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Course Information

Instructor: André Martins (amartins@lx.it.pt)
TAs/Guest Lecturers: Erick Fonseca & Vlad Niculae
Location: LT2 (North Tower, 4th floor)

Schedule: Wednesdays 14:30-18:00

e Communication:
piazza.com/tecnico.ulisboa.pt/fall2018/pdeecdsl
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amartins@lx.it.pt
piazza.com/tecnico.ulisboa.pt/fall2018/pdeecdsl

Announcements

Homework 1 is out!

e Deadline: October 10 (two weeks from now)

e Start early!!!

List of potential projects will be sent out soon!

e Deadline for project proposal: October 17 (three weeks from now)

e Teams of 3 people
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Today’s Roadmap

Before talking about deep learning, let us talk about shallow learning:

e Supervised learning: binary and multi-class classification

e Feature-based linear classifiers

e Rosenblatt’s perceptron algorithm

e Linear separability and separation margin: perceptron’s mistake bound
e Other linear classifiers: naive Bayes, logistic regression, SVMs

e Regularization and optimization

e Limitations of linear classifiers: the XOR problem

o Kernel trick. Gaussian and polynomial kernels.
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Fake News Detection

Task: tell if a news article / quote is fake or real.

This is a binary classification problem.

André Martins (IST) Lecture 2 IST, Fall 2018 5 /117



Fake Or Real?

wwwwwww

15 d
E“gﬂu‘n!ﬂ FeATUsE NEWS mre“:e;‘:iu‘r:;:'

%

BA(K |
FROM \/
THE DEAD \

For Two Years )
I Was a Zombie "¢

André Martins (IST) ecture IST, Fall 2018 6 /117



Fake Or Real?

With Artificial
Intelligence we
are summoning
the demons

- Elon Musk
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Fake Or Real?

AlphaGo Beats Go Human Champ:

Godfather Of Deep Learning Tells Us Do

““ Not Be Afraid Of Al
©

21 March 2016, 10:16 am EDT By Aaron Mamiit Tech Times

Last week, Google's artificial intelligence
program AlphaGo dominated its match with
South Korean world Go champion Lee Sedol,
winning with a 4-1 score.

The achievement stunned artificial
intelligence experts, who previously thought
that Google's computer program would need
at least 10 more years before developing
enough to be able to beat a human world

Last week, Google's artificial intelligence program champion.
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Fake Or Real?

Can a machine determine this automatically?

Can be a very hard problem, since fact-checking is hard and requires
combining several knowledge sources

. also, reality surpasses fiction sometimes

Shared task: http://www.fakenewschallenge.org/
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http://www.fakenewschallenge.org/

Topic Classification

Task: given a news article, determine its topic (politics, sports, etc.)

This is a multi-class classification problem.

It's a much easier task, can get 80-90% accuracies with a simple ML model
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Topic Classification
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@ Preliminaries

Data and Feature Representation
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@ Preliminaries

Data and Feature Representation
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Disclaimer

Many of the following slides are adapted from Ryan McDonald.
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Let’s Start Simple

e Example 1 — sequence: x ¢ o; label: —1
e Example 2 — sequence: x O A, label: —1
e Example 3 — sequence: x A &; label: +1
e Example 4 — sequence: ¢ A o; label: +1
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Let’s Start Simple

e Example 1 — sequence: x ¢ o; label: —1
e Example 2 — sequence: x O A, label: —1
e Example 3 — sequence: x A &; label: +1
e Example 4 — sequence: ¢ A o; label: +1

e New sequence: x ¢ o; label 7
e New sequence: x o O; label ?

e New sequence: * A o; label ?

Why can we do this?
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's Start Simple: Machine Learning

e Example 1 — sequence: % ¢ o; label: —1
e Example 2 — sequence: x O A; label: —1
e Example 3 — sequence: x A\ &; label: +1
e Example 4 — sequence: ¢ A o; label: +1

e New sequence: x ¢ O; label —1

Label —1 Label +1
_ count(» and —1) _ 2 _ __ count(x and +1) _ 1 _
P(—1]%) = —countx) = 3 =067 vs. P(+1]%) = —count(y =3 =033
_ count(o and —1) _ 1 _ _ count(eo and +1) _ 1 _
P(fllo) - count(o) — =3 = 05 VS. P(+1|<>) = 7count(<>) =35= 05
_ count(@ and —-1) _ 1 _ _ count(® and +1) _ o _
P(-10) = = oy = 1 = L0 vs. P(+1|9) = = giaiey— = § = 0.0
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Machine Learning

@ Define a model/distribution of interest
® Make some assumptions if needed
© Fit the model to the data
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Machine Learning

@ Define a model/distribution of interest
® Make some assumptions if needed
© Fit the model to the data

e Model: P(label|sequence) = P(label|symbol;, ...symbol,)
e Prediction for new sequence = arg max, | P(label|sequence)

e Assumption (naive Bayes—more later):
n
P(symboly, ..., symbol,|label) = H P(symbol;|label)
i=1

e Fit the model to the data: count!! (simple probabilistic modeling)
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Some Notation: Inputs and Outputs

o Inputx € X
e e.g., a news article, a sentence, an image, ...
e Qutputy €Y
e e.g., fake/not fake, a topic, a parse tree, an image segmentation

e Input/Output pair: (z,y) € X x Y
e e.g., a news article together with a topic
e e.g., a sentence together with a parse tree
e e.g., an image partitioned into segmentation regions
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Supervised Machine Learning

e We are given a labeled dataset of input/output pairs:

D= {(zn yn)thy SX xY

Goal: use it to learn a classifier h: X — Y that generalizes well to
arbitrary inputs.

At test time, given x € X, we predict

Yy = h(x).

Hopefully, ¥ ~ y most of the time.
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Things can go by different names depending on what Y is...
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Regression

Deals with continuous output variables:

e Regression: Y =R
e e.g., given a news article, how much time a user will spend reading it?

e Multivariate regression: Y = RK
e e.g., predict the X-Y coordinates in an image where the user will click
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Classification

Deals with discrete output variables:

e Binary classification: Y = {+1}
e e.g., fake news detection

¢ Multi-class classification: Y = {1,2,... K}
e e.g., topic classification

e Structured classification: Y exponentially large and structured
e e.g., machine translation, caption generation, image segmentation

This course: structured classification

... but to make it simpler, we’'ll talk about multi-class classification first.
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Sometimes reductions are convenient:

e logistic regression reduces classification to regression
e one-vs-all reduces multi-class to binary

e greedy search reduces structured classification to multi-class

... but other times it's better to tackle the problem in its native form.

More later!
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Feature Representations

Feature engineering is an important step in “shallow” learning:

e Bag-of-words features for text, also lemmas, parts-of-speech, ...
e SIFT features and wavelet representations in computer vision

e Other categorical, Boolean, and continuous features
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Feature Representations

We need to represent information about x

Typical approach: define a feature map 7 : X — RP
e 1)(x) is a high dimensional feature vector

For multi-class/structured classification, a joint feature map
¢ : X xY — RP is sometimes more convenient

e ¢(x,y) instead of 1(x)

We can use feature vectors to encapsulate Boolean, categorical, and
continuous features

e e.g., categorical features can be reduced to a range of one-hot binary
values.
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e x is a document and y is a label

1 if « contains the word “interest”
oi(x,y) = and y = “financial”
0 otherwise

@j(x,y) = % of words in & with punctuation and y = “scientific”

e x is a word and y is a part-of-speech tag

1 ifx = "bank” and y = Verb
0 otherwise

¢j(x,y) = {
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More Examples

e x is a name, y is a label classifying the type of entity

1  if @ contains “George” 1  if @ contains “George”
and y = “Location”

bo(@, y) = and y = "Person” ba(@,y) =
0  otherwise 0  otherwise

1 if & contains “Washington” 1 if & contains “Washington”

P1(x,y) = and y = “Person” ¢s5(x,y) = and y = “Location”
0  otherwise 0  otherwise

1 if  contains “Bridge” 1 if  contains “Bridge”
Pa(x,y) = and y = “Person” Pe(x, y) = and y = “Location”
0  otherwise 0  otherwise

1  if & contains “General” 1  if & contains “General”

and y = “Person” Pr(x,y) = and y = “Location”
0  otherwise

b3(x, y) = {
0  otherwise

® x=General George Washington, y=Person — ¢(x,y) =[1101000 0]

® x=George Washington Bridge, y=Location — ¢(x,y) =[00001 11 0]

® x—=George Washington George, y=Location — ¢(x,y) =[00001 10 0]
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Block Feature Vectors

x=General George Washington, y=Person — ¢(z,y) =[1101000 Q]

x=General George Washington, y=Location — ¢(x,y) =[00001 10 1]
x=George Washington Bridge, y=Location — ¢(z,y) =[00001 11 0]
x=George Washington George, y=Location — ¢(x,y) =[00001 10 0]

o Each equal size block of the feature vector corresponds to one label

e Non-zero values allowed only in one block
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Feature Representations — ¥(x) vs. ¢(x,y)

Equivalent if ¢(x,y) conjoins input features with one-hot label
representations
e ¢(x,y) = Y(x) ® ey, where e, :=(0,...,0,1,0,...,0)
e d(z,y)

® x=General George Washington, y=Person — ¢(x,y) =[1101000 0]
® r=General George Washington, y=0Object — ¢(x,y) =[00001 10 1]

e Y(x)

® x=General George Washington — 1(x) =[1 10 1]

1(x) is sometimes simpler and more convenient in binary classification

... but ¢(x,y) is more expressive (allows more complex features over
properties of labels)
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Preprocessing and Feature Engineering

o All sorts of linguistic processing for “meta-counts”

POS tagging: adjective counts for sentiment analysis

Spell checker: misspellings counts for spam detection

Parsing: depth of tree for readability assessment

Co-occurrences: language models probabilities, 2nd-order context and
word-embeddings for text classification

e Structured inputs for other representations (e.g. string or tree kernels)

e Common dimensionality reduction strategies also used (e.g. PCA)
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Preprocessing and Feature Engineering

Example: Translation Quality Estimation

no of tokens in the source/target segment

LM probability of source/target segment and their ratio

% of source 1-3-grams observed in 4 frequency quartiles of source corpus
average no of translations per source word

ratio of brackets and punctuation symbols in source & target segments
ratio of numbers, content/non-content words in source & target segments
ratio of nouns/verbs/etc in the source & target segments

% of dependency relations b/w constituents in source & target segments
diff in depth of the syntactic trees of source & target segments

diff in no of PP/NP/VP/ADJP/ADVP/CONJP in source & target

diff in no of person/location/organization entities in source & target
features and global score of the SMT system

number of distinct hypotheses in the n-best list

1-3-gram LM probabilities using translations in the n-best to train the LM
average size of the target phrases

proportion of pruned search graph nodes;

proportion of recombined graph nodes.

Lecture 2

IST, Fall 2018
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Representation Learning

Feature engineering is a black art and can be very time-consuming

But it's a good way of encoding prior knowledge, and it is still widely used
in practice (in particular with “small data”)

One alternative to feature engineering: representation learning

We'll discuss this later in the class.
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@ Linear Classifiers
Perceptron
Naive Bayes
Logistic Regression
Support Vector Machines

Regularization
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Linear Classifiers

Parametrized by a weight vector w € RP (one weight per feature)

The score (or probability) of a particular label is based on a linear
combination of features and their weights

At test time (known w), predict the class y which maximizes this
score:

Yy = h(x) = argmaxw - ¢(x,y)
y€eY

At training time, different strategies to learn w yield different linear
classifiers: perceptron, naive Bayes, logistic regression, SVMs, ...
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Linear Classifiers

e Prediction rule:
Yy = h(x) =argmaxw - ¢(x,y)
yeY

e The decision boundary is defined by the intersection of half spaces

e In the binary case (|Y| = 2) this corresponds to a hyperplane classifier
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Linear Classifiers — 1(x)

o Define |Y| weight vectors w,, € RP
e i.e., one weight vector per output label y

¢ Classification

Yy = argmax wy - YP(x)
yey
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Linear Classifiers — 1(x)

Define |Y| weight vectors w, € RP
e i.e., one weight vector per output label y

¢ Classification
Yy = argmax wy - YP(x)
yeY
e ¢(x,y)
® x=General George Washington, y=Person — ¢(x,y) =[1101000 0]
® r=General George Washington, y=0Object — ¢(x,y) =[00001 10 1]
® Single w € R8
o P(x)

® x=General George Washington — 1(x) =[1 10 1]
® Two parameter vectors wg € R*, w; € R*
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Linear Classifiers — Bias Terms

e Often linear classifiers are presented as

y = argmax w- ¢(w,y) + by
yeyY

where by, is a bias or offset term

e This can be folded into ¢ (by defining a constant feature for each
label)

e We assume this for simplicity

André Martins (IST) Lecture 2 IST, Fall 2018 38 /117



Binary Linear Classifier

Let's say w = (1,—1) and by =1, Vy
Then w is a line (generally a hyperplane) that divides all points:

2 \
== Points along line

have scores of 0
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Multiclass Linear Classifier

Defines regions of space.
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Linear Separability

e A set of points is linearly separable if there exists a w such that
classification is perfect

Separable

Not Separable
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@ Linear Classifiers

Perceptron
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Perceptron (Rosenblatt, 1958)

e |Invented in 1957 at the
Cornell Aeronautical
Laboratory by Frank
Rosenblatt

e Implemented in custom-built
hardware as the “Mark 1
perceptron,” designed for
image recognition

e 400 photocells, randomly
connected to the “neurons.”
Weights were encoded in
potentiometers

e Weight updates during

learning were performed by
(Extracted from Wikipedia) electric motors
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Perceptron in the News...

NEW NAVY DEVIGE
LEARNS BY DOING

Psychologist Shows Embryo

ings, Perceptron wil] make mis-
takes at first, but will grow
wiser as it gains experience, he
said. .

Dr: ‘Rqsenblatt. a research!

of Computer Designed to
Read and Grow Wiser

WASHINGTON, July- 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
able to walk, talk, see, write,
reproduce itself and be .con-
scious of its existence,

The embryo—the Weather|
Bureau's $2,000,000 704" com-|
puter—learned to differentiate
between right and left after
fifty aftempts in the Navy's
demonstration for newsmen.,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
‘signer of the Perceptron, con-
ducted the demonstration. He
said ‘the machine would be the
first device to think as the hu-

psy gist at the -Cornell
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers. .
‘Without Human Controls

The Navy said the perceptron
would be the- first non-living
mechanism “capable of receiv-
ing, recognizing and identifying
its surroundings without -any
human training or control.” |

The L“btgin" is desi‘gned to

T an ;
tion it has perceived itself. Ordi-

1958 New York
Times...

In today’s demonstration, the
“704” was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.
Learng by Doing

In the first fifty trials, the
machine made no distinction be-
tween them. It then started
registering a “Q"” for the left
squares and “O"” for the right
squares.

Dr. Rosenblatt said he could
i why the machine

nary puters r only
what ig fed into them on punch
cards or magnetic tape. |

Later Perceptrons will be able
to recognize people and call out
‘their names and instantly trans-
late speech in one language to
speech or writing in another
language, it was predicted.

Mr. Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce themselves on an assembly
line and which would be con-'

man brain. As do human be-|

André Martins (IS

scious of their existence.

Lecture 2

learned only in highly téchnical
terms. But he said the computer
had undergone a ‘‘self-induced
in the wiring diagram.”

The first Perceptron will
have about 1,000 electronic
“association cells” receiving
electrical impulses from an eye-
like scanning device with 400
photo-cells. The human brain
has 10,000,000,000 responsive
cells, including 100,000,000 con-

nections with the eyes.

IST, Fall 2018
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Perceptron Algorithm

e Online algorithm: process one data point at each round
e Take x;; apply the current model to make a prediction for it
e If prediction is correct, proceed
e Else, correct model: add feature vector w.r.t. correct output &
subtract feature vector w.r.t. predicted (wrong) output
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Perceptron Algorithm

input: labeled data D
initialize w(® =0
initialize k = 0 (number of mistakes)
repeat
get new training example (x;, y;)
predict ; = arg maxycy w . p(xz;,y)
if y; # y; then
update wk+1) = (k) 4 d(xi,yi) — d(xi, yi)
increment k
end if
until maximum number of epochs
output: model weights w
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Perceptron’s Mistake Bound

A couple definitions:

e the training data is linearly separable with margin v > 0 iff there is a
weight vector u with ||u|| = 1 such that

u¢(m,,y,)2u¢(m,,yf)+'y, VI, Vy;#yl

o radius of the data: R = max; . (i, yi) — ¢(zi, y)|-
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Perceptron’s Mistake Bound

A couple definitions:

e the training data is linearly separable with margin v > 0 iff there is a
weight vector u with ||u|| = 1 such that

u¢(m,,y,)2u¢(m,,yf)+'y, VI, Vy;#yl
e radius of the data: R = max; -, ||d(xi, yi) — ¢(@i, )l

Then we have the following bound of the number of mistakes:

Theorem (Novikoff (1962))

The perceptron algorithm is guaranteed to find a separating hyperplane
2 o
after at most % mistakes.
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One-Slide Proof

e Lower bound on [[w(**1):

w-w*t = ww® (o) - (e, Ti))
w- w4 Y
k.

A\VARAYS

Hence [|w* V|| = |u| - [w* D || > u - w*k+D) > kv (from CSI).
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One-Slide Proof

e Lower bound on [[w(**1):

w-w*t = ww® (o) - (e, Ti))
w- w4 Y
k.

A\VARAYS

Hence [|w* V|| = |u| - [w* D || > u - w*k+D) > kv (from CSI).

e Upper bound on |w(**1)]:

[w 12 = (lw®)? + (|p(ai, 1) — d(ai, i)
+2w - (@(zi,yi) — (2, T7))
< Jw®)?+ R?
< kR

Equating both sides, we get (kv)? < kR? = k < R?/~4? (QED).
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What a Simple Perceptron Can and Can’t Do

e Remember: the decision boundary is linear (linear classifier)

e It can solve linearly separable problems (OR, AND)

OR (x1,$2) AND (x_lv x2) AND (xlv'r_Q)

7
I~ A A ! A s O I o o,
o \ 9\l /7 o Y
8 N 8 , 8 ,
0 o N A of,” o o 0 o 7 A
Ve
\ - > . -
0 I 0 I 0 o
{1 T Zq
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What a Simple Perceptron Can and Can’t Do

e ... but it can’t solve non-linearly separable problems such as simple
XOR (unless input is transformed into a better representation):

XOR (1, z2) XOR (1, x9)
| A o |§| N A
s ol A
0 o A % 0 o LA
. << N
0 P 0 T
Z1 AND (.T_l, T

e This was observed by Minsky and Papert (1969) and motivated
strong criticisms
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@ Linear Classifiers

Naive Bayes
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Probabilistic Models

e For a moment, forget linear classifiers and parameter vectors w

e Let's assume our goal is to model the conditional probability of
output labels y given inputs x (or ¢(x)), i.e. P(y|x)

e |f we can define this distribution, then classification becomes:

y = argmax P(y|x)
yeY
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Bayes Rule

e One way to model P(y|x) is through Bayes Rule:

P(y)P(z|y)

Plyle) = —503

arg max,, P(y|z) oc arg max,, P(y)P(z|y)

e Since x is fixed
e P(y)P(x|y) = P(x,y): a joint probability

e Modeling the joint input-output distribution is at the core of
generative models
e Because we model a distribution that can randomly generate outputs
and inputs, not just outputs
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o Use ¢(x) € RP instead of ¢(x,y)
e P(zly) = P(¢(z)ly) = P(¢1(z), ..., dp(z)ly)

Naive Bayes Assumption
(conditional independence)

P(pi(x),...,op(x)|y) = I, P(di(x)|y)

D

P(y)P(¢1(z),. .., ép(x)ly) = P(y) H P(¢i(z)ly)
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Naive Bayes — Learning

Input: dataset D = {(x, y:)}N_; (examples assumed i.i.d.)

Let ¢i(x) € {1,..., Fi} — categorical; common in NLP

Parameters ® = {P(y), P(¢i(x)|y)}

Objective: Maximum Likelihood Estimation (MLE): choose
parameters that maximize the likelihood of observed data

t=1 t=1 i=1

N N D
L(©;D) = H P(x:,y:) = H (P(yt)H P(¢i(xt)|yt)>

N D
O = argmaxg H (P(yt) H P(¢i($t)|yt)>
t=1

i=1
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Naive Bayes — Learning via MLE

For the multinomial Naive Bayes model, MLE has a closed form solution!!
It all boils down to counting and normalizing!!

(The proof is left as an exercise...)
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Naive Bayes — Learning via MLE

N D

O = arg maxg H (P(yt) H P(¢;(:ct)|yt)>
t=1 i=1

P(y)

SN i) = i) and y, = y]]
S e = yll

_ Z?’Zl[[yt =y
N

P(¢i(x)|y) =

[[X]] is the identity function for property X
Fraction of times a feature appears among all features in training cases of a given
label
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Naive Bayes Example

e Corpus of movie reviews: 7 examples for training

’ Doc ‘ Words Class

1 Great movie, excellent plot, renown actors Positive

2 | had not seen a fantastic plot like this in good 5 | Positive
years. Amazing!!!

3 Lovely plot, amazing cast, somehow | am in love | Positive
with the bad guy

4 Bad movie with great cast, but very poor plot and | Negative
unimaginative ending

5 | hate this film, it has nothing original Negative

6 Great movie, but not... Negative

7 Very bad movie, | have no words to express how | | Negative
dislike it
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Naive Bayes Example

e Features: adjectives (bag-of-words)

] Doc \ Words \ Class ‘
1 Great movie, excellent plot, renowned actors Positive
2 | had not seen a fantastic plot like this in good 5 | Positive
years. amazing !l

3 Lovely plot, amazing cast, somehow | am in love | Positive
with the bad guy

4 Bad movie with great cast, but very poor plot and | Negative
unimaginative ending

5 | hate this film, it has nothing original. Really bad | Negative

6 Great movie, but not... Negative

7 Very bad movie, | have no words to express how | | Negative
dislike it
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Naive Bayes Example

Relative frequency:

Priors:

N ..
= t
P(positive) = 2==1l1¥ — Vell 317 043

N .
= t
P(negative) = 2 e=llye N negativel] =4/7=0.57

Assume standard pre-processing: tokenisation, lowercasing, punctuation
removal (except special punctuation like 1)
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Naive Bayes Example

Likelihoods: Count adjective ¢;(x) in class y / adjectives in y

S [[gi(xe) = ¢ix) and y, = y]]

P(oi(x)ly) =
(i) = Iy — vl
P(amazing|positive) = 2/10 | P(amazing|negative) =0/8
P(bad|positive) =1/10 | P(bad|negative) =3/8
P(excellent|positive) = 1/10 | P(excellent|negative) =0/8
P(fantastic|positive) = 1/10 | P(fantastic|negative) =0/8
P(good|positive) = 1/10 | P(good|negative) =0/8
P(great|positive) = 1/10 | P(great|negative) =2/8
P(lovely|positive) = 1/10 | P(lovely|negative) =0/8
P(original|positive) = 0/10 | P(original|negative) =1/8
P(poor|positive) = 0/10 | P(poor|negative) =1/8
P(renowned|positive) = 1/10 | P(renowned|negative) =0/8
P(unimaginative|positive) = 0/10 | P(unimaginative|negative)= 1/8
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Naive Bayes Example

Given a new segment to classify (test time):

Doc | Words Class
8 This was a fantastic story, good, lovely 777

Final decision
D

N
0= arg m(gx H P(y:) H P(pi(xt)|ye)
t=1

i=1

P(positive) x P(fantastic|positive) * P(good|positive) x P(lovely|positive)

3/7%1/10 % 1/10 % 1/10 = 0.00043

P(negative) = P(fantastic|negative) * P(good|negative) * P(lovely|negative)
4/7%0/8+0/8%0/8=0

So: sentiment = positive
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Naive Bayes Example

Given a new segment to classify (test time):

Doc | Words Class
9 Great plot, great cast, great everything 777

Final decision

P(positive) x P(great|positive) x P(great|positive) x P(great|positive)

3/7%1/10 % 1/10 % 1/10 = 0.00043

P(negative) x P(great|negative) * P(great|negative) x P(great|negative)

4/7%2/8%2/8 x2/8 = 0.00893

So: sentiment = negative
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Naive Bayes Example

But if the new segment to classify (test time) is:

Doc | Words Class
10 Boring movie, annoying plot, unimaginative ending | 777

Final decision

P(positive) * P(boring|positive) x P(annoying|positive) x P(unimaginative|positive)

3/7%0/10%0/100/10 =0

P(negative) x P(boring|negative) x P(annoying|negative) x P(unimaginative|negative)
4/7%0/8+0/8%1/8=0
So: sentiment = 777
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Naive Bayes Example

Add smoothing to feature counts (add 1 to every count):
N
—1llPi(zt) = ¢i(x) and y: = y]| +1
Pl (a)ly) = =10 = i) and ve =y
Yeallye =yl + [V

where |V/| = no distinct adjectives in training (all classes) = 12

Doc | Words Class
11 Boring movie, annoying plot, unimaginative ending | 777

Final decision

P(positive) = P(boring|positive) « P(annoying|positive) « P(unimaginative|positive)

3/7*((0+1)/(10+12)) % ((0+1)/(10 4+ 12)) % ((0 + 1)/(10 + 12)) = 0.000040
P(negative) x P(boring|negative) x P(annoying|negative) x P(unimaginative|negative)
4/7+((0+1)/(8+12))*((0+1)/(8+12)) = ((1 +1)/(8 + 12)) = 0.000143

So: sentiment = negative
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Discriminative versus Generative

Generative models attempt to model inputs and outputs
e e.g., NB = MLE of joint distribution P(z,y)
e Statistical model must explain generation of input

Occam’s Razor: why model input?
Discriminative models

e Use loss function that directly optimizes P(y|x) (or something related)
e Logistic Regression — MLE of P(y|x)
e Perceptron and SVMs — minimize classification error

Generative and discriminative models use P(y|x) for prediction
e They differ only on what distribution they use to set w
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@ Linear Classifiers

Logistic Regression
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Logistic Regression

Define a conditional probability:

P(y|m) _ eXP(w Z¢($7y)), where Z, = Z exp('w . d)(x,y,))
z y'eY

This operation (exponentiating and normalizing) is called the softmax
transformation (more later!)

Note: still a linear classifier

exp(w - p(z, y)
Ly

= argmax, exp(w-¢(z,y))

= argmax, w-¢(z,y)

argmax, P(ylx) = argmax,
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Logistic Regression

exp(w - ¢(x,y))

xr

e Q: How do we learn weights w?
e A: Set w to maximize the conditional log-likelihood of training data:

N N
w = arg &%@ log (tlj[l Pw(yt|:ct)> = argwnélﬂgD —;IOg Py (yelz:) =

N
i | . "V)—w -
argﬂ)ﬂ;&\o; og Y _exp(w - B(ae, y}))—w - p(xr,ye) |,

Yy

e i.e., set w to assign as much probability mass as possible to the
correct labels
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Logistic Regression

e This objective function is convex
e Therefore any local minimum is a global minimum

e No closed form solution, but lots of numerical techniques

e Gradient methods (gradient descent, conjugate gradient)
e Quasi-Newton methods (L-BFGS, ...)
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Logistic Regression

This objective function is convex

Therefore any local minimum is a global minimum

No closed form solution, but lots of numerical techniques

e Gradient methods (gradient descent, conjugate gradient)
e Quasi-Newton methods (L-BFGS, ...)

Logistic Regression = Maximum Entropy: maximize entropy subject
to constraints on features

Proof left as an exercise!
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Recap: Convex functions

Pro: Guarantee of a global minima v/

/
/

AW W)

Figure: Illustration of a convex function. The line segment between any two
points on the graph lies entirely above the curve.
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Recap: Iterative Descent Methods

Goal: find the minimum/minimizer of f : RY — R

e Proceed in small steps in the optimal direction till a stopping
criterion is met.
e Gradient descent: updates of the form: x(t71) « x(t) — 5 V£ (x(¥))

Figure: lllustration of gradient descent. The red lines correspond to steps taken
in the negative gradient direction.
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Gradient Descent

Let L(w; (z,y)) = log >_,, exp(w - d(z, ")) —w - (z, y)

Want to find arg min,, Z?’Zl L(w; (x+,yt))
o Setw®=10
e lterate until convergence (for suitable stepsize 7y):

W = b -V (S0 Lw (@)
= wk_nkz:ivzl va(w;(fEhyt))

o Vyl(w) is gradient of L w.r.t. w

Gradient descent will always find the optimal w
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Gradient Descent

If the dataset is large, we'd better do SGD instead, for more frequent
updates:

Set w® =10
Iterate until convergence
e Pick (xt,y:) randomly

e Update wk*! = wX — n, V,, L(w; (z+, y:))

e i.e. we approximate the true gradient with a noisy, unbiased, gradient,
based on a single sample

Variants exist in-between (mini-batches)

All guaranteed to find the optimal w!
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Computing the Gradient

e For this to work, we need to be able to compute V,,L(w; (x+, y¢)),
where

L(w; (x,y)) =log Y exp(w - $(x,y))—w - ¢(,y)
v

Some reminders:
O V., log Flw) = %VUJF(UJ)
O V. exp F(w) = exp(F(w)) Ve F(w)
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Computing the Gradient

Vuwl(w;(z,y)) = Vw (logzexp(w~¢(w,y'))—w¢(w,y)>

y’

= Vulog ) exp(w - ¢(e,y)-Vow - $(z,y)
1

_ z,exp(w¢wy>ZVweXpw¢(my’) b(.)

= Z Zexp(w -z, y/))Vu,'w - (e, y/)f(j)(:c,y)

= > Pu¥[@)d(z,y)-d(z,y).

/

The gradient equals the “difference between the expected features under the current
model and the true features.”
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Logistic Regression Summary

e Define conditional probability

exp(w - p(z, y))
Ly

Pw(ylx) =
e Set weights to maximize conditional log-likelihood of training data:

w = argmax,, S log Pu(yel@:) = argmin, 3 L(w: (z, ye)
t t

e Can find the gradient and run gradient descent (or any gradient-based
optimization algorithm)

Vuwl(w; (2,y)) = Pu(¥/|2)p(x, y)~d(, y)
”
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The Story So Far

o Naive Bayes is generative: maximizes joint likelihood
e closed form solution (boils down to counting and normalizing)
e Logistic regression is discriminative: maximizes conditional likelihood

e also called log-linear model and max-entropy classifier
e no closed form solution
e stochastic gradient updates look like

w ! = w* 41 | p(x,y) ZP (v |x)p(x,y')

e Perceptron is a discriminative, non-probabilistic classifier
e perceptron’s updates look like

w = w" + ¢(z,y) — (. 7)
SGD updates for logistic regression and perceptron’s updates look similar!
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Maximizing Margin

e For a training set D
e Margin of a weight vector w is smallest ~ such that

w - P(xr,yt) —w - ¢(mtay,) >

e for every training instance (z;,y:) € D, ¢y’ € Y
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Training Testing

Denote the
value of the -
margin by ~
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Maximizing Margin

o Intuitively maximizing margin makes sense

e More importantly, generalization error to unseen test data is
proportional to the inverse of the margin

R2

60(772><N

¢ Perceptron:
e If a training set is separable by some margin, the perceptron will find a
w that separates the data
e However, the perceptron does not pick w to maximize the margin!
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@ Linear Classifiers

Support Vector Machines
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Maximizing Margin

Let v >0
max
[|w||<1
such that:
w- d(xe,ye) —w- Pz, y') >y
V(wt,yt) € @
andy' €Y

e Note: algorithm still minimizes error if data is separable

e ||w]|| is bound since scaling trivially produces larger margin
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Max Margin = Min Norm

Let v >0
Max Margin: Min Norm:
1
max L1 2
lJw/]<1 min 5[]l
such that: _ such that:
w- (T, Ye)—w-Pp(xe, y') > 7 w-@(Ts, Ye)—w-Pp(xe,y') > 1
V(mt,’yt) & D V(mhyt) € D
andy’ €Y andy’ ¢ Y

e Instead of fixing ||w|| we fix the margin v =1
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Max Margin = Min Norm

Max Margin: Min Norm:
max o _— 2
[lwl|<1 min S 1wl
such that: -~ such that:
w-p(@e, ye) — w - P, y') >y w - p(@e, yr) — w - plar,y’) > 1
Y(xt,yr) € D V(xt, yt) € D
andy’ €Y andy’ €Y
e Let's say min norm solution ||w]|| = ¢

e Now say original objective is max||q|j<¢ ¥

e We know that v must be 1
e Or we would have found smaller ||w|| in min norm solution
e ||w|| <1 in max margin formulation is an arbitrary scaling choice
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Support Vector Machines

1
w = argmin,, ~||w]|?

such that:
w- P(xe,y:) —w- P(xr,y') > 1
V(zs,y:) €D and y' €Y

e Quadratic programming problem — a well known convex optimization
problem

e Can be solved with many techniques
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Support Vector Machines

What if data is not separable?

N
) 1
w = argmin,, . §||w||2 + CZ&
t=1

such that:

w - P(xe,yr) —w- p(xe,y’') >1— & and & >0

V(xt,yr) €Dandy' €Y

&t trade-off between margin per example and ||w||
Larger C = more examples correctly classified
If data is separable, optimal solution has & =0, Vi
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Kernels

Historically, SVMs with kernels co-ocurred together and were extremely
popular

Can "kernelize” algorithms to make them non-linear (not only SVMs, but
also logistic regression, perceptron, ...)

More later.
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Support Vector Machines

N
) 1
w = argmin,, ¢ §\|w|\2 + CZ&

t=1
such that:
w- P, yr) —w- Pz, y') > 1— &
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Support Vector Machines

N
) 1
w = argmin,, ¢ §\|w|\2 + CZ&

t=1
such that:
w - ¢z, yt) — max w - P(xe,y') >1—&

Yt
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Support Vector Machines

N
) 1
w = argmin,, ¢ §\|w|\2 + CZ&

t=1
such that:
gt Z 1 + max w - ¢(Cct7 y/) —w- ¢($t7yt)
Y FYe
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Support Vector Machines

1

N
) A
w = argmin,, ¢ EHsz—i-Z{t )\:E
t=1

such that:
gt Z 1 + max w - ¢(Cct7 y/) —w- ¢($t7yt)
Y FYe
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Support Vector Machines

1

N
) A
w = argmin,, ¢ EHsz—i-Z{t )\:E
t=1

such that:
gt Z 1 + max w - ¢(Cct7 y/) —w- ¢(mt7yt)
Y FYe

If [|Jw]|| classifies (z¢,y:) with margin 1, penalty & =0
Otherwise penalty & = 1+ maxy/ 4y, w - P(xt,y") — w - d(xs, yt)
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Support Vector Machines

1

N
) A
w = argmin,, ¢ EHsz—i-Z{t )\:E
t=1

such that:
gt Z 1 + max w - ¢(Cct7 y/) —w- ¢(mt7yt)
Y FYe

If [|Jw]|| classifies (z¢,y:) with margin 1, penalty & =0
Otherwise penalty & = 1+ maxy/ 4y, w - P(xt,y") — w - d(xs, yt)

Hinge loss:
L((ze, ye)iw) = max (0,1 + maxyrsy, w- P(xe,y’) — w- P(xt, yt))
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Support Vector Machines

N
. A
w = argmin,, ¢ §||w||2 + Z&
-1

such that:
& >1+ ;1;;( w - ¢($t7y,) —w- P(xt,yr)

Hinge loss equivalent
u A
= arg min,, ;L (xe,y:); w) §||w||2

N
. A
= argmin,,, (Zmax 0.1+ max w- (e, y) - w-qs(wt,yt))) + Slwl?
Y

t=1
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From Gradient to Subgradient

The hinge loss is a piecewise linear function—not differentiable everywhere
Cannot use gradient descent

But... can use subgradient descent (almost the same)!
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Recap: Subgradient

f(x)

f(@1) + g (x = 1),
f(=2) + 93 (z — 2)

/e F (@) + 03 (@ — 22)

e Defined for convex functions f : RP — R
e Generalizes the notion of gradient—in points where f is differentiable,
there is a single subgradient which equals the gradient

e Other points may have multiple subgradients

André Martins (IST) Lecture 2 IST, Fall 2018 92 / 117



Subgradient Descent

L((mv y); ’LU) = max (Oa 1+ :’rpi); w - ¢($7y/) —w- ¢(m,y))
= max w-¢(z,y) + [y # yl]
y'cY

A subgradient of the hinge is

8wL((x7y);’w) > ¢(x7g) —¢(m,y)

where
Yy = arg ?rpgg w - qb(ac,y’) + [[y' # yll

Can also train SVMs with (stochastic) sub-gradient descent!
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Perceptron and Hinge-Loss

SVM subgradient update looks like perceptron update

e S 0, if w- @zt yt) — maxy w- P(xr,y) > 1
(e, y) — P(xt,y:), otherwise, where y = maxy w - ¢p(xt,y)

Perceptron
Wkt = wk 0, if w- @(xe, ye) — maxy w - Pp(xe, y) > 0
d(xt,y) — P(xt,yt), otherwise, where y = maxy w - ¢(xt,y)

where n =1
Perceptron = SGD with no-margin hinge-loss

max (0, max w - ¢(x,y) — w - p(xr, Yr))
Y#Yr
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What we have covered

e Linear Classifiers

Naive Bayes

Logistic Regression
Perceptron

Support Vector Machines

What is next

e Regularization

e Non-linear classifiers
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@ Linear Classifiers

Regularization
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Regularization
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Early in lecture we made assumption data was i.i.d.

Rarely is this true
e E.g., syntactic analyzers typically trained on 40,000 sentences from
early 1990s WSJ news text

e Even more common: D is very small

This leads to overfitting
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Regularization

e We saw one example already when talking about add-one smoothing
in Naive Bayes!

In practice, we regularize models to prevent overfitting

arg min,, Z L(w; (xt, 1)) + AQ(w)
t=1

Where Q(w) is the regularization function

A controls how much to regularize

Common functions
o U Qw) x |lwl]z = |w|| = />_; w? — smaller weights desired
o ly: Q(w) x ||lwl|lo = D_;[[w; > 0]] — zero weights desired

e Non-convex
e Approximate with £1: Q(w) x ||w|1 =Y, |wi]
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Logistic Regression with ¢/, Regularization

N N A\
Y L(wi (e, ye)) + A2(w) = =Y log (exp(w - d(@e, 1))/ Ze) + S lwl®

t=1 t=1
e What is the new gradient?

N
Z w; (z+,Ye)) + Vap AQ(w)

e We know V, L(w; (z¢,y:))
e Just need V3w = \w

André Martins (IST) Lecture 2 IST, Fall 2018 100 / 117



Support Vector Machines

Hinge-loss formulation: ¢ regularization already happening!

N

w = argmin,, Z L((xe, ye); w) + AQ(w)
t=1
N

= argmin,, Z max (0,1 + Lr;a; w- p(xr,y) —w- p(xr,yr)) + AQ(w)
t=1 ¢

N

. A
= argmin,, Y max (0,14 max w-g(we,y) —w- bl y) +
t=1

T SVM optimization 1
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SVMs vs. Logistic Regression

N

w = argminy, ZL((mt,yt);w)+>\Q(w)
t=1
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SVMs vs. Logistic Regression

N
w = argminy, ZL((mt,yt);w)+>\Q(w)

t=1
SVMs/hinge-loss: max (0,1 + maxyy, (w - ¢(x:,y) — w - ¢(xe, yt)))
N

. A
w = arg min,, E max (0,1+1r;r;£a;< w-d)(:ct,y)fw-(i)(:ct,yt))JrEHwH2
t

t=1
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SVMs vs. Logistic Regression

N
w = argminy, Z L((xe, ye); w) + AQ(w)
t=1
SVMs/hinge-loss: max (0,1 + maxyy, (w - ¢(x:,y) — w - ¢(xe, yt)))
N
w = arg min,, Zmax 0,1+ n;ax w- P(xr,y) —w- (e, yr)) + waH2
y

t=1

Logistic Regression/log-loss: — log (exp(w - ¢(x+t,yt))/Zz)

N
. A
w = argmin,, > —log (exp(w - $lwe,ye))/Za) + 5wl
t=1
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Generalized Linear Classifiers

André Martins (IST)

Liy.f(x))

N
w = arg min,, E L((xt, ye); w) + AQ(w)
t=1
8
— Zero-one loss
7 — Hinge loss
—— Perceptron loss
6 — Log loss
— Squared hinge loss
5 Modified huber loss
\
4 \
\
\
\
3 \
\
\
\
2 \
\
\
1 \‘
\M
) =3 -2 o1 0 1 2 3
y-flx)
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Outline

© Non-Linear Classifiers
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Recap: What a Linear Classifier Can Do

e It can solve linearly separable problems (OR, AND)

OR (1’1, IEQ) AND (q;_l, 372) AND (.Tl, .7}_2)
Ve
I~ A A ! A s O I o o,
[\ N\ o 7 N /
8 N 8 , 8 ,
AN / Y
0 (@) N A 0],” O (@) 0 o A
7
N > ‘ >
0 ! 0 | 0 o
Ty Ty Ty
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Recap: What a Linear Classifier Do

e ... but it can’t solve non-linearly separable problems such as simple
XOR (unless input is transformed into a better representation):

XOR (1, z2) XOR (1, x9)
| A o |§| N A
s ol A
0 o A % 0 o LA
. << N
0 P 0 T
Z1 AND (.T_l, T

e This was observed by Minsky and Papert (1969) (for the perceptron)
and motivated strong criticisms
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Summary: Linear Classifiers

We've seen

e Perceptron

o Naive Bayes

e Logistic regression

e Support vector machines
All lead to convex optimization problems = no issues with local
minima/initialization
All assume the features are well-engineered such that the data is nearly
linearly separable
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What If Data Are Not Linearly Separable?
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What If Data Are Not Linearly Separable?

Engineer better features (often works!)
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What If Data Are Not Linearly Separable?

Engineer better features (often works!)

Kernel methods:
e works implicitly in a high-dimensional feature space

e ... but still need to choose/design a good kernel

e model capacity confined to positive-definite kernels
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What If Data Are Not Linearly Separable?

Engineer better features (often works!)

Kernel methods:
e works implicitly in a high-dimensional feature space
e ... but still need to choose/design a good kernel

e model capacity confined to positive-definite kernels

Neural networks (next class!)

e embrace non-convexity and local minima

e instead of engineering features/kernels, engineer the model
architecture
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Kernels

o A kernel is a similarity function between two points that is symmetric
and positive semi-definite, which we denote by:

k(ze, xr) € R

Let K be a n X n matrix such that ...

Kt,r = F@(mty a’r)

e ... for any n points. Called the Gram matrix.

e Symmetric:
k(e @) = K(Tr, Tt)

Positive definite: for all non-zero v

vKv' >0

André Martins (IST) Lecture 2 IST, Fall 2018 109 / 117



Kernels

e Mercer’'s Theorem: for any kernel k : X x X — Y, there exists a
P X — RY st

K(@e, ) = (@) - (/)

e Since our features are over pairs (x,y), we will write kernels over pairs

’i((mtayt% (wra yr)) = qb(mta yt) ) d)(mr)yr)
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Kernels = Tractable Non-Linearity

A linear classifier in a higher dimensional feature space is a non-linear
classifier in the original space

Computing a non-linear kernel is sometimes better computationally
than calculating the corresponding dot product in the high dimension
feature space

Many models can be “kernelized” — learning algorithms generally
solve the dual optimization problem (also convex)

Drawback: quadratic dependency on dataset size
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Linear Classifiers in High Dimension

&
0.5 W oo
s -
S S
) Tt Q<.
%4 + S 8
M = YD
0 : Seg 2 ot
) MG >
) 00
-05} - o ®g
o B
- -05 0 05

R — R

(z1,22) +—— (21,22,23) = €2,V 22129, 23)
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Example: Polynomial Kernel

o P(x) eRM, d>2
o Kz, xs) = (P(a) () + 1)
e O(M) to calculate for any d!!

e But in the original feature space (primal space)
e Consider d =2, M =2, and 9(x+) = [X¢,1, Xe,2]

([xe,1, xe.2] - [xs,1, x5,2] +1)?
= (Xe1Xs1 + Xe2Xs2 + 1)?
= (x0,1%,1)% + (x,2%5,2)% + 2(xe,1%6,1) + 2(xXe,2%5,2)

+2(xe,1xt,2%5,1%5,2) + (1)?

((xe) - p(xs) +1)°

which equals:

[(xe,1)2, (xe,2)%, V2xe,1, V2xe.2, V2xe1%e,2, 1]+ [(%6,1)2, (%6,2)) V2x5,1, V2552, V25 1%5,2, 1]

André Martins (IST) Lecture 2 IST, Fall 2018 113 / 117



Popular Kernels

Polynomial kernel

K(xe, s) = (P(r) - P(xs) + l)d

Gaussian radial basis kernel

—[lp(xe) — w(ws)\F)
20

K(xt, xs) = exp(

String kernels (Lodhi et al., 2002; Collins and Duffy, 2002)
Tree kernels (Collins and Duffy, 2002)
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Conclusions

Linear classifiers are a broad class including well-known ML methods
such as perceptron, Naive Bayes, logistic regression, support vector
machines

They all involve manipulating weights and features

They either lead to closed-form solutions or convex optimization
problems (no local minima)

Stochastic gradient descent algorithms are useful if training datasets
are large

However, they require manual specification of feature representations

Later: methods that are able to learn internal representations
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Thank you!

Questions?
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