
Deep Structured Learning (IST, Fall 2019)

Homework 1

Instructor: André Martins and Vlad Niculae
TAs: Gonçalo Correia and Ben Peters

Deadline: Friday, October 11, 2019.

Please turn in the answers to the questions below in a PDF file, together with the
code you implemented to solve them (when applicable). Please email your solutions

in electronic format (a single zip file) with the subject “Homework 1” to:

deep-structured-learning-instructors@googlegroups.com

Hard copies will not be accepted.

Question 1

In this exercise, we will explore the ability of perceptrons and multilayer perceptrons to classify
whether a vector belongs to a set. Concretely, the set we will consider is the set of points in R2

that lie inside the intersection of the non-negative orthant and the `1-ball.
The d-dimensional `1-ball is defined as:

B
d
∶=

⎧⎪⎪
⎨
⎪⎪⎩

(x1, . . . , xn) ∈ Rd
RRRRRRRRRRR

d

∑
n=1

∣xn∣ ≤ 1

⎫⎪⎪
⎬
⎪⎪⎭

, (1)

and the non-negative orthant is the set of all vectors with non-negative coordinates, i.e.,

Rd
+
∶= {(x1, . . . , xn ∈ Rd ∣ xi ≥ 0 for 1 ≤ i ≤ n} (2)

The set we are interested in is their intesection:

B
d
+
∶= B

d
∩Rd

+
. (3)

In prose, a vector is in Bd
+
if all of its entries are nonnegative and together they sum to less than

or equal to 1. In the following questions, we will consider the particular case where d = 2 and
implement a classifier that returns a binary label y ∈ {0,1} for any point x ∈ R2. The classifier
should return

y =

⎧⎪⎪
⎨
⎪⎪⎩

1 if x ∈ B2
+
,

0 otherwise.
(4)

As our nonlinearity, we will use the Heaviside step function H ∶R→ {0,1},

H(z) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if z ≥ 0,

0 otherwise.
(5)

1



1. (5 points) Can a linear model perfectly classify whether x ∈ Bd
+
? Why or why not?

2. (5 points) The nonnegativity constraints from the definition of Rd
+
state that x1 ≥ 0 and

x2 ≥ 0. Exhibit weights w ∈ R2 and bias b ∈ R for a single-layer perceptron, such that
H(w⊺x + b) returns

y =

⎧⎪⎪
⎨
⎪⎪⎩

1 if x1 ≥ 0,

0 otherwise.
(6)

Hint: Every weight and bias value can be set to either 0 or 1.

3. (5 points) Exhibit weights w ∈ R2 and bias b ∈ R for a single-layer perceptron that returns

y =

⎧⎪⎪
⎨
⎪⎪⎩

1 if x1 + x2 ≤ 1,

0 otherwise.
(8)

Hint: All parameters can be set to ±1.

4. (20 points) Design a two-layer perceptron that has the same behavior as the classifier in
Equation 4.

Hint: B2
+
is defined by a set of constraints which all need to be satisfied: x1 ≥ 0, x2 ≥ 0, and

x1 + x2 ≤ 1. Try to design your MLP so that each unit in the hidden layer computes one of
these constraints, and then design connections between the hidden layer and output so that
the classifier only returns 1 if all constraints are met.

5. (5 points) Suppose you wanted to generalize your classifier from the previous question from
B2
+
to an arbitrary dimension Bd

+
. As you increase d, how many more hidden units are

required?

Question 2

Optical character recognition with linear classifiers. In this exercise, you will implement
a linear classifier for a simple image classification problem. Please do not use any machine
learning library such as scikit-learn or similar for this exercise; just plain linear
algebra.

Download the OCR dataset from http://ai.stanford.edu/~btaskar/ocr. This dataset
contains binary image representations of 52,152 alphabetical characters a–z (the characters are
grouped together to form English words, but this structure will be ignored in this exercise).
The task is to take each image representation as input (with 16x8 pixels) and to predict as
output the correct character in a–z (i.e., a multi-class classification problem with 26 classes).
The dataset is organized into 10 folds: folds 0–7 are for training (41,679 examples), 8 is for
validation (5,331 examples), and 9 is for testing (5,142 examples). The evaluation metric is the
fraction of characters correctly classified.

Skeleton code For Questions 2 and 3, you are recommended but not required to use the
skeleton script hw1.py, which has been provided to you on the course webpage. In order to use
it, make sure it is located in the same directory as the letter.data file from the OCR dataset.
The script requires python 3, numpy, and matplotlib.

1. In the first part of the exercise, we will use as a feature representation the binary pixel
values.

Page 2

http://ai.stanford.edu/~btaskar/ocr


(a) (5 points) Do you think this is a good choice of feature representation? Justify.

(b) (10 points) Implement the update_weightsmethod of the Perceptron class in hw1.py.
Then train 20 epochs of the perceptron on the training set and report its performance
on the validation and test set. Plot the accuracies as a function of the epoch number.
You can do this with the command

python hw1.py perceptron

2. Let us now do some feature engineering.

(a) (10 points) Can you think of a better feature representation? Come up with one and
train the perceptron there. You can implement your feature representation in the
function custom_features and then run

python hw1.py perceptron -custom_features
Suggestion: instead of individual pixel binary values φi(x) = xi (where i indexes a pixel
position), use as features all pixel pairwise combinations, φij(x) = xixj .

(b) (10 points) Repeat the same exercise using logistic regression instead (without regu-
larization), using stochastic gradient descent as your training algorithm. Set a fixed
learning rate η = 0.001. This can be solved by implementing the update_weights
method in the LogisticRegression class.

(c) (5 points (bonus)) Add `2 regularization with a suitable regularization constant. What
do you observe?

Question 3

Optical character recognition with a neural network. In the previous exercise, you might
have noticed that feature engineering can be tedious. Now, you will implement a multi-layer per-
ceptron (a feed-forward neural network) again using as input the original feature representation
(i.e. simple independent pixel values).

1. (5 points) Explain why multi-layer perceptrons can learn internal representations and avoid
manual feature engineering.

2. (20 points) Without using any neural network toolkit, implement a multi-layer per-
ceptron with a single hidden layer to solve this problem, including the gradient backpropa-
gation algorithm which is needed to train the model. Use your favorite activation function.
Don’t forget to tune all your hyperparameters.

3. (5 points (bonus)) Repeat the exercise above with multiple hidden layers and comment on
the results.

Page 3


