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Outline of the lecture

e Partl: RL Primer
e The RL Problem
e Markov Decision Process - A Model for RL Problems
e (Optimality & Dynamic Programming
e Monte Carlo Approaches
e Temporal Difference Learning

e The Policy Gradient Theorem
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Outline of the lecture

e Partll: DeepRL
e From RL to Deep RL
e DON
e Deep advantage actor-critic methods

e Trust region methods



The RL Problem

0
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The RL Problem

e [ngredients for success:
e You learned as you played the game
e You experimented the different actions
e Assoon as you figured out the goal of the game, you stopped experimenting
e You used the feedback you got (n. of steps) to figure out the goal of the game

e \When pursuing the goal, you had to think ahead to select the actions
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The RL Problem
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Whatis RL?

Inspired on theory of operant conditioning

Operant conditioning

Reinforcement Punishment
(increase behavior) (decrease behavior)

Positive Negative Positive Negative
(correct behavior leads ‘ (incorrect behavior leads (incorrect behavior
to pleasant stimulus) to unpleasant stimulus) removes

‘ ‘ pleasant stimulus)
Escape Active avoidance
(correct behavior (correct behavior avoids
removes unpleasant stimulus)

unpleasant stimulus)
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Whatis RL?

e (Computational “counterpart” to operant conditioning
e (lass of problems and algorithms to solve those problems

e Learning takes place through the interaction between agent and environment
(learning by trial-and-error)

e Learning driven by a “reinforcement signal” rather than examples
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Elements in RL

e Keyelements in RL:
e |[nteractive learning
e Learning from evaluative feedback
e Tradeoff between exploration and exploitation

e Actions impact the future (temporal credit assignment)
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Interactive learning

Environment

Interaction
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Interactive learning

Environment
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Interactive learning

Environment

Action
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Interactive learning

Environment may change state

T — N

Reward
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Markov decision process

e Formalizing the reinforcement learning problem:

e The state of the world/environment at step t is denoted as S;

e The state takes values in some set § (the state space)
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Markov decision process

e Formalizing the reinforcement learning problem:

e The action of the agent at step t is denoted as A;

e The action takes values in some set A (the action space)
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Markov decision process

e Formalizing the reinforcement learning problem:

e Upon performing an action at time step t, the agent gets a (random) reward R;
e Thereward depends on the state S;and action A;as

1D [Rt] — T(St, At)

e Woecall rthe reward function
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Markov decision process

e Formalizing the reinforcement learning problem:

e As aresult of the agent’s action at time step t, the state of the environment at
time step t + 1 may change

e \We assume that the evolution of the state verifies the Markov property:

P[St_|_1 — S ‘

SO:t — S0:t AO:t — AQ:¢

| =P [Si41 =5

Knowledge of the
past...

St = s¢, Ay = at]

... Is subsumed in the

present
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Markov decision process

e Formalizing the reinforcement learning problem:

e As aresult of the agent’s action at time step t, the state of the environment at
time step t + 1 may change

e \We assume that the evolution of the state verifies the Markov property:
P [St—l—l — S ‘ So:t = S0:¢, Ao:t = aO:t] =P [St+1 =5 ‘ St = 8¢, Ay = at]
e \We call these the transition probabilities, and write

P(s'|s,a) =P[Si11 = 5| St =s,4; = q]
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Markov decision process

e A Markov decision process is defined as a tuple (S, A, {P,,a € A} ,r)

e Sisthestate space
e A istheactionspace

e Foreachaction a € A, P,is a matrix with entry ss’ given by P(s’ | s, a)

e 7risthe reward function
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... SO what?
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Optimality
e A Markov decision process is not actually a problem

e Provides a mere descriptive model for RL problems

e \What does it mean to solve a model??

v

Objective
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Optimality

e \We thus formulate a Markov decision problem (MDP) as follows:

Given a Markov decision process and a function
J({Rt,t: O,,})

how can we select the actions { A;} to maximize J?
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Policies

e MDPs are formulated in terms of action selection
e A npolicyisan “action selection rule”:
e Define the history at time step t as
Hi = {50,00,70,51,01, 715+, St—1,0t—1,T¢t—_1, St}
e |tisarandom variable

e Depends on the particular action selection
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Policies

e A policy is a mapping 1 between histories and distributions over actions:

m:H— A(A)

Set of all Set of distributions
finite histories over actions
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Policies

e Types of policies:
e [Deterministic policies - Each history is mapped to exactly one action
T H—A

e Markov policies - Depend only on the most recent state (may be time-
dependent)

TS — A(A)
N

e Stationary policies - Depend only on the most recent state (is time-independent)

m:S — A(A)
o\
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Optimality criteria

e Jinthe previous formulation is the optimality criterion

e There are several possible optimality criteria in the literature
e Each has advantages and disadvantages

e The choice should be problem-driven
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Optimality criteria

e (Expected) immediate reward:
JHAR:,t=0,...,}) =E[Ry] = r(Ss, Ay)
e Advantages:
e Simple to optimize:
7 (Sy) = argmax r(.S;, a)
acA

e Disadvantages:

e Only applicable in very specific problems
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Optimality criteria

e (Expected) total reward:

o

>R

t=0

J{R;,t=0,...,)) =E

e Advantages:
e Not myopic
e Disadvantages:

e Objective not always well-defined (summation may diverge)



() i
Optimality criteria

e (Expected) average per-step reward:

J({Rt,tz(),,}): lim —E

e Advantages:

e Not myopic

e Independent of initial state of the process

e Disadvantages:

e Sometimes cumbersome to work with
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Optimality criteria

o (Expected) total discounted reward:

J{R;,t=0,....)) =F

Z Wth
t=0

e Advantages:

e Not myopic ODi<sc0unt1
<<

e “Economical” interpretation
e Disadvantages:

e Depends on the initial state of the process
We henceforth focus

on this criterion
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Markov decision problem (MDP)

e A Markov decision problem is defined as a tuple (S, A,{P,,a € A} ,r,7v)
e Sisthestate space
e A istheactionspace

e Foreachaction a € A, P,is a matrix with entry ss’ given by P(s’ | s, a)

e 7risthe reward function

e visthediscount



Solving MDPs
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Value function

e Letusconsider afixed stationary policy Tt
e Action depends only on current state
e [Invariant through time

e Inotherwords,

w(a|s)=P[A;=a|S; = s]

Independent of t
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Value function

e Thevalue of Jdepends on the initial state

o Let

vr(s) = E;,

Z/tht ‘ SO — 87:|
t=0

e Uy(s)is the value of Jwhen
e The agent follows policy x, i.e.,

At ~ ’7T(‘ ’ St)

e Theinitial stateis s
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Value function

e The function
Vet S >R
is called a value function
e |tisthevalue function associated with Tt

e |t verifies the recursive relation

vr(s) = Z m(al|s) |r(s,a)+~ Z P(s" | s,a)v.(s")

acA s’'eS

Immediate Future total
reward discounted reward
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A computational (parenthesis)

e Therelation

Zﬂ' { 3a+*yZPssa)vW(s)}

acA s'E€S

offers two possibilities to compute v,

e Solve the associated (linear) system of equations

e Starting with an arbitrary initial estimate v(0), repeatedly go over the update

v F ) (5 %Zﬂ' (s,a —|—*yZPs\sa) () (")

ac A s'eS
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A computational (parenthesis)

e The iterative approach with update

U(k‘f‘l)(s) — Z 77(@ ’ S) |:7“(S,CL) + 7y Z P(S, ’ Saa)v(k)<8,):|

acA s'eS

is known as value iteration

e (Computing the value function associated with a policy is usually referred as the
prediction problem

e Itisadynamic programming approach that, intuitively, “propagates” reward
information back through time
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... moving on...
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Optimal policy

e \We say that a policy 7" is optimal if and only if

Vpx(8) > vr(s),Vm,Vs €S

e That such a policy exists is a central result in the theory of MDPs

\4

Solving MDP = Computing an optimal policy
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Value function 2.0

e The value function for the (an) optimal policy is simply denoted as v*

e |t verifies the recursive relation

v*(s) = max {r(s, a) + Z P(s' | s, a)v*(s’)}

ac A
s’'eS

e The optimal policy can be computed from v" as

7" (s) = argmax {r(s, a) + 7y Z P(s' | s, a)v*(sl)}

a€A s’'eS
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A computational (parenthesis) 2.0

e Therelation

v*(s) = max {r(s, a) + Z P(s' | s, a)v*(s’)}

acA
s’eS

also offers a possibility to compute v”

e Starting with an arbitrary initial estimate (), repeatedly go over the update

v (5) «— max {r(s, a) + Z P(s' | s, a)v(k)(s’)}

ac A
s’'eS

e An MDP can thus be solved by computing v* (and =" from it)
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Value function 3.0

Other useful value functions to be considered

Action-value function (or Q-function) associated with a policy:

vn(s) =) m(al|s)

ac A

|

r(s,a) +~ Z P(s' | s,a)vg(s")

s’eS

|

|

G (5, )
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Value function 3.0

e Other useful value functions to be considered

e Action-value function (or Q-function) associated with a policy:

gr(s,a) =r(s,a) + Z P(s" | s,a)v.(s")
s'eS

e |t verifies the recursive relation

ar(s,a) =r(s,a) +v ) P(s'|s,a) Y w(a’ | 8)gn(s',d)

s’eS a’'c A
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Value function 3.0

e Other useful value functions to be considered

e QOptimal action-value function (or Q-function):

v*(s) = max {r(s, a) + Z P(s' | s,a)v*(s")

cA
“ s'eS

q"(s,a)



TECNICO
W LISBOA

Value function 3.0

e Other useful value functions to be considered

e QOptimal action-value function (or Q-function):

q¢*(s,a) =r(s,a) +~ Z P(s' | s,a)v*(s")

s’eS

e |t verifies the recursive relation

q*(s,a) =r(s,a) +7 ) P(s' | 5,a) maxq™(s', a)
s’eS

e Moreover,

7" (s) = argmax ¢~ (s, a)
ac A
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e We can compute ¢, and ¢* using similar iterative approaches

(k+1) . P(s (k) (o 7
¢" (s, a) T(S,a)+7§€; (s' | 5,0) max ¢ (s', o)

¢ (s,0) = r(s,a) + Y P(s'[s,0) Y w(a | s)gP (s, a)

s'E€S a’' €A

which are all collectively known as value iteration

e (Computing the optimal Q-function is usually referred as the control problem
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Value function 3.0

e (Other useful value functions to be considered
e Advantage function associated with a policy:
adv,(s,a) = qr(s,a) — v.(s)

e The advantage function does not verify a recursive relation
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Key players in RL

¢ |Immediate reward
e Translates the goal of the agent
e [nstantaneous / myopic

e Policy
e Action selection rule

e Solving an MDP consists in finding the optimal policy
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Key players in RL

e Value function
e “Secondary” reward
e Long-term evaluation of the states
e (an be used to compute the policy
e Model (Markov decision process)

e Description of the dynamics of the process (transition probabilities)
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Solving RL

e Solving an RL problem consists of solving the associated MDP
e Solving an MDP consists of computing the optimal policy.
° E,g.,

e Use valueiteration to compute v*

or

e Use valueiteration to compute ¢

e Use any of the above to compute 7*
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Outline of the lecture

e Partl: RL Primer
e The RL Problem
e Markov Decision Process - A Model for RL Problems

e (Optimality & Dynamic Programming
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Reinforcement learning
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Reinforcement learning

e Interaction between the agent and the environment

e Agentobserves that 5; = s
e Agent performs an action A; = a
e Agent gets areward R;

e At the next time step, agent observes 5;;1 = ¢
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Reinforcement learning

e At each step, the agent collects a sample, consisting of a tuple
(s,a,r,s")
e Each such sample includes information about:

e Thereward, in the triplet (s, a, 7)

e The dynamics, in the triplet (s, a, ')
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Reinforcement learning

e \We consider explicitly the two subproblems within RL:

e The prediction problem (given a policy, compute vy)

e The control problem (compute ¢*)
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Taxonomy of RL methods

e Solving an MDP:

Model

DP

Value
function

Opt.

Policy
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Taxonomy of RL methods

e Model-based methods:

Model

DP

Data

{(St7 g, T't, St+1}

Value
function

Opt.

Policy
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Taxonomy of RL methods

e \/alue-based methods:

—_—
Value

function

Opt.

A

Data

{(Sta ¢, T't, St+1}

Policy
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Taxonomy of RL methods

e Policy-based methods:

Policy

Data

{(St7 g, T't, St—l—l}
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Taxonomy of RL methods

REINFORCEMENT LEARNING

Model-based
methods

Use DP with {P,}
and r estimated
from data

Value-based
methods

Directly estimate
v* or ¢* from data

Policy-based
methods

Directly compute
7* from data

Monte Carlo
methods

Estimate v* or ¢*
from definition

Temporal
Difference
methods

Estimate v* or ¢*
from recursion

Black-box
optimization

Don't use MDP
structure

Actor-critic
methods

Use MDP
structure
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REINFORCEMENT LEARNING

Taxonomy of RL methods

Value-based
methods

Directly estimate
v* or ¢* from data

Policy-based
methods

Directly compute
7* from data

Monte Carlo
methods

Estimate v* or ¢*
from definition

Temporal
Difference
methods

Estimate v* or ¢*
from recursion

Actor-critic
methods

Use MDP
structure
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Monte Carlo approaches
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The prediction problem

e \We want to estimate v,

e \We are given a trajectory

T = {507a07T07317a17T17 . -73T—17aT—larT—175T}

obtained while following policy n

e \We define the return at time step t as
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Using the return

e From the definition of v,
vr(80) = E [Go]

e Then, given N trajectories with a common initial state sy, we can compute

1 N
B(s0) = Y Gon
n=1

or, incrementally,

Return for trajectory N
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e A trajectory

Some considerations

T = {507a07T07317a17T17 . -aST—laaT—laTT—laST}

provides returns for multiple states
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e A trajectory

Some considerations

T = {507a07T07317a17T17 . -aST—laaT—laTT—laST}

provides returns for multiple states
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Some considerations

e A trajectory
T = {SO,GO,TO,S1,G1,T1, = -,ST—1,CLT—1,7“T—1,ST}
provides returns for multiple states

e Trajectories should visit all states a large number of times



TECNICO
w LISBOA

The control problem

e We want to estimate ¢

e \We are given a trajectory

T = {307a07T07317a17T17 . -73T—17aT—larT—175T}

obtained by selecting a random action ao and following a policy n(9) thereafter
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Using the return

e From the definition of ¢,
QT('(SO) aO) ~ & [GO]

e Then, given N trajectories with a common initial state sy and initial action ao, we can
compute

(50, a0) ZGOn

or, incrementally,

. . 1 R
q(s0,a0) < q¢(s0,a0) + N(GO,N — q(so0,ap))
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Some considerations

e To estimate the Q-values for all state-action pairs, we need a large number of
trajectories starting in each state-action pair

e Tocompute the optimal Q-values,

e Start with arbitrary policy 79 and set £ = 0

e (enerate multiple trajectories, and estimate ¢

Improved policy

7

k1D (5) = argmax ¢ (s, a), Vs
acA

e (ompute policy

e Setk =k + 1andrepeat
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Temporal difference learning
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The prediction problem

e \We want to estimate v,

e \We are given a trajectory

T = {307a07T07317a17T17 . -73T—17aT—larT—175T}

obtained while following policy n
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The prediction problem

e \We know that

:ZW(CL] {sa%—WZP | s,a)v.(s )}

ac A s’'eS

or, equivalently,

Ur(8) = ]EAtNW(St) Ri +yvr(Sey1) | St = 8]

\

Expectation
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The prediction problem

We know that

v (s) = Z m(a | s) {r(s,a) + Z P(s" | s,a)vﬂ(s’)}

ac A s’'eS

or, equivalently,

Ur(8) = ]EAtNW(St) Rt +yvr(Seq1) | St = 8]

The value function v, can be computed iteratively via value iteration using the
update

D (5) Z m(al]s) |r(s,a)+~ Z P(s' | s,a)v™)(s)

ac A s'eS
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The prediction problem

We know that

v (s) = Z m(a | s) {r(s,a) + Z P(s" | s,a)vﬂ(s’)}

ac A s’'eS

or, equivalently,

Ur(8) = ]EAtNW(St) Rt +yvr(Seq1) | St = 8]

The value function v, can be computed iteratively via value iteration using the
update

v® D (8) = Enpnsy R+ 70 (Si1) | St = 5|
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The prediction problem

e \We can approximate the update
v* D (5) — Ba sy [Re+ 70 (Si1) | S = 5
from samples {(s, 7., s.)}as
| N
k+1 k
E8) 3 3 e )

or, incrementally,

v (5) v B (s) + — (rp, + 0P (s]) — vF)(s))

1
N

Let’s turn this into a proper algorithm



e
TD(0)

e Given a (potentially infinite) trajectory

T: {SQ,CLQ,To,Sl,Cbl,Tl, e e St—1,A—1,T¢—1,S5¢, - - }

generated using policy z, and given an initial estimate v(°) for v,, TD(0) performs, at
each step t, the update

v (50) = 0 (s¢) + auf(re + 0 (s141) — 0 ()

/ \

New estimate Old estimate
(only updates
;c;,ToF::ci)gteer::It Step size Temporal
difference

with current
state s
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TD(0)

e Given a (potentially infinite) trajectory

T: {So,Cbo,TQ,Sl,al,Tl, e e St—1,A—1,T¢—1,S5¢, - - }

generated using policy z, and given an initial estimate v(°) for v,, TD(0) performs, at
each step t, the update

v(t+1)(8t) — v(t>(8t) + (Tt + WU(t)(StJrl) - U(t)(st))

A

Compare with what we had

v

1
v (s) = vB(s) 4 5 (ra + 700 () = v(s))



TECNICO
w LISBOA

The control problem

e We want to estimate ¢
e We start with the idea used in MC methods (compute ¢, improve 7, repeat)

e \We are given a trajectory

T = {507a07T07317a17T17 . -,ST—1761T—1,7“T—1,ST}

obtained while following some initial policy =
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The control problem

e Repeating the same reasoning,

QW(Sv CL) — EAt+1N7T(St+1) [Rt + VQW(SH—lv A?H—l) ’ St = 8, Ay = CL]

leading to the update

q(k+1)(57 a) EAt+1N7T(St+1) {Rt + ’Vq(k)(st—kla App1) | St =5, Ay = CL}
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The control problem

e Then, given a trajectory

T = {307a07T07817a17T17 ey ST—1,07-1,TT—1, ST}

generated using a policy &, and given an initial estimate ¢(©) for ¢,, update

C](tﬂ)(st, ag) q(t)(St, at) + (Tt T ”Yq(t)(stﬂa At41) — q(t)(st, at))
e After some iterations, compute a new policy

m(s) < argmax ¢'* (s, a)
acA
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SARSA

This approach runs the following cycle:

e Start with a policy

e Evaluate it, computing its associated Q-function
e Update the policy

e Repeat

Each update to ¢(Y uses a sample (s, ai, 71, Si+1, Gi1)

The algorithm is thus named SARSA
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Can we learn ¢" directly?
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The control problem

e Letus againrepeat the same reasoning

¢ (s,a) =K [Rt + ’ymeajcq*(StH,a) | Sy =5, A = a]
we get the update

() (5,0) « E [Rt 4y (Sir.a) | = 5, Ay = ]
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Q-learning

e Then, given a (potentially infinite) trajectory

T = 1{50,00,7T0, 81, A1, 1y St—1,01—1,Tt—1,Sty--}

generated using an arbitrary policy &, and given an initial estimate ¢(©) for ¢, update

q(Hl)(St, at) < Cl(t)(Sta at) + (T + ¥ max q(t)(3t+1» a) — q(t)(Sta at))
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Summarizing...

e TD(0) is used to compute the value function for a given policy
e Itrelies onthe update

v (50) = 0 (1) + (re + Yo' (5141) — ’U(t)(st))
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Summarizing...

e SARSA and Q-learning are used to compute the optimal Q-function
e SARSA relies on the update

C](t+1)(8t, ap) q(t)(St, at) + o (Tt T ’Yq(t)(StJrl, Apy1) — q(t)(st, at))
e SARSA learns the Q-function for the policy used to obtain the samples

= On-policy learning

e Inorderto compute the optimal policy, it must slowly adjust the policy used to
obtain the samples
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Summarizing...

e (-learning relies on the update
Q(Hl)(st, ap) (](t)(Sta at) + o (re + VICJLflEajC q(t)(8t+17 a) — C](t)(Su at))

e (-learning learns the optimal Q-function, independently of the policy used to obtain
the samples

= Off-policy learning
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The policy gradient theorem
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Policy-based methods

e The goalis to compute " directly

e We depart from a parameterized family of policies, 7
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... however...



i M
Policy-based methods

All policies
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Policy-based methods

All policies

Optimal policies
Ve (8) > vr(s), YV, Vs
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Policy-based methods

How to select a
policy here?

All policies

Parameterized
policies

Optimal policies
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Revisiting optimality criterion

e When considering the set of all policies, state-wise optimization is possible

e \When considering a restricted set of policies, state-wise optimization may not be
possible
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Revisiting optimality criterion

e Recall that our goal is to maximize

J({Rt,t:O,,}):E

oo
> 'R
t=0
e \We consider that the initial state of the MDP follows some initial distribution u

e To explicitly indicate the dependence of J on the initial distribution 1 and the policy
nmused to generate { R, t = 1, ...}, we write

ZVth | So ~ M}
=0

J(m;p) £ En
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Interesting relations

e We have that
o vq(s)=J(mp)when p(s") =1(s" = s)
e Conversely, for an arbitrary distribution g,

T(wi ) = 3 nls)on(s)
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RL using gradient ascent

e \We can now optimize | with respect to the parameters of the policy
e Using gradient ascent, we get an algorithm

0 < 0+ aVyJ(mg; 1)

v
Methods based on this idea
are globally called
“policy-gradient methods”



i M
Policy gradient

e \We now compute the policy gradient

Let us consider
this term alone



i M
Policy gradient

e Since

0y (8) = 3 m9(a | )dny (5, 0)

ac A
it holds that

Vovr,(s) = Y [Vomo(a | 8)¢x,(s,a) +m6(a | $)Vogn, (s, a)
acA

v
We now look
at this term



i M
Policy gradient

e Since

0r,(5,a) =7(s,a) +~ Z P(s' | s,a)v.,(s")
s'eS

it holds that

Voqr,(s,a) =~ Z P(s' | s,a)Vouy, (s

s'eS



i M
Policy gradient

e Putting everything together, Factoring this out
Vour, (s) =Y | Voma(a| s)qn,(s,a) +yma(a| s) > P(s'| S,Q)ngm(s')}
acA s’'eS
Vomgla | s
— Y molals { O g (s,) 40 P s a)%vm(sﬂ
acA 0 \ s’eS
This is just

Vo logmp(a | s)



i M
Policy gradient

e Putting everything together,

VQUWQ (S) — Z

acA

Vomo(a | 8)dr, (s,a) +7mo(a | s) Y P(s'| Sva)VQUM(S/)}

s’'eS

— Z mo(a | s) |:V9 logmo(a | $)qr,(s,a) + Z P(s"| Saa)VHUwa(S/)}

ac A s’eS

e Recursive relation reminiscent of that for v,

Plays the role
of “reward”



i M
Policy gradient

e Unfolding the recursion finally yields

Vod(mo; 1) Z,ug Z mo(a | s)Veglogmg(a | s)qr,(s,a)
s€S acA
or, equivalently,

VoJ(mo; 1) = Espy, Anr(|s) [Volog mo(A | S)gr, (S, A)]

e The distribution ue translates the “discounted visitation frequency” under mp

e (an be sampled by sampled the MDP while following 7



e
REINFORCE

e Thegradient is just the

e (iven atrajectory obtained from 7y and with initial state sampled from L,

T
Vod(me; 1) ~ Z’tht log g (ay; | s¢)

t=0

Estimate of
QW(Stvat>
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Actor-critic architecture

e Tocompute the gradient, we require an estimate of the Q-values
e REINFORCE uses a simple Monte Carlo approach to build such estimate

e However, other approaches can be used (e.g., temporal-difference learning)
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Actor-critic architecture

e The RL algorithm comprises two
components:

e An actor, responsible for executing
the policy ms

e A critic, responsible for evaluating
the policy (computing ¢»)

v
Actor-critic
architecture

State S;

N RL Agent

N\

Actor

Policy my

/
Critic
Value ¢,

/

/

Reward R;

Error

Environment

Action At
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TD-based actor-critic

e Forexample, we can have an actor-critic based on TD-learning:
e (iven a trajectory
T = {80, Q0, 70,81, A1, T 1y vy St—1,Qt—1,Tt_15Sts -}
e Update the Q-value estimates as
q(Hl)(Su ap) = (](t)(Su ag) + oy (ry + Wq(t)(8t+1, Ap41) — q(t)(st, ag))
e Update gradient term

H(tH) — H(t) + Bﬂtq(tﬂ)(st, at)ve log 776(3157 at)
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Considerations

e PG/AC architectures are convenient with function approximation

e (radient does not depend on ¢, but on a projection thereof

e Variations of the gradient (e.g., natural gradient) can also be used:
e Discountis cumbersome to deal with
e Many PG/AC applications instead adopt the average per-step reward

e Fullyincremental approaches suffer from high variance and are seldom used



) T
Adding a baseline

e (onsideronce again the gradient expression

VoJ(mo; 1) = Espg, Ao (-5) [Vologmo(A | S)qr, (S, A)]
e (radient estimated from samples

e Estimates plagued by high variance (sensitivity to the particular samples)



) T
Adding a baseline

e Result from theory of Monte Carlo integration:

e Use of a baseline can often improve variance of sample-based estimates

E[f(X)] ~ - 3 f(a)

E[f(X) /%(X)] ~ % (f(zn) —g(xn)) —> Lessvariance
Baseline

(E [g(X)] known)
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Adding a baseline

e (onsider an arbitrary function
b:S —- R

e Then,



o
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Adding a baseline

e (onsider an arbitrary function
b:S —- R

e Then,

ac A



) T
Adding a baseline

e Butthen
Vo (mg; 1) = Espg,ann(-|s) [Vologma(A | S)r, (S, A) — Vglogmg(A | S)b(S)]
or, equivalently,

Vo (mo; 1) = Espg ann(|5) [Vologme(A | 5)(gn, (5, A) = b(S5))]

/

Best baseline:
Urg (S)



) T
Adding a baseline

e Butthen
VoJ(mos 1) = Eg iy amr(s) [Volog mo(A | S)ar, (S, A) — Vglogme(A | S)b(S)]

or, equivalently,

VQJ(T"G; ,u) — ESNMQ,ANW('|S) [V@ log g (A ‘ S)I(QWQ (Sa A) — Umg (S))

/

Advantage
adv, (S, A)
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Adding a baseline

e Butthen
VQJ(WQ;,LL) = ]ESN,ug,ANW(-IS) [V@ logﬂ‘g(A | S)qﬂe (S, A) — VQ logm(A ’ S)b(S)]
or, equivalently,

V@J(ﬂ'@; ,u) = ESNMQ,ANW('|S) [V@ log 7T9(A ’ S)advﬁe (S, A)]

= This is the underlying form of most

current AC algorithms
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Outline of the lecture

e Partl: RL Primer
e The RL Problem
e Markov Decision Process - A Model for RL Problems
e (Optimality & Dynamic Programming
e Monte Carlo Approaches
e Temporal Difference Learning

e The Policy Gradient Theorem
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Outline of the lecture

e Partll: DeepRL
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RL in large domains

e Plan:
e Revisit temporal difference learning in large domains

e Reuvisit policy-gradient methods in large domains
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Temporal difference learning revisited
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TDL in large domains

e Temporal difference learning methods require explicit updates:
v (5) — 0O (sy) + ay (¢ + ol (s444) — v(t)(st))

q(tH)(Sta at) < q )(St7 at) + (T + V?ax q(t)(st-i—la a) — q(t)(Sta at))

cA
A
Component s;
iIs explicitly
updated
Component
(815, CLt) IS
explicitly

updated
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TDL in large domains

e Forlarge domains, function approximation is necessary

e \We can no longer compute v, or ¢" exactly

e [nstead, we consider parameterized families of functions
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TDL in large domains

e Example: TD-learning with linear function approximation

e \We consider the family of functions of the form

v(s;w) = w' ¢(s)
where wis a vector of parameters

e \We update the parameters w as

w D w4 oy i(se) (e + Yo(segp; wP) — (s w?))

ICompare

v(Hl)(St) — v(t)(St) + Oy (Tt -+ VU(t)(St) - U(t)(st))
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TDL in large domains

e Another example: Q-learning with linear function approximation

e \We consider the family of functions of the form

q(s,a;w) = w ' ¢(s,a)
where wis a vector of parameters

e \We update the parameters w as

w! ) w4 ar(st, at)(re + Vfgleaj( q(St+1,a; ’w(t)) — q(s¢, at; ’w(t)))

Itompare

q<t+1)(8t7 @t) — q(t)(stv at) + Oét(Tt -+ Vgﬂea} 61<t)(8t+17 @) — q(t)(sta (lt))



i M
The problem of

function approximation

e Unfortunately, temporal-difference methods may with function
approximation




i M
The problem of

function approximation

e |[ssues with function approximation in RL:
e Bootstrapping - the target is built from current estimate

e Sample correlation - samples come from a trajectory
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Given the previous difficulties, how can we

combine ANNs with RL?



i M
Combining ANNs and RL

« \We address directly the control problem

* Three ideas:
* Create areplay buffer to avoid sample correlation

« Use an auxiliary estimate for ¢* (a target network) to avoid bootstrapping

« Turn the trajectory data into supervised learning data



i M
1. Build replay buffer

e (iven a trajectory

T — {So,ao,To,Sl,al,Tl, e ST1,ar—-1,TT-1, ST}

create a set of transitions (replay buffer)

T, — {(st,at,n,SHl),t — 0, ... ,T — 1}

l

At training time, we
select random transitions
from the replay buffer

l

Goal: minimize
sample correlation



() i
2. Build targets

e At training time, given a sample (s¢, at, ¢, St+1) from the replay buffer, build target

= r; + maxq(s a
Yt t nas (]( t+15 )

where ¢ is an estimate of ¢ Auxiliary estimate
(target network)

e \We thus build a dataset
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3. Train

e The error associated with sample #is now

Ek = (ytk; - Q(Stk;7a’tk;w))2
with gradient

vwgk — _2qu(8tk y Aty s w)(ytk o Q(Stk y Aty s w))

= |~2Vwd(s1,, ar; w)(ry, +ymaxq(siyr, a) = q(se,, 0, w))

\

Resembles
Q-learning
update
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e The resulting approach is known as a Deep Q-Network (DQN)

e |twas the approach used in the ATARI deep RL paper

Convolution Convolution Fully connected Fully connected
v v v v
No input
[ ]
i A\l
o o [ N
® [ ]
4 1
e e
\ |~

NENQ)
¥ +O
+O
€+0O
K+O

ulﬁEl[J_'ICI\f'_'Iu u[ﬁ&iﬂ%/ﬂi[\lﬂijﬂu uCIEIIJ_'IEIEEI
L J L J

VN>
+ B+ 0+

V. Mnih. “Human-level control through deep reinforcement learning.” Nature, 518:529-533, 2015
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 Some considerations:
« The DQN network takes the state as input and has one output per action

« The target network is a copy of the DQN, i.e., “0ld” parameters

'

q(s,a) =q(s,a;w™)

« Itisupdated every C'steps with the weights of the main DQN



i R
Variations: DDQN

e The targets in DQN are computed as
=71y +maxq(Ser1,a;w
Yt t 7 Tnax q(St+1 )
where the target network seeks to avoid bootstrapping
* We can further decouple:
e ...the computation of the maximizing action; and

« ...thevalue of the maximizing action.
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Variations: DDQN

e Thetargetsin double DQN (DDQN), the targets are computed as

Yt =Tt + C](St+1, argimax Q(St—|—17 a; w); w )

R

Target network is used Original network is used
to compute the to compute the
maximizing value maximizing action
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More variations

e Prioritized replay:

« Transitions are sampled from the replay memory with a probability that
increases with the associated error:

Ek = (ytk - Q(Stk7a’tk;w))2
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More variations

Dueling network:

Instead of the “standard” DON architecture

d
/

Input Hidden Output
S (parameters w) q(s, a; w)
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More variations

e Dueling network:

» Instead of the “standard” DQN architecture, dueling networks propose

o
/

Input Hidden Output
S (parameters ’lU) Q(S,af§w79v70adv)

(parameters 6,,)

(parameters 6,4 )
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More variations

e Dueling network:

» Estimate of v*(s)

(parameters 6,,)

(
V/

Input Hidden Output
s (parameters w) q(s,a;w,0,,0.q4,) = v(s;w, 0,) + adv(s, a;w, Oaqy)

(parameters 0,4y )

» Estimate of adv™ (s, a)
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More variations

e Dueling network:

» Estimate of v*(s)

(parameters 6,,)

(
V/

Input Hidden Output
s (parameters w) q(s,a;w,0,,0.q4,) = v(s;w, 0,) + adv(s, a;w, Oaqy)

(parameters 0,4y ) —b(s)

» Estimate of adv™ (s, a)
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Considerations

« Different variations offer different advantages:
 DDQON - more stable learning than DQN
e Prioritized replay - better use of memory (faster learning)

 Dueling DQN - better performance, particularly in domains where actions only
relevant in some states

« Different variations are mostly orthogonal, and can be combined



TECNICO
w LISBOA

Policy gradient methods revisited
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Actor-critic architecture

e The AC architecture comprises two

components:
N RL Agent
e An actor, responsible for executing N
the policy 7 Actor
Policy 7y
N\
e A critic, responsible for evaluating .
the policy (computing adv,) —
Critic
Return G;
State S, _—" Value v,,
/
T
/ Reward R;
The two components
are used to estimate Environment

the advantage

Action A,



i R
Advantage Actor-Critic

vwﬁv Vw,0, (Gt — Vw,0, (St))

(parameters 6,)

Critic outp

{ Vw,0,
—/ Actor output

Input Hidden Tw,0n
S (parameters w)

(parameters 6;)

V'V wo. logmee (ar | 5¢) (Gt — V.o, (5¢))
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Asynchronous Advantage
Actor-Critic (A3C)

Global Network

Workers collect
data and compute
gradient updates




o
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Asynchronous Advantage
Actor-Critic (A3C)

Global Network Worker’s

gradient estimates

are used to update
global network
asynchronously

/ /507 W”

Worker 1 Worker 2 Worker 3 Worker n
$ ¢ $ $

[Environment 1 ] [Environment 2} {Environment 3} . [Environment n}
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Asynchronous Advantage
Actor-Critic (A3C)

e |tis notclearthat asynchrony brings an advantage
e Ongoing work to compare A3C with its synchronous version (A2C)

e A2Cincludes a coordinator module that ensures that gradient updates are
synchronized

Training in parallel Training in parallel

Agent1

~\ r Agent 2
Global Global
Network Network Coordinator
Parameters Parameters Agent3
J \_

Agentn

A3C (Async) A2C (Sync)
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Let’s take a step back...
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How PG methods work

e Start with a parameterized policy

e Gather some data (trajectories) using that policy
e Use the data to estimate the advantage

e Update policy parameters using the gradient

e Repeat

At this point,
what happens to
the data?
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How PG methods work

e (lddatais “discarded”
e (Old trajectories may be unlikely under the updated policy

e (Old trajectories provide poor estimate to the advantage under updated policy

\4

Not very
data
efficient
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Alternative optimization

e Recall that policy gradient methods arise from the optimization of J(m; u)

e (iven two policies, i and me, it is possible to show that

J(mors ) = J(mos 1) + Esopy {Z mo (a | S)adv,, (S, a)

e

Trajectories Advantage
using s weighted by ms
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Alternative optimization

e Recall that policy gradient methods arise from the optimization of J(m; u)

e (iven two policies, i and me, it is possible to show that

J(mors ) = J(mos 1) HEsmopy {Z mo (a | S)adv,, (S, a)
ac A

if 1o and e’ are “close”

e We can thus optimize J(my/; ;1) by maximizing the expectation on the r.h.s.
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Trust region policy optimization

e TRPO thus consists of solving the optimization problem

max Esmps . Z mo(a | S)advy, (S, a)}
acA
subject to Esnpo, [KL(To,q (- | S),mo(- | S))] < d| Trust region

e (an be solved using, e.g., Lagrange multipliers

e How do we compute the expectation?
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Estimating the expectation

e \We have that

- 7T9(A ‘ S)
ESNM%M |:a;4 7T9(CL ‘ S)advﬁeold (S, a) = ESN“%ldvANW@om [Wgold (A ‘ S) advﬁeold (S, A)
Same trajectories Importance
used in standard sampling

PG algorithms weight
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Estimating the expectation

e \We have that

(A | S)
=Espy A~ [7T9 A9 advq, (5,4)

Esus [Z mo(a | S)advy, (S, a)
ac A

e Right hand side can be estimated from the trajectories
e Interesting fact:

e |[fyou differentiate the r.h.s. with respect to 6, you get

VT(Q (A | S)
ESN'“’%M’ANW@OM O, 1 (A ’ S) ade@old (S’ A) s - VQJ(Hold; ’u)
o —Uold




i RS
Relation to PG

e |[finstead of KL divergence we use an Euclidean constraint, i.e.

Y me(a ] S)adva, (S a)
LlacA

subject to 16 — Oz < &

max Ky

we recover standard policy gradient
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Proximal policy optimization

e Turnthe TRPO optimization problem into an unconstrained optimization problem

mo(A | S)
ﬂ-@old(A ‘ S)

L(0) = Espy - amy [ advn, (S, A) — BKL(ma (- | 8),mo(- | s>>]

e \Wecannowrun SGD on the loss above

e Similar network architecture than standard PG/AC methods

(parameters 6,,)

>q Critic output
< Vw,0,
—/ Actor output

Input Hidden Tw,0,
S (parameters w)

(parameters 6,;)



TECNICO
w LISBOA

Outline of the lecture

e Partl: RL Primer
e The RL Problem
e Markov Decision Process - A Model for RL Problems
e (Optimality & Dynamic Programming
e Monte Carlo Approaches
e Temporal Difference Learning

e The Policy Gradient Theorem
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Outline of the lecture

e Partll: DeepRL
e From RL to Deep RL
e DON
e Deep advantage actor-critic methods

e Trust region methods
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Conclusion

e Deep learning is an active area of research
e Many recent developments rely on “old” ideas
e Many exploratory works:

e Algorithmic

e Architectural

e Domains
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g— Yy ol
=R

Thank you!
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