπ(v) to v if and only if |S(π(v))| < p ≤ |S(v)|.
Define the setVp = {v : |S(π(v))| < p ≤ |S(v)|}. The PSK
is obtained with overall complexityO(|s| + |t|) via

κp(s, t) =
∑

v∈Vp

ns(v)nt(v). (9)

If we use the weightsαp defined in Section 2, also the
WASK may be computed in timeO(|s| + |t|) through

κ(s, t) =
∑

v∈V

ns(v)nt(v)β(v), (10)

whereV is the set of all nodes,β(v)=
∑pf (v)

p=p0(v) λp, p0(v) =

max{pmin, |S(π(v))|+ 1}, andpf (v) = min{pmax, |S(v)|}.
Note thatβ(v) is easily computed inO(1).

4.3. Implementing the ZM method with suffix trees

The two building blocks of the ZM method (LZ parsing and
LZ-type cross parsing) can both be implemented using STs.
LZ parsing of a stringz, based on a ST is described in [6]:
at stagej, we want to obtain the longest parsed phrase (say,
with length lj) plus the subsequent character. By building
a ST for z, and preprocessing it by writing at each node
the lowest position inz that achieves it, the sequence of
stages1, . . . , c(z) may be performed by successively query-
ing the ST in timeO(lj). Hence the overall complexity is

O(
∑c(z)

j=1 lj) = O(|z|). Cross parsing can be done analo-
gously using only a ST forx, the only difference being that
we query it with substrings ofz (this corresponds to a partial
computation of the matching statistics ofz with respect tox).

The overall complexity is alsoO(|x|+ |z|); however, in prac-
tice, ZM is computationally cheaper than PSK and WASK,
since it doesn’t require a GST.

5. EXPERIMENTS

We have evaluated the performance of the above described
methods on a text authorship attribution task, using a set of
texts from Portuguese writers (available at the Project Guten-
berg sitewww.gutenberg.org). Since for most authors
there is only one book available, each book was split into
passages of about50 KB each. The Gram matrices and the
(symmetrized) matrix of DKL estimates were then computed
using the described ST-based methods. Each entry in these
matrices is indexed by a pair of passages. Distance matrices
are computed from the Gram matrices via the cosine measure.
For the WASK, we letpmin = p vary and fixpmax = ∞ (no
upper bound on the length of the string features, as in [15]).

The nearest neighbor rule was used: each passage is at-
tributed to the author of the closest passage excluding itself.
Table 1 shows the best results achieved by each method.

Table 1. Results of the text authorship attribution task using
the PSK, WASK and ZM methods.

Author No. pass. No. correct attributions
PSK WASK ZM

p = 5 p = 4, λ = 0.5
A. Herculano 37 37 37 36
A. Nobre 2 2 2 2
C. C. Branco 5 5 5 5
E. Queiroz 2 2 2 2
F. Lopes 4 4 4 4
G. Junqueiro 3 3 3 3
J. Dinis 30 30 30 30
J. Mattos 5 5 5 5
L. Netto 2 2 2 2
L. V. Camões 6 6 6 6
P. Silva 6 4 4 5
N. Tolentino 2 2 2 2
R. Pina 4 4 4 4
R. Ortig̃ao 17 17 17 17
Tot. 125 123 123 123
Acc. (%) 98.4 98.4 98.4

The ZM method, which does not require tuning any pa-
rameters, yields the same accuracy (98.4%) as the best fine-
tuned (p andλ) kernel-based methods. For the PSK, a too
large value ofp (e.g., p = 10) strongly decreases the per-
formance of the algorithm, which is understandable: ifp is
larger than the length of the greatest common substrings, the
kernel becomes zero. On the other side, small values ofp
discard important features, such as long substrings. The ZM
“distance”, in contrast, has an “unbounded” capacity to deal
with long substrings, since there are no bounds on the length
of the phrases obtained during the cross-parsing.

Interestingly, one of the (only two) passages misclassi-
fied by the ZM classifier revealed a strong connection be-
tween two texts in the collection. In fact, Herculano’s book
Opúsculosis analyzed in an edition ofAs Farpas, by Ortig̃ao,

which can explain why it’s misclassified as having been writ-
ten by Ortig̃ao. This fact suggests the ability of the ZM ap-
proach to handle citation or plagiarism detection.

We used the whole books of each author to build
a phylogenetic tree of Portuguese authors, using the
ZM method. The idea is to characterize the “style”
of each author based on information theoretic meth-
ods. The phylogenetic tree in Figure 1 was ob-
tained using the phylogeny inference package PHYLIP
(seehttp://evolution.genetics.washington.edu/phylip.html),
which basically constructs a tree by minimizing the net dis-
agreement between the matrix pairwise distances and the dis-
tances measured on the tree. Notice the ability of this method
to discriminate among 15th/16th century chroniclers (Fernão
Lopes, Ruy de Pina), 19th century novelists (Camilo Castelo
Branco, J́ulio Dinis, Guerra Junqueiro, Eça de Queiroz, Ra-
malho Ortig̃ao), 19th century essayists or historians (Alexan-
dre Herculano, Possidónio da Silva, J́ulio de Mattos) and
poets (Lúıs de Cam̃oes, Nicolau Tolentino, Cesário Verde,
António Nobre), with the sole exception of Lopes Netto, a
20th century Brazilian novelist who is misplaced too close to
ancient poets perhaps due to some similarity between Brazil-
ian Portuguese and earlier European Portuguese.

AHERCU01

AHERCU03

AHERCU04

NSILVA00

JMATOS00

AHERCU02
AHERCU05ANOBRE00

CVERDE00

LNETTO00

LVCAMO00

NTOLEN00 FLOPES00

RDPINA00 RDPINA01

CCBRAN00

JDINIS00
JDINIS01

GJUNQU00
EQUEIR00

RORTIG00

RORTIG03

RORTIG09

RORTIG01

RORTIG08

RORTIG02

RORTIG10

RORTIG04
RORTIG05

RORTIG06RORTIG07

AHERCU00

Fig. 1. Phylogenetic tree of Portuguese authors and books
obtained by Ziv-Merhav method.

6. CONCLUSIONS

After reviewing some kernel-based and information theoretic
methods for measuring string (dis)similarity (thep-spectrum
kernel, the weighted all substrings kernel, and the Ziv-Merhav
method) we have shown how these methods can be efficiently
implemented using suffix trees. The methods were then tested
on a text authorship attribution problem, all yielding veryhigh

accuracies, provided the kernel parameters are properly fine-
tuned. The ZM method does not require any tuning, which is
an important advantage.

In future work we will further study the relationship be-
tween (relative) entropy and (generalized) suffix trees, veri-
fying if some information theoretic measures are “kerneliz-
able”. We will also consider other dissimilarity measures,
such as the Jensen-Shannon divergence.

7. REFERENCES

[1] H. Cai, S. Kulkarni, S. Verd́u. “Universal entropy estima-
tion via block sorting.” IEEE Trans. Inform. Theory, vol. 50,
pp. 1551–1561, 2004.

[2] X. Chen, S. Kwong, M. Li. “A compression algorithm for DNA
sequences and its applications in genome comparison.”Res. in
Comput. Molec. Biol. – RECOMB’2000, pp. 107, 2000.

[3] T. Cover, J. Thomas.Elements of Inform. Theory. Wiley, 1991.

[4] R. El-Yaniv, S. Fine, N. Tishby. “Agnostic classification of
markovian sequences.”Neural Information Processing Sys-
tems, MIT Press, 1997.

[5] D. Endres, J. Schindelin. “A new metric for probability distri-
butions.” IEEE Trans. Inform. Theory, vol. 49, pp. 1858–1860,
2003.

[6] D. Gusfield. Algorithms on Strings, Trees, and Sequences.
Cambridge University Press, 1997.

[7] T. Joachims. Learning to Classify Text using Support Vector
Machines, Kluwer, 2002.

[8] C. Leslie, E. Eskin, W. Stafford-Noble. “The spectrum kernel:
A string kernel for SVM protein classification.”Proc. Pacific
Symp. on Biocomputing 2002, pp. 564–575, 2002.

[9] M. Li, X. Chen, X. Li, B. Ma, P. Vitanyi. “The similarity met-
ric. ” IEEE Trans. Inform. Theo., vol. 50, pp. 3250–3264, 2004.

[10] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini,
C. Watkins. “Text classification using string kernels.”Jour-
nal of Machine Learning Research, vol. 2, pp. 419–444, 2002.

[11] D. Pereira-Coutinho, M. Figueiredo. “Information theoretic
text classification using the Ziv-Merhav method.” InProc.
Iberian Conf. Patt. Rec. and Image Anal., pp. 355–362, 2005.

[12] B. Scḧolkopf, A. Smola. Learning with Kernels. The MIT
Press, 2002.

[13] J. Shawe-Taylor, N. Cristianini.Kernel Methods for Pattern
Analysis. Cambridge University Press, 2004.

[14] E. Ukkonen. “On-line construction of suffix trees.”Algorith-
mica, vol. 14, pp. 249–260, 1995.

[15] S. Vishwanathan, A. Smola. “Fast kernels for string and tree
matching.” In K. Tsuda, B. Scḧolkopf, and J.P. Vert, editors,
Kernels and Bioinformatics, MIT Press, 2003.

[16] J. Ziv, A. Lempel. “A universal algorithm for sequential data
compression.”IEEE Trans. Inform. Theory, vol. 23, pp. 337–
343, 1977.

[17] J. Ziv, A. Lempel. “Compression of individual sequences via
variable-rate coding.” IEEE Trans. Inform. Theory, vol. 24,
pp. 530–536, 1978.

[18] J. Ziv, N. Merhav. “A measure of relative entropy between indi-
vidual sequences with application to universal classification.”
IEEE Trans. Inform. Theory, 39, pp. 1270–1279, 1993.

