

Deep Reinforcement Learning

Francisco S. Melo

Deep Structured Learning Course 28/11/2018

Outline of the lecture

- Part I: RL Primer
 - The RL Problem
 - Markov Decision Process A Model for RL Problems
 - Optimality & Dynamic Programming
 - Monte Carlo Approaches
 - Temporal Difference Learning
 - The Policy Gradient Theorem

Outline of the lecture

- Part II: Deep RL
 - From RL to Deep RL
 - DQN
 - Deep advantage actor-critic methods
 - Trust region methods

The RL Problem

The RL Problem

- Ingredients for success:
 - You learned as you played the game
 - You experimented the different actions
 - As soon as you figured out the goal of the game, you stopped experimenting
 - You used the feedback you got (n. of steps) to figure out the goal of the game
 - When pursuing the goal, you had to think ahead to select the actions

The RL Problem

What is RL?

Inspired on theory of operant conditioning

What is RL?

- Computational "counterpart" to operant conditioning
- Class of problems and algorithms to solve those problems
- Learning takes place through the interaction between agent and environment (learning by trial-and-error)
- Learning driven by a "reinforcement signal" rather than examples

Elements in RL

- Key elements in RL:
 - Interactive learning
 - Learning from evaluative feedback
 - Tradeoff between exploration and exploitation
 - Actions impact the future (temporal credit assignment)

Environment

Environment

State

Environment

Action

Environment may change state

Reward

- Formalizing the reinforcement learning problem:
 - The state of the world/environment at step t is denoted as S_t
 - The state takes values in some set S (the state space)

- Formalizing the reinforcement learning problem:
 - The action of the agent at step t is denoted as A_t
 - The action takes values in some set \mathcal{A} (the action space)

- Formalizing the reinforcement learning problem:
 - Upon performing an action at time step t, the agent gets a (random) reward R_t
 - The reward depends on the state S_t and action A_t as

$$\mathbb{E}\left[R_t\right] = r(S_t, A_t)$$

We call r the reward function

- Formalizing the reinforcement learning problem:
 - As a result of the agent's action at time step t, the state of the environment at time step t + 1 may change
 - We assume that the evolution of the state verifies the Markov property:

- Formalizing the reinforcement learning problem:
 - As a result of the agent's action at time step t, the state of the environment at time step t + 1 may change
 - We assume that the evolution of the state verifies the Markov property:

$$\mathbb{P}\left[S_{t+1} = s \mid S_{0:t} = s_{0:t}, A_{0:t} = a_{0:t}\right] = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s_t, A_t = a_t\right]$$

We call these the transition probabilities, and write

$$\mathbf{P}(s' \mid s, a) = \mathbb{P}[S_{t+1} = s' \mid S_t = s, A_t = a]$$

- A Markov decision process is defined as a tuple $(S, A, \{P_a, a \in A\}, r)$
 - S is the state space
 - $oldsymbol{\mathscr{A}}$ is the action space
 - For each action $a \in \mathcal{A}$, \mathbf{P}_a is a matrix with entry ss' given by $\mathbf{P}(s' \mid s, a)$
 - ullet r is the reward function

... so what?

Optimality

- A Markov decision process is not actually a problem
 - Provides a mere descriptive model for RL problems
 - What does it mean to solve a model??

Optimality

• We thus formulate a Markov decision problem (MDP) as follows:

Given a Markov decision process and a function

$$J(\{R_t, t=0,\ldots,\})$$

how can we select the actions $\{A_t\}$ to maximize J?

Policies

- MDPs are formulated in terms of action selection
- A policy is an "action selection rule":
- Define the history at time step t as

$$H_t = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{t-1}, a_{t-1}, r_{t-1}, s_t\}$$

- It is a random variable
- Depends on the particular action selection

Policies

• A policy is a mapping π between histories and distributions over actions:

Policies

• Types of policies:

• Deterministic policies - Each history is mapped to exactly one action

$$\pi:\mathcal{H}\to\mathcal{A}$$

 Markov policies - Depend only on the most recent state (may be timedependent)

$$\pi_t: \mathcal{S} \to \Delta(\mathcal{A})$$

• Stationary policies - Depend only on the most recent state (is time-independent)

$$\pi: \mathcal{S} \to \Delta(\mathcal{A})$$

- ullet J in the previous formulation is the optimality criterion
- There are several possible optimality criteria in the literature
 - Each has advantages and disadvantages
 - The choice should be problem-driven

• (Expected) immediate reward:

$$J(\{R_t, t = 0, \dots, \}) = \mathbb{E}[R_t] = r(S_t, A_t)$$

- Advantages:
 - Simple to optimize:

$$\pi(S_t) = \operatorname*{argmax}_{a \in \mathcal{A}} r(S_t, a)$$

- Disadvantages:
 - Only applicable in very specific problems

• (Expected) total reward:

$$J(\lbrace R_t, t = 0, \dots, \rbrace) = \mathbb{E}\left[\sum_{t=0}^{\infty} R_t\right]$$

- Advantages:
 - Not myopic
- Disadvantages:
 - Objective not always well-defined (summation may diverge)

• (Expected) average per-step reward:

$$J(\lbrace R_t, t = 0, \dots, \rbrace) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T} R_t \right]$$

- Advantages:
 - Not myopic
 - Independent of initial state of the process
- Disadvantages:
 - Sometimes cumbersome to work with

• (Expected) total discounted reward:

$$J(\lbrace R_t, t = 0, \dots, \rbrace) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_t\right]$$

Discount

 $0 \le \gamma < 1$

- Advantages:
 - Not myopic
 - "Economical" interpretation
- Disadvantages:
 - Depends on the initial state of the process

We henceforth focus on this criterion

Markov decision problem (MDP)

- A Markov decision problem is defined as a tuple $(S, A, \{P_a, a \in A\}, r, \gamma)$
 - S is the state space
 - $oldsymbol{\cdot}$ $oldsymbol{\mathcal{A}}$ is the action space
 - For each action $a \in \mathcal{A}$, \mathbf{P}_a is a matrix with entry ss given by $\mathbf{P}(s' \mid s, a)$
 - r is the reward function
 - γ is the discount

Solving MDPs

Value function

- Let us consider a fixed stationary policy π
 - Action depends only on current state
 - Invariant through time
- In other words,

Value function

- ullet The value of J depends on the initial state
- Let

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} R_{t} \mid S_{0} = s, \right]$$

- $v_{\pi}(s)$ is the value of J when
 - The agent follows policy π , i.e.,

$$A_t \sim \pi(\cdot \mid S_t)$$

• The initial state is s

Value function

The function

$$v_{\pi}: \mathcal{S} \to \mathbb{R}$$

is called a value function

- It is the value function associated with π
- It verifies the recursive relation

A computational (parenthesis)

The relation

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathbf{P}(s' \mid s, a) v_{\pi}(s') \right]$$

offers two possibilities to compute v_{π}

- Solve the associated (linear) system of equations
- Starting with an arbitrary initial estimate $v^{(0)}$, repeatedly go over the update

$$v^{(k+1)}(s) \leftarrow \sum_{a \in \mathcal{A}} \pi(a \mid s) \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathbf{P}(s' \mid s, a) v^{(k)}(s') \right]$$

A computational (parenthesis)

• The iterative approach with update

$$v^{(k+1)}(s) \leftarrow \sum_{a \in \mathcal{A}} \pi(a \mid s) \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathbf{P}(s' \mid s, a) v^{(k)}(s') \right]$$

is known as value iteration

- Computing the value function associated with a policy is usually referred as the prediction problem
- It is a dynamic programming approach that, intuitively, "propagates" reward information back through time

... moving on...

Optimal policy

• We say that a policy π^* is optimal if and only if

$$v_{\pi^*}(s) \ge v_{\pi}(s), \forall \pi, \forall s \in \mathcal{S}$$

• That such a policy exists is a central result in the theory of MDPs

Solving MDP = Computing an optimal policy

- ullet The value function for the (an) optimal policy is simply denoted as v^*
- It verifies the recursive relation

$$v^*(s) = \max_{a \in \mathcal{A}} \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathbf{P}(s' \mid s, a) v^*(s') \right]$$

ullet The optimal policy can be computed from v^* as

$$\pi^*(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathbf{P}(s' \mid s, a) v^*(s') \right]$$

A computational (parenthesis) 2.0

The relation

$$v^*(s) = \max_{a \in \mathcal{A}} \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathbf{P}(s' \mid s, a) v^*(s') \right]$$

also offers a possibility to compute v^*

ullet Starting with an arbitrary initial estimate $v^{(0)}$, repeatedly go over the update

$$v^{(k+1)}(s) \leftarrow \max_{a \in \mathcal{A}} \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathbf{P}(s' \mid s, a) v^{(k)}(s') \right]$$

• An MDP can thus be solved by computing v^* (and π^* from it)

...

- Other useful value functions to be considered
 - Action-value function (or Q-function) associated with a policy:

- Other useful value functions to be considered
 - Action-value function (or Q-function) associated with a policy:

$$q_{\pi}(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathbf{P}(s' \mid s, a) v_{\pi}(s')$$

It verifies the recursive relation

$$q_{\pi}(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathbf{P}(s' \mid s, a) \sum_{a' \in \mathcal{A}} \pi(a' \mid s') q_{\pi}(s', a')$$

- Other useful value functions to be considered
 - Optimal action-value function (or Q-function):

- Other useful value functions to be considered
 - Optimal action-value function (or Q-function):

$$q^*(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathbf{P}(s' \mid s, a) v^*(s')$$

It verifies the recursive relation

$$q^*(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathbf{P}(s' \mid s, a) \max_{a' \in \mathcal{A}} q^*(s', a')$$

Moreover,

$$\pi^*(s) = \operatorname*{argmax}_{a \in \mathcal{A}} q^*(s, a)$$

• We can compute q_{π} and q^* using similar iterative approaches

$$q^{(k+1)}(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in \mathcal{S}} \mathbf{P}(s' \mid s,a) \max_{a' \in \mathcal{A}} q^{(k)}(s',a')$$
$$q^{(k+1)}(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in \mathcal{S}} \mathbf{P}(s' \mid s,a) \sum_{a' \in \mathcal{A}} \pi(a' \mid s') q^{(k)}(s',a')$$

which are all collectively known as value iteration

Computing the optimal Q-function is usually referred as the control problem

- Other useful value functions to be considered
 - Advantage function associated with a policy:

$$adv_{\pi}(s, a) = q_{\pi}(s, a) - v_{\pi}(s)$$

• The advantage function does not verify a recursive relation

Wrap up

Key players in RL

- Immediate reward
 - Translates the goal of the agent
 - Instantaneous / myopic
- Policy
 - Action selection rule
 - Solving an MDP consists in finding the optimal policy

Key players in RL

- Value function
 - "Secondary" reward
 - Long-term evaluation of the states
 - Can be used to compute the policy
- Model (Markov decision process)
 - Description of the dynamics of the process (transition probabilities)

Solving RL

- Solving an RL problem consists of solving the associated MDP
- Solving an MDP consists of computing the optimal policy.
- E.g.,
 - Use value iteration to compute v^*

or

- Use value iteration to compute q^*
- Use any of the above to compute π^*

Outline of the lecture

- Part I: RL Primer
 - The RL Problem
 - Markov Decision Process A Model for RL Problems
 - Optimality & Dynamic Programming
 - Monte Carlo Approaches
 - Temporal Difference Learning
 - The Policy Gradient Theorem

- Interaction between the agent and the environment
 - Agent observes that $S_t = s$
 - Agent performs an action $A_t = a$
 - Agent gets a reward R_t
 - At the next time step, agent observes $S_{t+1} = s$ '

• ...

• At each step, the agent collects a sample, consisting of a tuple

- Each such sample includes information about:
 - The reward, in the triplet (s, a, r)
 - The dynamics, in the triplet (s, a, s')

- We consider explicitly the two subproblems within RL:
 - The prediction problem (given a policy, compute v_{π})
 - The control problem (compute q*)

• Solving an MDP:

Model-based methods:

Value-based methods:

• Policy-based methods:

Monte Carlo approaches

The prediction problem

- We want to estimate v_{π}
- We are given a trajectory

$$\mathcal{T} = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T\}$$

obtained while following policy π

• We define the return at time step t as

$$G_0 = \sum_{t=0}^{T-1} \gamma^t r_t$$

Using the return

• From the definition of v_{π} ,

$$v_{\pi}(s_0) \approx \mathbb{E}\left[G_0\right]$$

• Then, given N trajectories with a common initial state s_0 , we can compute

$$\hat{v}(s_0) = \frac{1}{N} \sum_{n=1}^{N} G_{0,n}$$

or, incrementally,

$$\hat{v}(s_0) \leftarrow \hat{v}(s_0) + \frac{1}{N} (G_{0,N} - \hat{v}(s_0))$$

Return for trajectory N

A trajectory

$$\mathcal{T} = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T\}$$

provides returns for multiple states

A trajectory

$$\mathcal{T} = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T\}$$

provides returns for multiple states

A trajectory

$$\mathcal{T} = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T\}$$

provides returns for multiple states

Trajectories should visit all states a large number of times

The control problem

- We want to estimate q^*
- We are given a trajectory

$$\mathcal{T} = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T\}$$

obtained by selecting a random action a_0 and following a policy $\pi^{(0)}$ thereafter

Using the return

• From the definition of q_{π} ,

$$q_{\pi}(s_0, a_0) \approx \mathbb{E}\left[G_0\right]$$

• Then, given N trajectories with a common initial state s_0 and initial action a_0 , we can compute

$$\hat{q}_{\pi}(s_0, a_0) = \frac{1}{N} \sum_{n=1}^{N} G_{0,n}$$

or, incrementally,

$$\hat{q}(s_0, a_0) \leftarrow \hat{q}(s_0, a_0) + \frac{1}{N} (G_{0,N} - \hat{q}(s_0, a_0))$$

- To estimate the Q-values for all state-action pairs, we need a large number of trajectories starting in each state-action pair
- To compute the optimal Q-values,
 - Start with arbitrary policy $\pi^{(0)}$ and set k=0
 - Generate multiple trajectories, and estimate $q_{\pi^{(k)}}$
 - Compute policy

Improved policy
$$\pi^{(k+1)}(s) = \operatorname*{argmax}_{a \in \mathcal{A}} q_{\pi^{(k)}}(s,a), \forall s$$

• Set k = k + 1 and repeat

Temporal difference learning

- We want to estimate v_{π}
- We are given a trajectory

$$\mathcal{T} = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T\}$$

obtained while following policy π

We know that

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathbf{P}(s' \mid s, a) v_{\pi}(s') \right]$$

or, equivalently,

We know that

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathbf{P}(s' \mid s, a) v_{\pi}(s') \right]$$

or, equivalently,

$$v_{\pi}(s) = \mathbb{E}_{A_t \sim \pi(S_t)} \left[R_t + \gamma v_{\pi}(S_{t+1}) \mid S_t = s \right]$$

• The value function v_{π} can be computed iteratively via value iteration using the update

$$v^{(k+1)}(s) \leftarrow \sum_{a \in \mathcal{A}} \pi(a \mid s) \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathbf{P}(s' \mid s, a) v^{(k)}(s') \right]$$

We know that

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathbf{P}(s' \mid s, a) v_{\pi}(s') \right]$$

or, equivalently,

$$v_{\pi}(s) = \mathbb{E}_{A_t \sim \pi(S_t)} \left[R_t + \gamma v_{\pi}(S_{t+1}) \mid S_t = s \right]$$

• The value function v_{π} can be computed iteratively via value iteration using the update

$$v^{(k+1)}(s) \leftarrow \mathbb{E}_{A_t \sim \pi(S_t)} \left[R_t + \gamma v^{(k)}(S_{t+1}) \mid S_t = s \right]$$

We can approximate the update

$$v^{(k+1)}(s) \leftarrow \mathbb{E}_{A_t \sim \pi(S_t)} \left[R_t + \gamma v^{(k)}(S_{t+1}) \mid S_t = s \right]$$

from samples $\{(s, r_n, s'_n)\}$ as

$$v^{(k+1)}(s) \leftarrow \frac{1}{N} \sum_{n=1}^{N} (r_n + \gamma v^{(k)}(s'_n))$$

or, incrementally,

$$v^{(k+1)}(s) \leftarrow v^{(k)}(s) + \frac{1}{N} (r_n + \gamma v^{(k)}(s'_n) - v^{(k)}(s))$$

TD(0)

Given a (potentially infinite) trajectory

$$\mathcal{T} = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{t-1}, a_{t-1}, r_{t-1}, s_t, \dots\}$$

generated using policy π , and given an initial estimate $v^{(0)}$ for v_{π} , TD(0) performs, at each step t, the update

TD(0)

• Given a (potentially infinite) trajectory

$$\mathcal{T} = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{t-1}, a_{t-1}, r_{t-1}, s_t, \dots\}$$

generated using policy π , and given an initial estimate $v^{(0)}$ for v_{π} , TD(0) performs, at each step t, the update

$$v^{(t+1)}(s_t) \leftarrow v^{(t)}(s_t) + \alpha_t (r_t + \gamma v^{(t)}(s_{t+1}) - v^{(t)}(s_t))$$

Compare with what we had

$$v^{(k+1)}(s) \leftarrow v^{(k)}(s) + \frac{1}{N} (r_n + \gamma v^{(k)}(s'_n) - v^{(k)}(s))$$

- We want to estimate q^*
- We start with the idea used in MC methods (compute q_{π} , improve π , repeat)
- We are given a trajectory

$$\mathcal{T} = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T\}$$

obtained while following some initial policy π

Repeating the same reasoning,

$$q_{\pi}(s, a) = \mathbb{E}_{A_{t+1} \sim \pi(S_{t+1})} \left[R_t + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a \right]$$

leading to the update

$$q^{(k+1)}(s,a) \leftarrow \mathbb{E}_{A_{t+1} \sim \pi(S_{t+1})} \left[R_t + \gamma q^{(k)}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a \right]$$

Then, given a trajectory

$$\mathcal{T} = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T\}$$

generated using a policy π , and given an initial estimate $q^{(0)}$ for q_{π} , update

$$q^{(t+1)}(s_t, a_t) \leftarrow q^{(t)}(s_t, a_t) + \alpha_t (r_t + \gamma q^{(t)}(s_{t+1}, a_{t+1}) - q^{(t)}(s_t, a_t))$$

• After some iterations, compute a new policy

$$\pi(s) \leftarrow \operatorname*{argmax}_{a \in \mathcal{A}} q^{(t)}(s, a)$$

SARSA

- This approach runs the following cycle:
 - Start with a policy
 - Evaluate it, computing its associated Q-function
 - Update the policy
 - Repeat
- ullet Each update to $q^{(t)}$ uses a sample $(s_t,\ a_t,\ r_t,\ s_{t+1},\ a_{t+1})$
- The algorithm is thus named SARSA

Can we learn q^* directly?

Let us again repeat the same reasoning

$$q^*(s, a) = \mathbb{E}\left[R_t + \gamma \max_{a \in \mathcal{A}} q^*(S_{t+1}, a) \mid S_t = s, A_t = a\right]$$

we get the update

$$q^{(k+1)}(s,a) \leftarrow \mathbb{E}\left[R_t + \gamma \max_{a \in \mathcal{A}} q^{(k)}(S_{t+1},a) \mid S_t = s, A_t = a\right]$$

Q-learning

• Then, given a (potentially infinite) trajectory

$$\mathcal{T} = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{t-1}, a_{t-1}, r_{t-1}, s_t, \dots\}$$

generated using an arbitrary policy π , and given an initial estimate $q^{(0)}$ for q^* , update

$$q^{(t+1)}(s_t, a_t) \leftarrow q^{(t)}(s_t, a_t) + \alpha_t(r_t + \gamma \max_{a \in \mathcal{A}} q^{(t)}(s_{t+1}, a) - q^{(t)}(s_t, a_t))$$

Summarizing...

- TD(0) is used to compute the value function for a given policy
- It relies on the update

$$v^{(t+1)}(s_t) \leftarrow v^{(t)}(s_t) + \alpha_t (r_t + \gamma v^{(t)}(s_{t+1}) - v^{(t)}(s_t))$$

Summarizing...

- SARSA and Q-learning are used to compute the optimal Q-function
- SARSA relies on the update

$$q^{(t+1)}(s_t, a_t) \leftarrow q^{(t)}(s_t, a_t) + \alpha_t (r_t + \gamma q^{(t)}(s_{t+1}, a_{t+1}) - q^{(t)}(s_t, a_t))$$

SARSA learns the Q-function for the policy used to obtain the samples

© On-policy learning

 In order to compute the optimal policy, it must slowly adjust the policy used to obtain the samples

Summarizing...

Q-learning relies on the update

$$q^{(t+1)}(s_t, a_t) \leftarrow q^{(t)}(s_t, a_t) + \alpha_t(r_t + \gamma \max_{a \in \mathcal{A}} q^{(t)}(s_{t+1}, a) - q^{(t)}(s_t, a_t))$$

 Q-learning learns the optimal Q-function, independently of the policy used to obtain the samples

Off-policy learning

The policy gradient theorem

- The goal is to compute π^* directly
- We depart from a parameterized family of policies, π_{θ}

... however...

Revisiting optimality criterion

- When considering the set of all policies, state-wise optimization is possible
- When considering a restricted set of policies, state-wise optimization may not be possible

Revisiting optimality criterion

Recall that our goal is to maximize

$$J(\lbrace R_t, t = 0, \dots, \rbrace) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_t\right]$$

- We consider that the initial state of the MDP follows some initial distribution μ
- To explicitly indicate the dependence of J on the initial distribution μ and the policy π used to generate $\{R_t, t=1, ...\}$, we write

$$J(\pi; \mu) \triangleq \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} R_{t} \mid S_{0} \sim \mu \right]$$

Interesting relations

- We have that
 - $v_{\pi}(s) = J(\pi; \mu)$ when $\mu(s') = \mathbb{I}(s' = s)$
 - ullet Conversely, for an arbitrary distribution μ ,

$$J(\pi; \mu) = \sum_{s \in \mathcal{S}} \mu(s) v_{\pi}(s)$$

RL using gradient ascent

- We can now optimize J with respect to the parameters of the policy
- Using gradient ascent, we get an algorithm

Methods based on this idea are globally called "policy-gradient methods"

• We now compute the policy gradient

Since

$$v_{\pi_{\theta}}(s) = \sum_{a \in \mathcal{A}} \pi_{\theta}(a \mid s) q_{\pi_{\theta}}(s, a)$$

it holds that

Since

$$q_{\pi_{\theta}}(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathbf{P}(s' \mid s, a) v_{\pi_{\theta}}(s')$$

it holds that

$$\nabla_{\theta} q_{\pi_{\theta}}(s, a) = \gamma \sum_{s' \in \mathcal{S}} \mathbf{P}(s' \mid s, a) \nabla_{\theta} v_{\pi_{\theta}}(s')$$

Putting everything together,

Factoring this out

$$\nabla_{\theta} v_{\pi_{\theta}}(s) = \sum_{a \in \mathcal{A}} \left[\nabla_{\theta} \pi_{\theta}(a \mid s) q_{\pi_{\theta}}(s, a) + \gamma \pi_{\theta}(a \mid s) \sum_{s' \in \mathcal{S}} \mathbf{P}(s' \mid s, a) \nabla_{\theta} v_{\pi_{\theta}}(s') \right]$$

$$= \sum_{a \in \mathcal{A}} \pi_{\theta}(a \mid s) \left[\frac{\nabla_{\theta} \pi_{\theta}(a \mid s)}{\pi_{\theta}(a \mid s)} q_{\pi_{\theta}}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathbf{P}(s' \mid s, a) \nabla_{\theta} v_{\pi_{\theta}}(s') \right]$$

This is just $\nabla_{\theta} \log \pi_{\theta}(a \mid s)$

Putting everything together,

$$\nabla_{\theta} v_{\pi_{\theta}}(s) = \sum_{a \in \mathcal{A}} \left[\nabla_{\theta} \pi_{\theta}(a \mid s) q_{\pi_{\theta}}(s, a) + \gamma \pi_{\theta}(a \mid s) \sum_{s' \in \mathcal{S}} \mathbf{P}(s' \mid s, a) \nabla_{\theta} v_{\pi_{\theta}}(s') \right]$$

$$= \sum_{a \in \mathcal{A}} \pi_{\theta}(a \mid s) \left[\nabla_{\theta} \log \pi_{\theta}(a \mid s) q_{\pi_{\theta}}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathbf{P}(s' \mid s, a) \nabla_{\theta} v_{\pi_{\theta}}(s') \right]$$

• Recursive relation reminiscent of that for v_{π}

Plays the role of "reward"

Unfolding the recursion finally yields

$$\nabla_{\theta} J(\pi_{\theta}; \mu) = \sum_{s \in \mathcal{S}} \mu_{\theta}(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(a \mid s) \nabla_{\theta} \log \pi_{\theta}(a \mid s) q_{\pi_{\theta}}(s, a)$$

or, equivalently,

$$\nabla_{\theta} J(\pi_{\theta}; \mu) = \mathbb{E}_{S \sim \mu_{\theta}, A \sim \pi(\cdot \mid S)} \left[\nabla_{\theta} \log \pi_{\theta}(A \mid S) q_{\pi_{\theta}}(S, A) \right]$$

- The distribution $\mu_{ heta}$ translates the "discounted visitation frequency" under $\pi_{ heta}$
- ullet Can be sampled by sampled the MDP while following $\pi_{ heta}$

REINFORCE

- The gradient is just the
- Given a trajectory obtained from π_{θ} and with initial state sampled from μ_{θ} ,

Actor-critic architecture

- To compute the gradient, we require an estimate of the Q-values
- REINFORCE uses a simple Monte Carlo approach to build such estimate
- However, other approaches can be used (e.g., temporal-difference learning)

Actor-critic architecture

- The RL algorithm comprises two components:
 - An actor, responsible for executing the policy π_{θ}
 - A critic, responsible for evaluating the policy (computing q_{π})

TD-based actor-critic

- For example, we can have an actor-critic based on TD-learning:
 - Given a trajectory

$$\mathcal{T} = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{t-1}, a_{t-1}, r_{t-1}, s_t, \dots\}$$

Update the Q-value estimates as

$$q^{(t+1)}(s_t, a_t) = q^{(t)}(s_t, a_t) + \alpha_t(r_t + \gamma q^{(t)}(s_{t+1}, a_{t+1}) - q^{(t)}(s_t, a_t))$$

Update gradient term

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \beta_t \gamma^t q^{(t+1)}(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(s_t, a_t)$$

Considerations

- PG/AC architectures are convenient with function approximation
 - Gradient does not depend on q_{π} but on a projection thereof
- Variations of the gradient (e.g., natural gradient) can also be used:
- Discount is cumbersome to deal with
 - Many PG/AC applications instead adopt the average per-step reward
- Fully incremental approaches suffer from high variance and are seldom used

Consider once again the gradient expression

$$\nabla_{\theta} J(\pi_{\theta}; \mu) = \mathbb{E}_{S \sim \mu_{\theta}, A \sim \pi_{\theta}(\cdot \mid S)} \left[\nabla_{\theta} \log \pi_{\theta}(A \mid S) q_{\pi_{\theta}}(S, A) \right]$$

- Gradient estimated from samples
- Estimates plagued by high variance (sensitivity to the particular samples)

- Result from theory of Monte Carlo integration:
 - Use of a baseline can often improve variance of sample-based estimates

$$\mathbb{E}\left[f(X)\right] \approx \frac{1}{N} \sum_{n=1}^{N} f(x_n)$$

$$\mathbb{E}\left[f(X) - g(X)\right] \approx \frac{1}{N} \sum_{n=1}^{N} (f(x_n) - g(x_n)) \longrightarrow \text{Less variance}$$
 Baseline
$$(\mathbb{E}\left[g(X)\right] \text{ known})$$

• Consider an arbitrary function

$$b: \mathcal{S} \to \mathbb{R}$$

Then,

$$\sum_{a \in \mathcal{A}} \nabla_{\theta} \pi_{\theta}(a \mid s) b(s) = ?$$

Consider an arbitrary function

$$b: \mathcal{S} \to \mathbb{R}$$

Then,

$$\sum_{a \in \mathcal{A}} \nabla_{\theta} \pi_{\theta}(a \mid s) b(s) = \nabla_{\theta} \left[\sum_{a \in \mathcal{A}} \pi_{\theta}(a \mid s) \right] b(s) = 0$$

But then

$$\nabla_{\theta} J(\pi_{\theta}; \mu) = \mathbb{E}_{S \sim \mu_{\theta}, A \sim \pi(\cdot \mid S)} \left[\nabla_{\theta} \log \pi_{\theta}(A \mid S) q_{\pi_{\theta}}(S, A) - \nabla_{\theta} \log \pi_{\theta}(A \mid S) b(S) \right]$$

or, equivalently,

$$\nabla_{\theta} J(\pi_{\theta}; \mu) = \mathbb{E}_{S \sim \mu_{\theta}, A \sim \pi(\cdot | S)} \left[\nabla_{\theta} \log \pi_{\theta}(A \mid S) (q_{\pi_{\theta}}(S, A) - b(S)) \right]$$

$$\text{Best baseline:}$$

$$v_{\pi_{\theta}}(S)$$

But then

$$\nabla_{\theta} J(\pi_{\theta}; \mu) = \mathbb{E}_{S \sim \mu_{\theta}, A \sim \pi(\cdot \mid S)} \left[\nabla_{\theta} \log \pi_{\theta}(A \mid S) q_{\pi_{\theta}}(S, A) - \nabla_{\theta} \log \pi_{\theta}(A \mid S) b(S) \right]$$

or, equivalently,

$$\nabla_{\theta} J(\pi_{\theta}; \mu) = \mathbb{E}_{S \sim \mu_{\theta}, A \sim \pi(\cdot | S)} \left[\nabla_{\theta} \log \pi_{\theta}(A \mid S) \underbrace{(q_{\pi_{\theta}}(S, A) - v_{\pi_{\theta}}(S))} \right]$$
Advantage
$$\operatorname{adv}_{\pi}(S, A)$$

But then

$$\nabla_{\theta} J(\pi_{\theta}; \mu) = \mathbb{E}_{S \sim \mu_{\theta}, A \sim \pi(\cdot \mid S)} \left[\nabla_{\theta} \log \pi_{\theta}(A \mid S) q_{\pi_{\theta}}(S, A) - \nabla_{\theta} \log \pi_{\theta}(A \mid S) b(S) \right]$$

or, equivalently,

$$\nabla_{\theta} J(\pi_{\theta}; \mu) = \mathbb{E}_{S \sim \mu_{\theta}, A \sim \pi(\cdot \mid S)} \left[\nabla_{\theta} \log \pi_{\theta}(A \mid S) \operatorname{adv}_{\pi_{\theta}}(S, A) \right]$$

This is the underlying form of most current AC algorithms

Outline of the lecture

- Part I: RL Primer
 - The RL Problem
 - Markov Decision Process A Model for RL Problems
 - Optimality & Dynamic Programming
 - Monte Carlo Approaches
 - Temporal Difference Learning
 - The Policy Gradient Theorem

Outline of the lecture

- Part II: Deep RL
 - From RL to Deep RL
 - DQN
 - Deep advantage actor-critic methods
 - Trust region methods

- Plan:
 - Revisit temporal difference learning in large domains
 - Revisit policy-gradient methods in large domains

Temporal difference learning revisited

Temporal difference learning methods require explicit updates:

- For large domains, function approximation is necessary
 - We can no longer compute v_{π} or q^* exactly
 - Instead, we consider parameterized families of functions

- Example: TD-learning with linear function approximation
 - We consider the family of functions of the form

$$v(s; \boldsymbol{w}) = \boldsymbol{w}^{\top} \boldsymbol{\phi}(s)$$

where $oldsymbol{w}$ is a vector of parameters

ullet We update the parameters w as

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} + \alpha_t \boldsymbol{\phi}(s_t) (r_t + \gamma v(s_{t+1}; \boldsymbol{w}^{(t)}) - v(s_t; \boldsymbol{w}^{(t)}))$$

$$\uparrow \text{Compare}$$

$$v^{(t+1)}(s_t) \leftarrow v^{(t)}(s_t) + \alpha_t \big(r_t + \gamma v^{(t)}(s_t) - v^{(t)}(s_t) \big)$$

- Another example: Q-learning with linear function approximation
 - We consider the family of functions of the form

$$q(s, a; \boldsymbol{w}) = \boldsymbol{w}^{\top} \boldsymbol{\phi}(s, a)$$

where $oldsymbol{w}$ is a vector of parameters

ullet We update the parameters w as

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} + \alpha_t \boldsymbol{\phi}(s_t, a_t) (r_t + \gamma \max_{a \in \mathcal{A}} q(s_{t+1}, a; \boldsymbol{w}^{(t)}) - q(s_t, a_t; \boldsymbol{w}^{(t)}))$$

$$\uparrow \text{Compare}$$

$$q^{(t+1)}(s_t, a_t) \leftarrow q^{(t)}(s_t, a_t) + \alpha_t (r_t + \gamma \max_{a \in \mathcal{A}} q^{(t)}(s_{t+1}, a) - q^{(t)}(s_t, a_t))$$

The problem of function approximation

Unfortunately, temporal-difference methods may diverge with function approximation

The problem of function approximation

- Issues with function approximation in RL:
 - Bootstrapping the target is built from current estimate
 - Sample correlation samples come from a trajectory

Given the previous difficulties, how can we combine ANNs with RL?

Combining ANNs and RL

- We address directly the control problem
- Three ideas:
 - Create a replay buffer to avoid sample correlation
 - Use an auxiliary estimate for q^* (a target network) to avoid bootstrapping
 - Turn the trajectory data into supervised learning data

1. Build replay buffer

Given a trajectory

$$\mathcal{T} = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T\}$$

create a set of transitions (replay buffer)

$$\mathcal{T}' = \{(s_t, a_t, r_t, s_{t+1}), t = 0, \dots, T-1\}$$

At training time, we select random transitions from the replay buffer

Goal: minimize sample correlation

2. Build targets

• At training time, given a sample (s_t, a_t, r_t, s_{t+1}) from the replay buffer, build target

$$y_t = r_t + \max_{a \in \mathcal{A}} \hat{q}(s_{t+1}, a)$$

where \hat{q} is an estimate of q^*

Auxiliary estimate (target network)

We thus build a dataset

$$\mathcal{D} = \{(s_{t_k}, a_{t_k}, y_{t_k}), k = 1, \dots, K\}$$

3. Train

• The error associated with sample t_k is now

$$\varepsilon_k = (y_{t_k} - q(s_{t_k}, a_{t_k}; \boldsymbol{w}))^2$$

with gradient

DQN

- The resulting approach is known as a Deep Q-Network (DQN)
- It was the approach used in the ATARI deep RL paper

V. Mnih. "Human-level control through deep reinforcement learning." Nature, 518:529-533, 2015

DQN

• Some considerations:

- The DQN network takes the state as input and has one output per action
- The target network is a copy of the DQN, i.e., "Old" parameters $\hat{q}(s,a) = q(s,a; {\pmb w}^-)$
- It is updated every ${\it C}$ steps with the weights of the main DQN

Variations: DDQN

The targets in DQN are computed as

$$y_t = r_t + \max_{a \in \mathcal{A}} q(s_{t+1}, a; \boldsymbol{w}^-)$$

where the target network seeks to avoid bootstrapping

- We can further decouple:
 - ... the computation of the maximizing action; and
 - ... the value of the maximizing action.

Variations: DDQN

The targets in double DQN (DDQN), the targets are computed as

to compute the maximizing value

Target network is used Original network is used to compute the maximizing action

- Prioritized replay:
 - Transitions are sampled from the replay memory with a probability that increases with the associated error:

$$\varepsilon_k = (y_{t_k} - q(s_{t_k}, a_{t_k}; \boldsymbol{w}))^2$$

- Dueling network:
 - Instead of the "standard" DQN architecture

- Dueling network:
 - Instead of the "standard" DQN architecture, dueling networks propose

(parameters $heta_{
m adv}$)

Considerations

- Different variations offer different advantages:
 - DDQN more stable learning than DQN
 - Prioritized replay better use of memory (faster learning)
 - Dueling DQN better performance, particularly in domains where actions only relevant in some states
- Different variations are mostly orthogonal, and can be combined

Policy gradient methods revisited

Actor-critic architecture

 The AC architecture comprises two components:

• An actor, responsible for executing the policy π_{θ}

• A critic, responsible for evaluating the policy (computing adv_{π})

Le for evaluating ting adv_{π})

State S_t Critic

Return G_t Value v_{π_θ} Action A_t The two components are used to estimate the advantage

RL Agent

Advantage Actor-Critic

Asynchronous Advantage Actor-Critic (A3C)

Asynchronous Advantage Actor-Critic (A3C)

Asynchronous Advantage Actor-Critic (A3C)

- It is not clear that asynchrony brings an advantage
 - Ongoing work to compare A3C with its synchronous version (A2C)
 - A2C includes a coordinator module that ensures that gradient updates are synchronized

Let's take a step back...

How PG methods work

- Start with a parameterized policy
- Gather some data (trajectories) using that policy
- Use the data to estimate the advantage
- Update policy parameters using the gradient

How PG methods work

- Old data is "discarded"
 - Old trajectories may be unlikely under the updated policy
 - Old trajectories provide poor estimate to the advantage under updated policy

Not very data efficient

Alternative optimization

- Recall that policy gradient methods arise from the optimization of $J(\pi; \mu)$
- Given two policies, π_{θ} and π_{θ} , it is possible to show that

Alternative optimization

- Recall that policy gradient methods arise from the optimization of $J(\pi; \mu)$
- Given two policies, π_{θ} and π_{θ} , it is possible to show that

$$J(\pi_{\theta'}; \mu) = J(\pi_{\theta}; \mu) + \mathbb{E}_{S \sim \mu_{\theta}} \left[\sum_{a \in \mathcal{A}} \pi_{\theta'}(a \mid S) \operatorname{adv}_{\pi_{\theta}}(S, a) \right]$$

if π_{θ} and π_{θ} , are "close"

• We can thus optimize $J(\pi_{\theta'}; \mu)$ by maximizing the expectation on the r.h.s.

Trust region policy optimization

TRPO thus consists of solving the optimization problem

$$\max_{\theta} \qquad \mathbb{E}_{S \sim \mu_{\theta_{\text{old}}}} \left[\sum_{a \in \mathcal{A}} \pi_{\theta}(a \mid S) \operatorname{adv}_{\pi_{\theta_{\text{old}}}}(S, a) \right]$$
subject to
$$\mathbb{E}_{S \sim \mu_{\theta_{\text{old}}}} \left[\operatorname{KL}(\pi_{\theta_{\text{old}}}(\cdot \mid S), \pi_{\theta}(\cdot \mid S)) \right] < \delta \quad \text{Trust region}$$

- Can be solved using, e.g., Lagrange multipliers
- How do we compute the expectation?

Estimating the expectation

We have that

Estimating the expectation

We have that

$$\mathbb{E}_{S \sim \mu_{\theta_{\text{old}}}} \left[\sum_{a \in \mathcal{A}} \pi_{\theta}(a \mid S) \operatorname{adv}_{\pi_{\theta_{\text{old}}}}(S, a) \right] = \mathbb{E}_{S \sim \mu_{\theta_{\text{old}}}, A \sim \pi_{\theta_{\text{old}}}} \left[\frac{\pi_{\theta}(A \mid S)}{\pi_{\theta_{\text{old}}}(A \mid S)} \operatorname{adv}_{\pi_{\theta_{\text{old}}}}(S, A) \right]$$

- Right hand side can be estimated from the trajectories
- Interesting fact:
 - If you differentiate the r.h.s. with respect to θ , you get

$$\mathbb{E}_{S \sim \mu_{\theta_{\text{old}}}, A \sim \pi_{\theta_{\text{old}}}} \left[\frac{\nabla \pi_{\theta}(A \mid S)}{\pi_{\theta_{\text{old}}}(A \mid S)} \operatorname{adv}_{\pi_{\theta_{\text{old}}}}(S, A) \right]_{\theta = \theta_{\text{old}}} = \nabla_{\theta} J(\theta_{\text{old}}; \mu)$$

Relation to PG

• If instead of KL divergence we use an Euclidean constraint, i.e.

$$\max_{\theta} \qquad \mathbb{E}_{S \sim \mu_{\theta_{\text{old}}}} \left[\sum_{a \in \mathcal{A}} \pi_{\theta}(a \mid S) \operatorname{adv}_{\pi_{\theta_{\text{old}}}}(S, a) \right]$$
subject to
$$\|\theta - \theta_{\text{old}}\|_{2}^{2} < \delta$$

we recover standard policy gradient

Proximal policy optimization

• Turn the TRPO optimization problem into an unconstrained optimization problem

$$L(\theta) = \mathbb{E}_{S \sim \mu_{\theta_{\text{old}}}, A \sim \pi_{\theta_{\text{old}}}} \left[\frac{\pi_{\theta}(A \mid S)}{\pi_{\theta_{\text{old}}}(A \mid S)} \operatorname{adv}_{\pi_{\theta_{\text{old}}}}(S, A) - \beta \operatorname{KL}(\pi_{\theta_{\text{old}}}(\cdot \mid S), \pi_{\theta}(\cdot \mid S)) \right]$$

- We can now run SGD on the loss above
- Similar network architecture than standard PG/AC methods

Outline of the lecture

- Part I: RL Primer
 - The RL Problem
 - Markov Decision Process A Model for RL Problems
 - Optimality & Dynamic Programming
 - Monte Carlo Approaches
 - Temporal Difference Learning
 - The Policy Gradient Theorem

Outline of the lecture

- Part II: Deep RL
 - From RL to Deep RL
 - DQN
 - Deep advantage actor-critic methods
 - Trust region methods

Conclusion

- Deep learning is an active area of research
- Many recent developments rely on "old" ideas
- Many exploratory works:
 - Algorithmic
 - Architectural
 - Domains

Thank you!

References

- Hasselt, H., Guez, A., and Silver, D. "Deep reinforcement learning with double Q-Learning." In Proc. 30th AAAI Conf. Artificial Intelligence, pp. 2094-2100, 2016. (DDQN)
- Mnih, V., Badia, A., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and Kavukcuoglu, K. "Asynchronous methods for deep reinforcement learning." In *Proc. 33rd Int. Conf. Machine Learning*, pp. 1928-1937, 2016. **(A3C)**
- Mnih, V., et al. "Human-level control through deep reinforcement learning." Nature, 518:529-533, 2015. (DQN)
- Schaul, T., Quan, J., Antonoglou, I., and Silver., D. "Prioritized experience replay." arXiv preprint arXiv:1511.05952, 2015. (Prioritized experience replay)
- Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. "Trust Region Policy Optimization." In *Proc. 32nd Int. Conf. Machine Learning*, pp. 1889-1897, 2015. **(TRPO)**
- Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. "Proximal Policy Optimization Algorithms." arXiv preprint arXiv:1707:06347, 2017. (PPO)
- Sutton, R., and Barto, A. Reinforcement Learning: An Introduction, 2nd Edition, MIT Press, 2018.
- Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., and Freitas, N. "Dueling network architectures for deep reinforcement learning." In *Proc. 33rd Int. Conf. Machine Learning*, pp. 1995-2003, 2016. (Dueling architecture)