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Course Information

• Instructor: André Martins (amartins@lx.it.pt)

• TAs/Guest Lecturers: Erick Fonseca & Vlad Niculae

• Location: LT2 (North Tower, 4th floor)

• Schedule: Wednesdays 14:30–18:00

• Communication:
piazza.com/tecnico.ulisboa.pt/fall2018/pdeecdsl
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Announcements

Homework 1 is out!

• Deadline: October 10 (two weeks from now)

• Start early!!!

List of potential projects will be sent out soon!

• Deadline for project proposal: October 17 (three weeks from now)

• Teams of 3 people
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Today’s Roadmap

Before talking about deep learning, let us talk about shallow learning:

• Supervised learning: binary and multi-class classification

• Feature-based linear classifiers

• Rosenblatt’s perceptron algorithm

• Linear separability and separation margin: perceptron’s mistake bound

• Other linear classifiers: naive Bayes, logistic regression, SVMs

• Regularization and optimization

• Limitations of linear classifiers: the XOR problem

• Kernel trick. Gaussian and polynomial kernels.
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Fake News Detection

Task: tell if a news article / quote is fake or real.

This is a binary classification problem.
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Fake Or Real?
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Fake Or Real?

Can a machine determine this automatically?

Can be a very hard problem, since fact-checking is hard and requires
combining several knowledge sources

... also, reality surpasses fiction sometimes

Shared task: http://www.fakenewschallenge.org/
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Topic Classification

Task: given a news article, determine its topic (politics, sports, etc.)

This is a multi-class classification problem.

It’s a much easier task, can get 80-90% accuracies with a simple ML model
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Topic Classification
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Disclaimer

Many of the following slides are adapted from Ryan McDonald.
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Let’s Start Simple

• Example 1 – sequence: ? � ◦; label: −1

• Example 2 – sequence: ? ♥ 4; label: −1

• Example 3 – sequence: ? 4 ♠; label: +1

• Example 4 – sequence: � 4 ◦; label: +1

• New sequence: ? � ◦; label ?

• New sequence: ? � ♥; label ?

• New sequence: ? 4 ◦; label ?

Why can we do this?
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Let’s Start Simple: Machine Learning

• Example 1 – sequence: ? � ◦; label: −1

• Example 2 – sequence: ? ♥ 4; label: −1

• Example 3 – sequence: ? 4 ♠; label: +1

• Example 4 – sequence: � 4 ◦; label: +1

• New sequence: ? � ♥; label −1

Label −1 Label +1

P(−1|?) = count(? and −1)
count(?)

= 2
3

= 0.67 vs. P(+1|?) = count(? and +1)
count(?)

= 1
3

= 0.33

P(−1|�) = count(� and −1)
count(�)

= 1
2

= 0.5 vs. P(+1|�) = count(� and +1)
count(�)

= 1
2

= 0.5

P(−1|♥) = count(♥ and −1)
count(♥)

= 1
1

= 1.0 vs. P(+1|♥) = count(♥ and +1)
count(♥)

= 0
1

= 0.0
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Machine Learning

1 Define a model/distribution of interest

2 Make some assumptions if needed

3 Fit the model to the data

• Model: P(label|sequence) = P(label|symbol1, . . . symboln)
• Prediction for new sequence = arg maxlabel P(label|sequence)

• Assumption (naive Bayes—more later):

P(symbol1, . . . , symboln|label) =
n∏

i=1

P(symboli |label)

• Fit the model to the data: count!! (simple probabilistic modeling)
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Some Notation: Inputs and Outputs

• Input x ∈ X

• e.g., a news article, a sentence, an image, ...

• Output y ∈ Y

• e.g., fake/not fake, a topic, a parse tree, an image segmentation

• Input/Output pair: (x,y) ∈ X× Y

• e.g., a news article together with a topic
• e.g., a sentence together with a parse tree
• e.g., an image partitioned into segmentation regions
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Supervised Machine Learning

• We are given a labeled dataset of input/output pairs:

D = {(xn,yn)}Nn=1 ⊆ X× Y

• Goal: use it to learn a classifier h : X→ Y that generalizes well to
arbitrary inputs.

• At test time, given x ∈ X, we predict

ŷ = h(x).

• Hopefully, ŷ ≈ y most of the time.
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Things can go by different names depending on what Y is...
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Regression

Deals with continuous output variables:

• Regression: Y = R
• e.g., given a news article, how much time a user will spend reading it?

• Multivariate regression: Y = RK

• e.g., predict the X-Y coordinates in an image where the user will click
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Classification

Deals with discrete output variables:

• Binary classification: Y = {±1}
• e.g., fake news detection

• Multi-class classification: Y = {1, 2, . . . ,K}
• e.g., topic classification

• Structured classification: Y exponentially large and structured
• e.g., machine translation, caption generation, image segmentation

This course: structured classification

... but to make it simpler, we’ll talk about multi-class classification first.
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Sometimes reductions are convenient:

• logistic regression reduces classification to regression

• one-vs-all reduces multi-class to binary

• greedy search reduces structured classification to multi-class

... but other times it’s better to tackle the problem in its native form.

More later!
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Feature Representations

Feature engineering is an important step in “shallow” learning:

• Bag-of-words features for text, also lemmas, parts-of-speech, ...

• SIFT features and wavelet representations in computer vision

• Other categorical, Boolean, and continuous features
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Feature Representations

We need to represent information about x

Typical approach: define a feature map ψ : X→ RD

• ψ(x) is a high dimensional feature vector

For multi-class/structured classification, a joint feature map
φ : X× Y→ RD is sometimes more convenient

• φ(x,y) instead of ψ(x)

We can use feature vectors to encapsulate Boolean, categorical, and
continuous features

• e.g., categorical features can be reduced to a range of one-hot binary
values.
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Examples

• x is a document and y is a label

φj(x,y) =


1 if x contains the word “interest”

and y = “financial”
0 otherwise

φj(x,y) = % of words in x with punctuation and y = “scientific”

• x is a word and y is a part-of-speech tag

φj(x,y) =

{
1 if x = “bank” and y = Verb
0 otherwise
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More Examples

• x is a name, y is a label classifying the type of entity

φ0(x,y) =

 1 if x contains “George”
and y = “Person”

0 otherwise

φ1(x,y) =

 1 if x contains “Washington”
and y = “Person”

0 otherwise

φ2(x,y) =

 1 if x contains “Bridge”
and y = “Person”

0 otherwise

φ3(x,y) =

 1 if x contains “General”
and y = “Person”

0 otherwise

φ4(x,y) =

 1 if x contains “George”
and y = “Location”

0 otherwise

φ5(x,y) =

 1 if x contains “Washington”
and y = “Location”

0 otherwise

φ6(x,y) =

 1 if x contains “Bridge”
and y = “Location”

0 otherwise

φ7(x,y) =

 1 if x contains “General”
and y = “Location”

0 otherwise

• x=General George Washington, y=Person → φ(x,y) = [1 1 0 1 0 0 0 0]

• x=George Washington Bridge, y=Location → φ(x,y) = [0 0 0 0 1 1 1 0]

• x=George Washington George, y=Location → φ(x,y) = [0 0 0 0 1 1 0 0]
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Block Feature Vectors

• x=General George Washington, y=Person → φ(x,y) = [1 1 0 1 0 0 0 0]

• x=General George Washington, y=Location → φ(x,y) = [0 0 0 0 1 1 0 1]

• x=George Washington Bridge, y=Location → φ(x,y) = [0 0 0 0 1 1 1 0]

• x=George Washington George, y=Location → φ(x,y) = [0 0 0 0 1 1 0 0]

• Each equal size block of the feature vector corresponds to one label

• Non-zero values allowed only in one block
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Feature Representations – ψ(x) vs. φ(x,y)

Equivalent if φ(x,y) conjoins input features with one-hot label
representations

• φ(x,y) = ψ(x)⊗ ey, where ey := (0, . . . , 0, 1, 0, . . . , 0)

• φ(x,y)
• x=General George Washington, y=Person → φ(x,y) = [1 1 0 1 0 0 0 0]
• x=General George Washington, y=Object → φ(x,y) = [0 0 0 0 1 1 0 1]

• ψ(x)
• x=General George Washington → ψ(x) = [1 1 0 1]

ψ(x) is sometimes simpler and more convenient in binary classification

... but φ(x,y) is more expressive (allows more complex features over
properties of labels)
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Preprocessing and Feature Engineering

• All sorts of linguistic processing for “meta-counts”
• POS tagging: adjective counts for sentiment analysis
• Spell checker: misspellings counts for spam detection
• Parsing: depth of tree for readability assessment
• Co-occurrences: language models probabilities, 2nd-order context and

word-embeddings for text classification

• Structured inputs for other representations (e.g. string or tree kernels)

• Common dimensionality reduction strategies also used (e.g. PCA)
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Preprocessing and Feature Engineering

Example: Translation Quality Estimation

• no of tokens in the source/target segment

• LM probability of source/target segment and their ratio

• % of source 1–3-grams observed in 4 frequency quartiles of source corpus

• average no of translations per source word

• ratio of brackets and punctuation symbols in source & target segments

• ratio of numbers, content/non-content words in source & target segments

• ratio of nouns/verbs/etc in the source & target segments

• % of dependency relations b/w constituents in source & target segments

• diff in depth of the syntactic trees of source & target segments

• diff in no of PP/NP/VP/ADJP/ADVP/CONJP in source & target

• diff in no of person/location/organization entities in source & target

• features and global score of the SMT system

• number of distinct hypotheses in the n-best list

• 1–3-gram LM probabilities using translations in the n-best to train the LM

• average size of the target phrases

• proportion of pruned search graph nodes;

• proportion of recombined graph nodes.
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Representation Learning

Feature engineering is a black art and can be very time-consuming

But it’s a good way of encoding prior knowledge, and it is still widely used
in practice (in particular with “small data”)

One alternative to feature engineering: representation learning

We’ll discuss this later in the class.
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Linear Classifiers

• Parametrized by a weight vector w ∈ RD (one weight per feature)

• The score (or probability) of a particular label is based on a linear
combination of features and their weights

• At test time (known w), predict the class ŷ which maximizes this
score:

ŷ = h(x) = arg max
y∈Y

w · φ(x,y)

• At training time, different strategies to learn w yield different linear
classifiers: perceptron, näıve Bayes, logistic regression, SVMs, ...
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Linear Classifiers

• Prediction rule:

ŷ = h(x) = arg max
y∈Y

w · φ(x,y)

• The decision boundary is defined by the intersection of half spaces

• In the binary case (|Y| = 2) this corresponds to a hyperplane classifier
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Linear Classifiers – ψ(x)

• Define |Y| weight vectors wy ∈ RD

• i.e., one weight vector per output label y

• Classification
ŷ = arg max

y∈Y
wy ·ψ(x)

• φ(x,y)
• x=General George Washington, y=Person → φ(x,y) = [1 1 0 1 0 0 0 0]
• x=General George Washington, y=Object → φ(x,y) = [0 0 0 0 1 1 0 1]
• Single w ∈ R8

• ψ(x)
• x=General George Washington → ψ(x) = [1 1 0 1]
• Two parameter vectors w0 ∈ R4, w1 ∈ R4
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Linear Classifiers – Bias Terms

• Often linear classifiers are presented as

ŷ = arg max
y∈Y

w · φ(x,y) + by

where by is a bias or offset term

• This can be folded into φ (by defining a constant feature for each
label)

• We assume this for simplicity
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Binary Linear Classifier

Let’s say w = (1,−1) and by = 1, ∀y
Then w is a line (generally a hyperplane) that divides all points:

1 2-2 -1

1

2

-2

-1

Points along line
have scores of 0
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Multiclass Linear Classifier

Defines regions of space.
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Linear Separability

• A set of points is linearly separable if there exists a w such that
classification is perfect

Separable Not Separable
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André Martins (IST) Lecture 2 IST, Fall 2018 42 / 117



Perceptron (Rosenblatt, 1958)

(Extracted from Wikipedia)

• Invented in 1957 at the
Cornell Aeronautical
Laboratory by Frank
Rosenblatt

• Implemented in custom-built
hardware as the “Mark 1
perceptron,” designed for
image recognition

• 400 photocells, randomly
connected to the “neurons.”
Weights were encoded in
potentiometers

• Weight updates during
learning were performed by
electric motors.
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Perceptron in the News...
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Perceptron Algorithm

• Online algorithm: process one data point at each round
• Take xi ; apply the current model to make a prediction for it
• If prediction is correct, proceed
• Else, correct model: add feature vector w.r.t. correct output &

subtract feature vector w.r.t. predicted (wrong) output
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Perceptron Algorithm

input: labeled data D

initialize w(0) = 0
initialize k = 0 (number of mistakes)
repeat

get new training example (xi ,yi )
predict ŷi = arg maxy∈Yw

(k) · φ(xi ,y)
if ŷi 6= yi then

update w(k+1) = w(k) + φ(xi ,yi )− φ(xi ,yi )
increment k

end if
until maximum number of epochs
output: model weights w
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Perceptron’s Mistake Bound

A couple definitions:

• the training data is linearly separable with margin γ > 0 iff there is a
weight vector u with ‖u‖ = 1 such that

u · φ(xi ,yi ) ≥ u · φ(xi ,y
′
i ) + γ, ∀i , ∀y′i 6= yi .

• radius of the data: R = maxi , y′i 6=yi ‖φ(xi ,yi )− φ(xi ,y
′
i )‖.

Then we have the following bound of the number of mistakes:

Theorem (Novikoff (1962))

The perceptron algorithm is guaranteed to find a separating hyperplane
after at most R2

γ2 mistakes.
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One-Slide Proof

• Lower bound on ‖w(k+1)‖:

u ·w(k+1) = u ·w(k) + u · (φ(xi ,yi )− φ(xi , ŷi ))

≥ u ·w(k) + γ

≥ kγ.

Hence ‖w(k+1)‖ = ‖u‖ · ‖w(k+1)‖ ≥ u ·w(k+1) ≥ kγ (from CSI).

• Upper bound on ‖w(k+1)‖:

‖w(k+1)‖2 = ‖w(k)‖2 + ‖φ(xi ,yi )− φ(xi , ŷi )‖2

+2w(k) · (φ(xi ,yi )− φ(xi , ŷi ))

≤ ‖w(k)‖2 + R2

≤ kR2.

Equating both sides, we get (kγ)2 ≤ kR2 ⇒ k ≤ R2/γ2 (QED).
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What a Simple Perceptron Can and Can’t Do

• Remember: the decision boundary is linear (linear classifier)

• It can solve linearly separable problems (OR, AND)
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What a Simple Perceptron Can and Can’t Do

• ... but it can’t solve non-linearly separable problems such as simple
XOR (unless input is transformed into a better representation):

• This was observed by Minsky and Papert (1969) and motivated
strong criticisms
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Probabilistic Models

• For a moment, forget linear classifiers and parameter vectors w

• Let’s assume our goal is to model the conditional probability of
output labels y given inputs x (or φ(x)), i.e. P(y|x)

• If we can define this distribution, then classification becomes:

ŷ = arg max
y∈Y

P(y|x)
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Bayes Rule

• One way to model P(y|x) is through Bayes Rule:

P(y|x) =
P(y)P(x|y)

P(x)

arg maxy P(y|x) ∝ arg maxy P(y)P(x|y)

• Since x is fixed

• P(y)P(x|y) = P(x,y): a joint probability

• Modeling the joint input-output distribution is at the core of
generative models
• Because we model a distribution that can randomly generate outputs

and inputs, not just outputs
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Naive Bayes

• Use φ(x) ∈ RD instead of φ(x,y)

• P(x|y) = P(φ(x)|y) = P(φ1(x), . . . ,φD(x)|y)

Naive Bayes Assumption
(conditional independence)

P(φ1(x), . . . ,φD(x)|y) =
∏

i P(φi(x)|y)

P(y)P(φ1(x), . . . ,φD(x)|y) = P(y)
D∏
i=1

P(φi (x)|y)
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Naive Bayes – Learning

• Input: dataset D = {(xt ,yt)}Nt=1 (examples assumed i.i.d.)

• Let φi (x) ∈ {1, . . . ,Fi} – categorical; common in NLP

• Parameters Θ = {P(y),P(φi (x)|y)}

• Objective: Maximum Likelihood Estimation (MLE): choose
parameters that maximize the likelihood of observed data

L(Θ;D) =
N∏
t=1

P(xt ,yt) =
N∏
t=1

(
P(yt)

D∏
i=1

P(φi (xt)|yt)

)

Θ̂ = arg maxΘ

N∏
t=1

(
P(yt)

D∏
i=1

P(φi (xt)|yt)

)
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Naive Bayes – Learning via MLE

For the multinomial Naive Bayes model, MLE has a closed form solution!!

It all boils down to counting and normalizing!!

(The proof is left as an exercise...)
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Naive Bayes – Learning via MLE

Θ̂ = arg maxΘ

N∏
t=1

(
P(yt)

D∏
i=1

P(φi (xt)|yt)

)

P̂(y) =

∑N
t=1[[yt = y]]

N

P̂(φi (x)|y) =

∑N
t=1[[φi (xt) = φi (x) and yt = y]]∑N

t=1[[yt = y]]

[[X ]] is the identity function for property X
Fraction of times a feature appears among all features in training cases of a given

label
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Naive Bayes Example

• Corpus of movie reviews: 7 examples for training

Doc Words Class

1 Great movie, excellent plot, renown actors Positive

2 I had not seen a fantastic plot like this in good 5
years. Amazing!!!

Positive

3 Lovely plot, amazing cast, somehow I am in love
with the bad guy

Positive

4 Bad movie with great cast, but very poor plot and
unimaginative ending

Negative

5 I hate this film, it has nothing original Negative

6 Great movie, but not... Negative

7 Very bad movie, I have no words to express how I
dislike it

Negative
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Naive Bayes Example

• Features: adjectives (bag-of-words)

Doc Words Class

1 Great movie, excellent plot, renowned actors Positive

2 I had not seen a fantastic plot like this in good 5
years. amazing !!!

Positive

3 Lovely plot, amazing cast, somehow I am in love
with the bad guy

Positive

4 Bad movie with great cast, but very poor plot and
unimaginative ending

Negative

5 I hate this film, it has nothing original. Really bad Negative

6 Great movie, but not... Negative

7 Very bad movie, I have no words to express how I
dislike it

Negative
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Naive Bayes Example

Relative frequency:

Priors:

P(positive) =

∑N
t=1[[yt = positive]]

N
= 3/7 = 0.43

P(negative) =

∑N
t=1[[yt = negative]]

N
= 4/7 = 0.57

Assume standard pre-processing: tokenisation, lowercasing, punctuation
removal (except special punctuation like !!!)
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Naive Bayes Example

Likelihoods: Count adjective φi (x) in class y / adjectives in y

P(φi (x)|y) =

∑N
t=1[[φi (xt) = φi (x) and yt = y]]∑N

t=1[[yt = y]]

P(amazing |positive) = 2/10 P(amazing |negative) = 0/8
P(bad |positive) = 1/10 P(bad |negative) = 3/8
P(excellent|positive) = 1/10 P(excellent|negative) = 0/8
P(fantastic |positive) = 1/10 P(fantastic|negative) = 0/8
P(good |positive) = 1/10 P(good |negative) = 0/8
P(great|positive) = 1/10 P(great|negative) = 2/8
P(lovely |positive) = 1/10 P(lovely |negative) = 0/8
P(original |positive) = 0/10 P(original |negative) = 1/8
P(poor |positive) = 0/10 P(poor |negative) = 1/8
P(renowned |positive) = 1/10 P(renowned |negative) = 0/8
P(unimaginative|positive) = 0/10 P(unimaginative|negative)= 1/8
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Naive Bayes Example

Given a new segment to classify (test time):

Doc Words Class

8 This was a fantastic story, good, lovely ???

Final decision

Θ̂ = arg max
Θ

N∏
t=1

(
P(yt)

D∏
i=1

P(φi (xt)|yt)

)

P(positive) ∗ P(fantastic|positive) ∗ P(good |positive) ∗ P(lovely |positive)

3/7 ∗ 1/10 ∗ 1/10 ∗ 1/10 = 0.00043

P(negative) ∗ P(fantastic|negative) ∗ P(good |negative) ∗ P(lovely |negative)

4/7 ∗ 0/8 ∗ 0/8 ∗ 0/8 = 0

So: sentiment = positive
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Naive Bayes Example

Given a new segment to classify (test time):

Doc Words Class

9 Great plot, great cast, great everything ???

Final decision

P(positive) ∗ P(great|positive) ∗ P(great|positive) ∗ P(great|positive)

3/7 ∗ 1/10 ∗ 1/10 ∗ 1/10 = 0.00043

P(negative) ∗ P(great|negative) ∗ P(great|negative) ∗ P(great|negative)

4/7 ∗ 2/8 ∗ 2/8 ∗ 2/8 = 0.00893

So: sentiment = negative
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Naive Bayes Example

But if the new segment to classify (test time) is:

Doc Words Class

10 Boring movie, annoying plot, unimaginative ending ???

Final decision

P(positive) ∗ P(boring |positive) ∗ P(annoying |positive) ∗ P(unimaginative|positive)

3/7 ∗ 0/10 ∗ 0/10 ∗ 0/10 = 0

P(negative) ∗ P(boring |negative) ∗ P(annoying |negative) ∗ P(unimaginative|negative)

4/7 ∗ 0/8 ∗ 0/8 ∗ 1/8 = 0

So: sentiment = ???
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Naive Bayes Example

Add smoothing to feature counts (add 1 to every count):

P(φi (x)|y) =

∑N
t=1[[φi (xt) = φi (x) and yt = y]] + 1∑N

t=1[[yt = y]] + |V |
where |V | = no distinct adjectives in training (all classes) = 12

Doc Words Class

11 Boring movie, annoying plot, unimaginative ending ???

Final decision

P(positive) ∗ P(boring |positive) ∗ P(annoying |positive) ∗ P(unimaginative|positive)

3/7 ∗ ((0 + 1)/(10 + 12)) ∗ ((0 + 1)/(10 + 12)) ∗ ((0 + 1)/(10 + 12)) = 0.000040

P(negative) ∗ P(boring |negative) ∗ P(annoying |negative) ∗ P(unimaginative|negative)

4/7 ∗ ((0 + 1)/(8 + 12)) ∗ ((0 + 1)/(8 + 12)) ∗ ((1 + 1)/(8 + 12)) = 0.000143

So: sentiment = negative
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Discriminative versus Generative

• Generative models attempt to model inputs and outputs
• e.g., NB = MLE of joint distribution P(x,y)
• Statistical model must explain generation of input

• Occam’s Razor: why model input?

• Discriminative models
• Use loss function that directly optimizes P(y|x) (or something related)
• Logistic Regression – MLE of P(y|x)
• Perceptron and SVMs – minimize classification error

• Generative and discriminative models use P(y|x) for prediction
• They differ only on what distribution they use to set w
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Logistic Regression

Define a conditional probability:

P(y|x) =
exp(w · φ(x,y))

Zx
, where Zx =

∑
y′∈Y

exp(w · φ(x,y′))

This operation (exponentiating and normalizing) is called the softmax
transformation (more later!)

Note: still a linear classifier

arg maxy P(y|x) = arg maxy
exp(w · φ(x,y)

Zx
= arg maxy exp(w · φ(x,y))

= arg maxy w · φ(x,y)
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Logistic Regression

Pw(y|x) =
exp(w · φ(x,y))

Zx

• Q: How do we learn weights w?

• A: Set w to maximize the conditional log-likelihood of training data:

ŵ = arg max
w∈RD

log

(
N∏
t=1

Pw(yt |xt)

)
= arg min

w∈RD
−

N∑
t=1

logPw(yt |xt) =

= arg min
w∈RD

N∑
t=1

log
∑
y′t

exp(w · φ(xt ,y
′
t))−w · φ(xt ,yt)

 ,

• i.e., set w to assign as much probability mass as possible to the
correct labels
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Logistic Regression

• This objective function is convex

• Therefore any local minimum is a global minimum

• No closed form solution, but lots of numerical techniques
• Gradient methods (gradient descent, conjugate gradient)
• Quasi-Newton methods (L-BFGS, ...)

• Logistic Regression = Maximum Entropy: maximize entropy subject
to constraints on features

• Proof left as an exercise!
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Recap: Convex functions

Pro: Guarantee of a global minima X

Figure: Illustration of a convex function. The line segment between any two
points on the graph lies entirely above the curve.
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Recap: Iterative Descent Methods

Goal: find the minimum/minimizer of f : Rd → R

• Proceed in small steps in the optimal direction till a stopping
criterion is met.

• Gradient descent: updates of the form: x (t+1) ← x (t)− η(t)∇f (x (t))

Figure: Illustration of gradient descent. The red lines correspond to steps taken
in the negative gradient direction.
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Gradient Descent

• Let L(w; (x,y)) = log
∑
y′ exp(w · φ(x,y′))−w · φ(x,y)

• Want to find arg minw
∑N

t=1 L(w; (xt ,yt))
• Set w0 = 0
• Iterate until convergence (for suitable stepsize ηk):

wk+1 = wk − ηk∇w

(∑N
t=1 L(w; (xt ,yt))

)
= wk − ηk

∑N
t=1∇wL(w; (xt ,yt))

• ∇wL(w) is gradient of L w.r.t. w

• Gradient descent will always find the optimal w
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Stochastic Gradient Descent

If the dataset is large, we’d better do SGD instead, for more frequent
updates:

• Set w0 = 0

• Iterate until convergence
• Pick (xt ,yt) randomly

• Update wk+1 = wk − ηk∇wL(w; (xt ,yt))

• i.e. we approximate the true gradient with a noisy, unbiased, gradient,
based on a single sample

• Variants exist in-between (mini-batches)

• All guaranteed to find the optimal w!
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Computing the Gradient

• For this to work, we need to be able to compute ∇wL(w; (xt ,yt)),
where

L(w; (x,y)) = log
∑
y′

exp(w · φ(x,y′))−w · φ(x,y)

Some reminders:

1 ∇w log F (w) = 1
F (w)∇wF (w)

2 ∇w expF (w) = exp(F (w))∇wF (w)
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Computing the Gradient

∇wL(w; (x,y)) = ∇w

log
∑
y′

exp(w · φ(x,y′))−w · φ(x,y)


= ∇w log

∑
y′

exp(w · φ(x,y′))−∇ww · φ(x,y)

=
1∑

y′ exp(w · φ(x,y′))

∑
y′

∇w exp(w · φ(x,y′))−φ(x,y)

=
1

Zx

∑
y′

exp(w · φ(x,y′))∇ww · φ(x,y′)−φ(x,y)

=
∑
y′

exp(w · φ(x,y′))

Zx
φ(x,y′)−φ(x,y)

=
∑
y′

Pw(y′|x)φ(x,y′)−φ(x,y).

The gradient equals the “difference between the expected features under the current
model and the true features.”
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Logistic Regression Summary

• Define conditional probability

Pw(y|x) =
exp(w · φ(x,y))

Zx

• Set weights to maximize conditional log-likelihood of training data:

w = arg maxw
∑
t

logPw(yt |xt) = arg minw
∑
t

L(w; (xt ,yt))

• Can find the gradient and run gradient descent (or any gradient-based
optimization algorithm)

∇wL(w; (x,y)) =
∑
y′

Pw(y′|x)φ(x,y′)−φ(x,y)
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The Story So Far

• Naive Bayes is generative: maximizes joint likelihood
• closed form solution (boils down to counting and normalizing)

• Logistic regression is discriminative: maximizes conditional likelihood
• also called log-linear model and max-entropy classifier
• no closed form solution
• stochastic gradient updates look like

wk+1 = wk + η

φ(x,y)−
∑
y′

Pw(y′|x)φ(x,y′)


• Perceptron is a discriminative, non-probabilistic classifier

• perceptron’s updates look like

wk+1 = wk + φ(x,y)− φ(x, ŷ)

SGD updates for logistic regression and perceptron’s updates look similar!
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Maximizing Margin

• For a training set D

• Margin of a weight vector w is smallest γ such that

w · φ(xt ,yt)−w · φ(xt ,y
′) ≥ γ

• for every training instance (xt ,yt) ∈ D, y′ ∈ Y
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Margin

Training Testing

Denote the
value of the
margin by γ

André Martins (IST) Lecture 2 IST, Fall 2018 80 / 117



Maximizing Margin

• Intuitively maximizing margin makes sense

• More importantly, generalization error to unseen test data is
proportional to the inverse of the margin

ε ∝ R2

γ2 × N

• Perceptron:
• If a training set is separable by some margin, the perceptron will find a
w that separates the data

• However, the perceptron does not pick w to maximize the margin!
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Maximizing Margin

Let γ > 0
max
||w||≤1

γ

such that:
w · φ(xt ,yt)−w · φ(xt ,y

′) ≥ γ

∀(xt ,yt) ∈ D

and y′ ∈ Y

• Note: algorithm still minimizes error if data is separable

• ||w|| is bound since scaling trivially produces larger margin
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Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||w||≤1

γ

such that:

w·φ(xt ,yt)−w·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ D

and y′ ∈ Y

=

Min Norm:

min
w

1

2
||w||2

such that:

w·φ(xt ,yt)−w·φ(xt ,y
′) ≥ 1

∀(xt ,yt) ∈ D

and y′ ∈ Y

• Instead of fixing ||w|| we fix the margin γ = 1
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Max Margin = Min Norm

Max Margin:

max
||w||≤1

γ

such that:

w · φ(xt ,yt )−w · φ(xt ,y
′) ≥ γ

∀(xt ,yt ) ∈ D

and y′ ∈ Y

=

Min Norm:

min
w

1

2
||w||2

such that:

w · φ(xt ,yt )−w · φ(xt ,y
′) ≥ 1

∀(xt ,yt ) ∈ D

and y′ ∈ Y

• Let’s say min norm solution ||w|| = ζ

• Now say original objective is max||w||≤ζ γ

• We know that γ must be 1

• Or we would have found smaller ||w|| in min norm solution

• ‖w|| ≤ 1 in max margin formulation is an arbitrary scaling choice
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Support Vector Machines

w = arg minw
1

2
||w||2

such that:
w · φ(xt ,yt)−w · φ(xt ,y

′) ≥ 1

∀(xt ,yt) ∈ D and y′ ∈ Y

• Quadratic programming problem – a well known convex optimization
problem

• Can be solved with many techniques
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Support Vector Machines

What if data is not separable?

w = arg minw,ξ
1

2
||w||2 + C

N∑
t=1

ξt

such that:

w · φ(xt ,yt)−w · φ(xt ,y
′) ≥ 1− ξt and ξt ≥ 0

∀(xt ,yt) ∈ D and y′ ∈ Y

ξt : trade-off between margin per example and ‖w‖
Larger C = more examples correctly classified
If data is separable, optimal solution has ξi = 0, ∀i
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Kernels

Historically, SVMs with kernels co-ocurred together and were extremely
popular

Can “kernelize” algorithms to make them non-linear (not only SVMs, but
also logistic regression, perceptron, ...)

More later.
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Support Vector Machines

w = arg minw,ξ
1

2
||w||2 + C

N∑
t=1

ξt

such that:
w · φ(xt ,yt)−w · φ(xt ,y

′) ≥ 1− ξt

If ‖w‖ classifies (xt ,yt) with margin 1, penalty ξt = 0
Otherwise penalty ξt = 1 + maxy′ 6=yt w · φ(xt ,y

′)−w · φ(xt ,yt)

Hinge loss:
L((xt ,yt);w) = max (0, 1 + maxy′ 6=yt w · φ(xt ,y′)−w · φ(xt ,yt))
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Support Vector Machines

w = arg minw,ξ
λ

2
||w||2 +

N∑
t=1

ξt λ =
1

C
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Support Vector Machines

w = arg minw,ξ

λ

2
||w||2 +

N∑
t=1

ξt

such that:
ξt ≥ 1 + max

y′ 6=yt

w · φ(xt ,y
′)−w · φ(xt ,yt)

Hinge loss equivalent

w = arg minw

N∑
t=1

L((xt ,yt);w) +
λ

2
||w||2

= arg minw

(
N∑
t=1

max (0, 1 + max
y′ 6=yt

w · φ(xt ,y
′)−w · φ(xt ,yt))

)
+

λ

2
||w||2
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From Gradient to Subgradient

The hinge loss is a piecewise linear function—not differentiable everywhere

Cannot use gradient descent

But... can use subgradient descent (almost the same)!
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Recap: Subgradient

• Defined for convex functions f : RD → R
• Generalizes the notion of gradient—in points where f is differentiable,

there is a single subgradient which equals the gradient

• Other points may have multiple subgradients

André Martins (IST) Lecture 2 IST, Fall 2018 92 / 117



Subgradient Descent

L((x,y);w) = max (0, 1 + max
y′ 6=y

w · φ(x,y′)−w · φ(x,y))

= max
y′∈Y

w · φ(x,y′) + [[y′ 6= y]]

A subgradient of the hinge is

∂wL((x,y);w) 3 φ(x, ŷ)− φ(x,y)

where
ŷ = arg max

y′∈Y
w · φ(x,y′) + [[y ′ 6= y ]]

Can also train SVMs with (stochastic) sub-gradient descent!
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Perceptron and Hinge-Loss

SVM subgradient update looks like perceptron update

wk+1 = wk − η
{

0, if w · φ(xt ,yt)−maxy w · φ(xt ,y) ≥ 1

φ(xt ,y)− φ(xt ,yt), otherwise, where y = maxy w · φ(xt ,y)

Perceptron

wk+1 = wk − η
{

0, if w · φ(xt ,yt)−maxy w · φ(xt ,y) ≥ 0

φ(xt ,y)− φ(xt ,yt), otherwise, where y = maxy w · φ(xt ,y)

where η = 1

Perceptron = SGD with no-margin hinge-loss

max (0, 1+ max
y 6=yt

w · φ(xt ,y)−w · φ(xt ,yt))
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Summary

What we have covered

• Linear Classifiers
• Naive Bayes
• Logistic Regression
• Perceptron
• Support Vector Machines

What is next

• Regularization

• Non-linear classifiers
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Regularization
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Overfitting

• Early in lecture we made assumption data was i.i.d.

• Rarely is this true
• E.g., syntactic analyzers typically trained on 40,000 sentences from

early 1990s WSJ news text

• Even more common: D is very small

• This leads to overfitting
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Regularization

• We saw one example already when talking about add-one smoothing
in Naive Bayes!

• In practice, we regularize models to prevent overfitting

arg minw

N∑
t=1

L(w; (xt , yt)) + λΩ(w)

• Where Ω(w) is the regularization function

• λ controls how much to regularize

• Common functions

• `2: Ω(w) ∝ ‖w‖2 = ‖w‖ =
√∑

i w
2
i – smaller weights desired

• `0: Ω(w) ∝ ‖w‖0 =
∑

i [[wi > 0]] – zero weights desired
• Non-convex
• Approximate with `1: Ω(w) ∝ ‖w‖1 =

∑
i |wi |
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Logistic Regression with `2 Regularization

N∑
t=1

L(w; (xt ,yt)) + λΩ(w) = −
N∑
t=1

log (exp(w · φ(xt ,yt))/Zx) +
λ

2
‖w‖2

• What is the new gradient?

N∑
t=1

∇wL(w; (xt ,yt)) +∇wλΩ(w)

• We know ∇wL(w; (xt ,yt))

• Just need ∇w
λ
2 ‖w‖

2 = λw
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Support Vector Machines

Hinge-loss formulation: `2 regularization already happening!

w = arg minw

N∑
t=1

L((xt ,yt);w) + λΩ(w)

= arg minw

N∑
t=1

max (0, 1 + max
y 6=yt

w · φ(xt ,y)−w · φ(xt ,yt)) + λΩ(w)

= arg minw

N∑
t=1

max (0, 1 + max
y 6=yt

w · φ(xt ,y)−w · φ(xt ,yt)) +
λ

2
‖w‖2

↑ SVM optimization ↑
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SVMs vs. Logistic Regression

w = arg minw

N∑
t=1

L((xt ,yt);w) + λΩ(w)

SVMs/hinge-loss: max (0, 1 + maxy 6=yt (w · φ(xt ,y)−w · φ(xt ,yt)))

w = arg minw

N∑
t=1

max (0, 1 + max
y 6=yt

w · φ(xt ,y)−w · φ(xt ,yt)) +
λ

2
‖w‖2

Logistic Regression/log-loss: − log (exp(w · φ(xt ,yt))/Zx)

w = arg minw

N∑
t=1

− log (exp(w · φ(xt ,yt))/Zx) +
λ

2
‖w‖2
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Generalized Linear Classifiers

w = arg minw

N∑
t=1

L((xt ,yt);w) + λΩ(w)
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Recap: What a Linear Classifier Can Do

• It can solve linearly separable problems (OR, AND)
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Recap: What a Linear Classifier Can’t Do

• ... but it can’t solve non-linearly separable problems such as simple
XOR (unless input is transformed into a better representation):

• This was observed by Minsky and Papert (1969) (for the perceptron)
and motivated strong criticisms
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Summary: Linear Classifiers

We’ve seen

• Perceptron

• Naive Bayes

• Logistic regression

• Support vector machines

All lead to convex optimization problems ⇒ no issues with local
minima/initialization

All assume the features are well-engineered such that the data is nearly
linearly separable
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What If Data Are Not Linearly Separable?

Engineer better features (often works!)

Kernel methods:

• works implicitly in a high-dimensional feature space

• ... but still need to choose/design a good kernel

• model capacity confined to positive-definite kernels

Neural networks (next class!)

• embrace non-convexity and local minima

• instead of engineering features/kernels, engineer the model
architecture
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André Martins (IST) Lecture 2 IST, Fall 2018 108 / 117



Kernels

• A kernel is a similarity function between two points that is symmetric
and positive semi-definite, which we denote by:

κ(xt ,xr ) ∈ R

• Let K be a n × n matrix such that ...

Kt,r = κ(xt ,xr )

• ... for any n points. Called the Gram matrix.

• Symmetric:
κ(xt ,xr ) = κ(xr ,xt)

• Positive definite: for all non-zero v

vKvT ≥ 0
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Kernels

• Mercer’s Theorem: for any kernel κ : X× X→ Y, there exists a
ψ : X→ RX, s.t.:

κ(xt ,xr ) = ψ(xt) ·ψ(xr )

• Since our features are over pairs (x,y), we will write kernels over pairs

κ((xt ,yt), (xr ,yr )) = φ(xt ,yt) · φ(xr ,yr )
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Kernels = Tractable Non-Linearity

• A linear classifier in a higher dimensional feature space is a non-linear
classifier in the original space

• Computing a non-linear kernel is sometimes better computationally
than calculating the corresponding dot product in the high dimension
feature space

• Many models can be “kernelized” – learning algorithms generally
solve the dual optimization problem (also convex)

• Drawback: quadratic dependency on dataset size
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Linear Classifiers in High Dimension
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Example: Polynomial Kernel

• ψ(x) ∈ RM , d ≥ 2

• κ(xt ,xs) = (ψ(xt) ·ψ(xs) + 1)d

• O(M) to calculate for any d!!

• But in the original feature space (primal space)
• Consider d = 2, M = 2, and ψ(xt) = [xt,1, xt,2]

(ψ(xt) ·ψ(xs) + 1)2 = ([xt,1, xt,2] · [xs,1, xs,2] + 1)2

= (xt,1xs,1 + xt,2xs,2 + 1)2

= (xt,1xs,1)2 + (xt,2xs,2)2 + 2(xt,1xs,1) + 2(xt,2xs,2)

+2(xt,1xt,2xs,1xs,2) + (1)2

which equals:

[(xt,1)2, (xt,2)2,
√

2xt,1,
√

2xt,2,
√

2xt,1xt,2, 1] · [(xs,1)2, (xs,2)2,
√

2xs,1,
√

2xs,2,
√

2xs,1xs,2, 1]
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Popular Kernels

• Polynomial kernel

κ(xt ,xs) = (ψ(xt) ·ψ(xs) + 1)d

• Gaussian radial basis kernel

κ(xt ,xs) = exp(
−||ψ(xt)−ψ(xs)||2

2σ
)

• String kernels (Lodhi et al., 2002; Collins and Duffy, 2002)

• Tree kernels (Collins and Duffy, 2002)
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Conclusions

• Linear classifiers are a broad class including well-known ML methods
such as perceptron, Naive Bayes, logistic regression, support vector
machines

• They all involve manipulating weights and features

• They either lead to closed-form solutions or convex optimization
problems (no local minima)

• Stochastic gradient descent algorithms are useful if training datasets
are large

• However, they require manual specification of feature representations

• Later: methods that are able to learn internal representations
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Thank you!

Questions?
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