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Course Website

https://andre-martins.github.io/pages/

deep-structured-learning-ist-fall-2019.html

There I’ll post:

• Syllabus

• Lecture slides

• Literature pointers

• Homework assignments

• ...
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What is “‘Deep Learning”?

• Neural networks?

• Neural networks with many hidden layers?

• Anything beyond shallow (linear) models for statistical learning?

• Anything that learns representations?

• A form of learning that is really intense and profound?
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Where is the “Structure”?

• In the input objects (text, graphs, images, ...)

• In the outputs we want to predict (parsing, graph labeling, image
segmentation, ...)

• In our model (convolutional networks, attention mechanisms)

• Related: latent structure (typically a way of encoding prior
knowledge into the model)
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This Course: “Deep Learning + Structure”
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Why Did Deep Learning Become Mainstream?

Lots of recent breakthroughs:

• Object recognition

• Speech and language processing

• Chatbots and dialog systems

• Self-driving cars

• Machine translation

• Solving games (Atari, Go)

No signs of slowing down...
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André Martins (IST) Lecture 1 IST, Fall 2019 14 / 82



Why Now?

Why does deep learning work now, but not 20 years ago?

Many of the core ideas were there, after all.

But now we have:

• more data

• more computing power

• better software engineering

• a few algorithmic innovations (many layers, ReLUs, better
initialization and learning rates, dropout, LSTMs, convolutional nets)
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“But It’s Non-Convex”

Why does gradient-based optimization work at all in neural nets despite
the non-convexity?

One possible, partial answer:

• there are generally many hidden units

• there are many ways a neural net can approximately implement the
desired input-output relationship

• we only need to find one
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Recommended Books

Main book:

• Deep Learning. Ian Goodfellow,
Yoshua Bengio, and Aaron Courville.
MIT Press, 2016. Chapters available at
http://deeplearningbook.org
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Recommended Books

Secondary books:

• Machine Learning: a Probabilistic Perspective. Kevin P. Murphy.
MIT Press, 2013.

• Linguistic Structured Prediction. Noah A. Smith. Morgan &
Claypool Synthesis Lectures on Human Language Technologies. 2011.
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Tentative Syllabus

Sep 16–20 Introduction and Course Description
Sep 23–27 Linear Classifiers
Sep 30–Oct 4 Feedforward Neural Networks
Oct 7–11 Training Neural Networks
Oct 14–18 Linear Sequence Models
Oct 21–25 Representation Learning and Convolutional Networks
Oct 28–Nov 1 Structured Prediction and Graphical Models
Nov 4–8 Recurrent Neural Networks
Nov 11–15 Sequence-to-Sequence Learning
Nov 18–22 Attention Mechanisms and Neural Memories
Nov 25–29 Deep Reinforcement Learning
Dec 2–6 Deep Generative Models (VAEs, GANs)
Dec 9–13 Final Projects I
Dec 16–20 Final Projects II

André Martins (IST) Lecture 1 IST, Fall 2019 19 / 82



Outline

1 Introduction

2 Class Administrativia

3 Recap

Linear Algebra

Probability Theory

Optimization
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What This Class Is About

• Introduction to deep learning

• Introduction to structured prediction

• Goal: after finishing this class, you should be able to:
• Understand how deep learning works without magic
• Understand the intuition behind deep structured learning models
• Apply the learned techniques on a practical problem (NLP, vision, ...)

• Target audience:
• MSc/PhD students with basic background in ML and good

programming skills
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What This Class Is Not About

It’s not about:

• Just playing with a deep learning toolkit without learning the
fundamental concepts

• Introduction to ML (see Mário Figueiredo’s Statistical Learning
course and Jorge Marques’ Estimation and Classification course)

• Optimization (check João Xavier’s Non-Linear Optimization course)

• Natural Language Processing

• ...
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Prerequisites

• Calculus and basic linear algebra

• Basic probability theory

• Basic knowledge of machine learning

• Programming (Python & PyTorch preferred)

• Helpful: basic optimization
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Course Information

• Instructors: André Martins & Vlad Niculae

• TAs: Gonçalo Correia & Ben Peters

• Location: LT2 (North Tower, 4th floor)

• Schedule: Mondays/Fridays 10:00–11:30 (tentative)

• Communication:
piazza.com/tecnico.ulisboa.pt/fall2019/pdeecdsl
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Grading

• 4 homework assignments: 60%
• Theoretical questions & implementation
• Late days: 10% penalization each late day

• Final project (in groups of 2–3): 40%
• Final class presentations & poster session (tentative)
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Final Project

• Possible idea: apply a deep learning technique to a structured
problem relevant to your research (NLP, vision, robotics, ...)

• Otherwise, pick a project from a list of suggestions

• Must be finished this semester

• Four evaluation stages: project proposal (10%), midterm report
(10%), final report (10%, conference paper format), class
presentation (10%)

• List of project suggestions will be made available soon
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Collaboration Policy

• Assignments are individual

• Students may discuss the questions, as long as they write their own
answers and their own code

• If this happens, acknowledge with whom you collaborate!

• Zero tolerance on plagiarism!!

• Always credit your sources!!!

André Martins (IST) Lecture 1 IST, Fall 2019 27 / 82



Caveat

• This is the second year I’m teaching this class

• ... which means you’re the second batch of students taking it :)

• Constructive feedback will be highly appreciated (and encouraged!)
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Questions?
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Quick Background Recap

Slide credits: Prof. Mário Figueiredo (taken from his LxMLS class)
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Linear Algebra

• Linear algebra provides (among many other things) a compact way of
representing, studying, and solving linear systems of equations

• Example: the system

4 x1 − 5 x2 = −13

−2 x1 + 3 x2 = 9

can be written compactly as Ax = b , where

A =

[
4 −5
−2 3

]
, b =

[
−13

9

]
,

and can be solved as

x = A−1b =

[
1.5 2.5
1 2

] [
−13

9

]
=

[
3
5

]
.
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Notation: Matrices and Vectors

• A ∈ Rm×n is a matrix with m rows and n columns.

A =

 A1,1 · · · A1,n
...

. . .
...

Am,1 · · · Am,n

 .

• x ∈ Rn is a vector with n components,

x =

 x1
...
xn

 .
• A (column) vector is a matrix with n rows and 1 column.

• A matrix with 1 row and n columns is called a row vector.
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Matrix Transpose and Products

• Given matrix A ∈ Rm×n, its transpose AT is such that (AT )i ,j = Aj ,i .

• A matrix A is symmetric if AT = A.

• Given matrices A ∈ Rm×n and B ∈ Rn×p, their product is

C = AB ∈ Rm×p where Ci ,j =
n∑

k=1

Ai ,k Bk,j

• Inner product between vectors x , y ∈ Rn:

〈x , y〉 = xT y = yT x =
n∑

i=1

xiyi ∈ R.

• Outer product between vectors x ∈ Rn and y ∈ Rm: x yT ∈ Rn×m,
where (x yT )i ,j = xi yj .
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Properties of Matrix Products and Transposes

• Given matrices A ∈ Rm×n and B ∈ Rn×p, their product is

C = AB ∈ Rm×p where Ci ,j =
n∑

k=1

Ai ,k Bk,j

• Matrix product is associative: (AB)C = A(BC ).

• In general, matrix product is not commutative: AB 6= BA.

• Transpose of product: (AB)T = BTAT .

• Transpose of sum: (A + B)T = AT + BT .
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Norms

• The norm of a vector is (informally) its “magnitude.” Euclidean norm:

‖x‖2 =
√
〈x , x〉 =

√
xT x =

√√√√ n∑
i=1

x2i .

• More generally, the `p norm of a vector x ∈ Rn, where p ≥ 1,

‖x‖p =

(
n∑

i=1

|xi |p
)1/p

.

• Notable case: the `1 norm, ‖x‖1 =
∑

i |xi |.

• Notable case: the `∞ norm, ‖x‖∞ = max{|x1|, ..., |xn|}.

• Notable case: the `0 “norm” (not): ‖x‖0 = |{i : xi 6= 0}|.
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André Martins (IST) Lecture 1 IST, Fall 2019 37 / 82



Special Matrices

• The identity matrix I ∈ Rn×n is a square matrix such that

Iij =

{
1 i = j
0 i 6= j

I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1



• Neutral element of matrix product: A I = I A = A.

• Diagonal matrix: A ∈ Rn×n is diagonal if (i 6= j)⇒ Ai ,j = 0.

• Upper triangular matrix: (j < i)⇒ Ai ,j = 0.

• Lower triangular matrix: (j > i)⇒ Ai ,j = 0.
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Eigenvalues, eigenvectors, determinant, trace

• A vector x ∈ Rn is an eigenvector of matrix A ∈ Rn×n if

Ax = λ x ,

where λ ∈ R is the corresponding eigenvalue.

• The eigenvalues of a diagonal matrix are the elements in the diagonal.

• Matrix trace:
trace(A) =

∑
i

Ai ,i =
∑
i

λi

• Matrix determinant:

|A| = det(A) =
∏
i

λi

• Properties: |AB| = |A||B|,

|AT | = |A|, |αA| = αn|A|
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∏
i

λi

• Properties: |AB| = |A||B|,

|AT | = |A|, |αA| = αn|A|
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Matrix Inverse

• Matrix A ∈ Rn×n in invertible if there is B ∈ Rn×n s.t. AB = BA = I .

• ...matrix B, such that AB = BA = I , denoted B = A−1.

• Matrix A ∈ Rn×n is invertible ⇔ det(A) 6= 0.

• Determinant of inverse: det(A−1) =
1

det(A)
.

• Solving system Ax = b, if A is invertible: x = A−1b.

• Properties: (A−1)−1 = A,

(A−1)T = (AT )−1, (AB)−1 = B−1A−1

• There are many algorithms to compute A−1; general case,
computational cost O(n3).
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Quadratic Forms and Positive (Semi-)Definite
Matrices

• Given matrix A ∈ Rn×n and vector x ∈ Rn,

xTAx =
n∑

i=1

n∑
j=1

Ai , j xi xj ∈ R

is called a quadratic form.

• A symmetric matrix A ∈ Rn×n is positive semi-definite (PSD) if, for
any x ∈ Rn, xTAx ≥ 0.

• A symmetric matrix A ∈ Rn×n is positive definite (PD) if, for any
x ∈ Rn, (x 6= 0)⇒ xTAx > 0.

• Matrix A ∈ Rn×n is PSD ⇔ all λi (A) ≥ 0.

• Matrix A ∈ Rn×n is PD ⇔ all λi (A) > 0.
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Convex Sets
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Convex Functions
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Probability theory

• “Essentially, all models are wrong, but some are useful”; G. Box, 1987
• The study of probability has roots in games of chance (dice, cards, ...)

• Great names in science: Cardano, Fermat, Pascal, Laplace, Gauss,
Huygens, Legendre, Poisson, Kolmogorov, Bernoulli, Cauchy, Gibbs,
Boltzman, de Finetti, ...

• Natural tool to model uncertainty, information, knowledge, belief, ...

• ...thus also learning, decision making, inference, ...
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André Martins (IST) Lecture 1 IST, Fall 2019 45 / 82



What is probability?

• Classical definition: P(A) =
NA

N

...with N mutually exclusive equally likely outcomes,

NA of which result in the occurrence of event A. Laplace, 1814

Example: P(randomly drawn card is ♣) = 13/52.

Example: P(getting 1 in throwing a fair die) = 1/6.

• Frequentist definition: P(A) = lim
N→∞

NA

N

...relative frequency of occurrence of A in infinite number of trials.

• Subjective probability: P(A) is a degree of belief. de Finetti, 1930s

...gives meaning to P(“Tomorrow it will rain”).

André Martins (IST) Lecture 1 IST, Fall 2019 46 / 82



What is probability?

• Classical definition: P(A) =
NA

N

...with N mutually exclusive equally likely outcomes,

NA of which result in the occurrence of event A. Laplace, 1814

Example: P(randomly drawn card is ♣) = 13/52.

Example: P(getting 1 in throwing a fair die) = 1/6.

• Frequentist definition: P(A) = lim
N→∞

NA

N

...relative frequency of occurrence of A in infinite number of trials.

• Subjective probability: P(A) is a degree of belief. de Finetti, 1930s

...gives meaning to P(“Tomorrow it will rain”).
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Key concepts: Sample space and events

• Sample space X = set of possible outcomes of a random experiment.

Examples:
• Tossing two coins: X = {HH,TH,HT ,TT}
• Roulette: X = {1, 2, ..., 36}
• Draw a card from a shuffled deck: X = {A♣, 2♣, ...,Q♦,K♦}.

• An event A is a subset of X: A ⊆ X.

Examples:
• “exactly one H in 2-coin toss”: A = {TH,HT} ⊂ {HH,TH,HT ,TT}.

• “odd number in the roulette”: B = {1, 3, ..., 35} ⊂ {1, 2, ..., 36}.

• “drawn a ♥ card”: C = {A♥, 2♥, ...,K♥} ⊂ {A♣, ...,K♦}
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Kolmogorov’s Axioms for Probability

• Probability is a function that maps events A into the interval [0, 1].

Kolmogorov’s axioms (1933) for probability P

• For any A, P(A) ≥ 0

• P(X) = 1

• If A1, A2 ... ⊆ X are disjoint events, then P
(⋃

i

Ai

)
=
∑
i

P(Ai )

• From these axioms, many results can be derived. Examples:

• P(∅) = 0

• C ⊂ D ⇒ P(C ) ≤ P(D)

• P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

• P(A ∪ B) ≤ P(A) + P(B) (union bound)
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Conditional Probability and Independence

• If P(B) > 0, P(A|B) =
P(A ∩ B)

P(B)
(conditional prob. of A given B)

• ...satisfies all of Kolmogorov’s axioms:

• For any A ⊆ X, P(A|B) ≥ 0

• P(X|B) = 1

• If A1, A2, ... ⊆ X are disjoint, then

P
(⋃

i

Ai

∣∣∣B) =
∑
i

P(Ai |B)

• Events A, B are independent (A ⊥⊥ B) ⇔ P(A ∩ B) = P(A)P(B).
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Conditional Probability and Independence

• If P(B) > 0, P(A|B) =
P(A ∩ B)

P(B)

• Events A, B are independent (A ⊥⊥ B) ⇔ P(A ∩ B) = P(A)P(B).

• Relationship with conditional probabilities:

A ⊥⊥ B ⇔ P(A|B) =
P(A ∩ B)

P(B)
=

P(A) P(B)

P(B)
= P(A)

• Example: X = “52 cards”, A = {3♥, 3♣, 3♦, 3♠}, and
B = {A♥, 2♥, ...,K♥}; then, P(A) = 1/13, P(B) = 1/4

P(A ∩ B) = P({3♥}) =
1

52

P(A)P(B) =
1

13

1

4
=

1

52

P(A|B) = P(“3”|“♥”) =
1

13
= P(A)

André Martins (IST) Lecture 1 IST, Fall 2019 50 / 82



Conditional Probability and Independence

• If P(B) > 0, P(A|B) =
P(A ∩ B)

P(B)

• Events A, B are independent (A ⊥⊥ B) ⇔ P(A ∩ B) = P(A)P(B).

• Relationship with conditional probabilities:

A ⊥⊥ B ⇔ P(A|B) =
P(A ∩ B)

P(B)
=

P(A) P(B)

P(B)
= P(A)

• Example: X = “52 cards”, A = {3♥, 3♣, 3♦, 3♠}, and
B = {A♥, 2♥, ...,K♥}; then, P(A) = 1/13, P(B) = 1/4

P(A ∩ B) = P({3♥}) =
1

52

P(A)P(B) =
1

13

1

4
=

1

52

P(A|B) = P(“3”|“♥”) =
1

13
= P(A)
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Bayes Theorem

• Law of total probability: if A1, ...,An are a partition of X

P(B) =
∑
i

P(B|Ai )P(Ai )

=
∑
i

P(B ∩ Ai )

• Bayes’ theorem: if {A1, ...,An} is a partition of X

P(Ai |B) =
P(B ∩ Ai )

P(B)
=

P(B|Ai ) P(Ai )∑
j

P(B|Aj)P(Aj)
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Random Variables

• A (real) random variable (RV) is a function: X : X→ R

• Discrete RV: range of X is countable (e.g., N or {0, 1})
• Continuous RV: range of X is uncountable (e.g., R or [0, 1])

• Example: number of head in tossing two coins,
X = {HH,HT ,TH,TT},
X (HH) = 2, X (HT ) = X (TH) = 1, X (TT ) = 0.
Range of X = {0, 1, 2}.

• Example: distance traveled by a tossed coin; range of X = R+.
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André Martins (IST) Lecture 1 IST, Fall 2019 52 / 82



Random Variables

• A (real) random variable (RV) is a function: X : X→ R

• Discrete RV: range of X is countable (e.g., N or {0, 1})
• Continuous RV: range of X is uncountable (e.g., R or [0, 1])

• Example: number of head in tossing two coins,
X = {HH,HT ,TH,TT},
X (HH) = 2, X (HT ) = X (TH) = 1, X (TT ) = 0.
Range of X = {0, 1, 2}.

• Example: distance traveled by a tossed coin; range of X = R+.
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Random Variables: Distribution Function

• Distribution function: FX (x) = P({ω ∈ X : X (ω) ≤ x})

• Example: number of heads in tossing 2 coins; range(X ) = {0, 1, 2}.

• Probability mass function (discrete RV): fX (x) = P(X = x),

FX (x) =
∑
xi≤x

fX (xi ).
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André Martins (IST) Lecture 1 IST, Fall 2019 53 / 82



Random Variables: Distribution Function

• Distribution function: FX (x) = P({ω ∈ X : X (ω) ≤ x})

• Example: number of heads in tossing 2 coins; range(X ) = {0, 1, 2}.

• Probability mass function (discrete RV): fX (x) = P(X = x),

FX (x) =
∑
xi≤x

fX (xi ).
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Important Discrete Random Variables

• Uniform: X ∈ {x1, ..., xK}, pmf fX (xi ) = 1/K .

• Bernoulli RV: X ∈ {0, 1}, pmf fX (x) =

{
p ⇐ x = 1

1− p ⇐ x = 0

Can be written compactly as fX (x) = px(1− p)1−x .

• Binomial RV: X ∈ {0, 1, ..., n} (sum on n Bernoulli RVs)

fX (x) = Binomial(x ; n, p) =

(
n

x

)
px (1− p)(n−x)

Binomial coefficients
(“n choose x”):(

n

x

)
=

n!

(n − x)! x!
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More Important Discrete Random Variables

• Geometric(p): X ∈ N, pmf fX (x) = p(1− p)x−1.
(e.g., number of trials until the first success).

• Poisson(λ): X ∈ N ∪ {0}, pmf fX (x) =
e−λλx

x!

Notice that
∑∞

x=0
λx

x! = eλ, thus
∑∞

x=0 fX (x) = 1.

“...probability of the number of independent occurrences in a fixed
(time/space) interval if these occurrences have known average rate”
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Random Variables: Distribution Function

• Distribution function: FX (x) = P({ω ∈ X : X (ω) ≤ x})

• Example: continuous RV with uniform distribution on [a, b].

• Probability density function (pdf, continuous RV): fX (x)

FX (x) =

∫ x

−∞
fX (u) du, P(X ∈ [c , d ]) =

∫ d

c
fX (x) dx , P(X =x) = 0
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Important Continuous Random Variables

• Uniform: fX (x) = Uniform(x ; a, b) =

{
1

b−a ⇐ x ∈ [a, b]

0 ⇐ x 6∈ [a, b]
(previous slide).

• Gaussian: fX (x) = N(x ;µ, σ2) =
1√

2π σ2
e−

(x−µ)2

2σ2

• Exponential: fX (x) = Exp(x ;λ) =

{
λe−λ x ⇐ x ≥ 0

0 ⇐ x < 0
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Expectation of Random Variables

• Expectation: E(X ) =


∑
i

xi fX (xi ) X ∈ {x1, ..., xK} ⊂ R∫ ∞
−∞

x fX (x) dx X continuous

• Example: Bernoulli, fX (x) = px (1− p)1−x , for x ∈ {0, 1}.

E(X ) = 0 (1− p) + 1 p = p.

• Example: Binomial, fX (x) =
(n
x

)
px (1− p)n−x , for x ∈ {0, ..., n}.

E(X ) = n p.

• Example: Gaussian, fX (x) = N(x ;µ, σ2). E(X ) = µ.

• Linearity of expectation:
E(X + Y ) = E(X ) + E(Y ); E(αX ) = αE(X ), α ∈ R
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Expectation of Functions of Random Variables

• E(g(X )) =


∑
i

g(xi )fX (xi ) X discrete, g(xi ) ∈ R∫ ∞
−∞

g(x) fX (x) dx X continuous

• Example: variance, var(X ) = E
((

X − E(X )
)2)

= E(X 2)− E(X )2

• Example: Bernoulli variance, E(X 2) = E(X ) = p

, thus var(X ) = p(1− p).

• Example: Gaussian variance, E
(
(X − µ)2

)
= σ2.

• Probability as expectation of indicator, 1A(x) =

{
1 ⇐ x ∈ A
0 ⇐ x 6∈ A

P(X ∈ A) =

∫
A
fX (x) dx =

∫
1A(x) fX (x) dx = E(1A(X ))
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Two (or More) Random Variables

• Joint pmf of two discrete RVs: fX ,Y (x , y) = P(X = x ∧ Y = y).

Extends trivially to more than two RVs.

• Joint pdf of two continuous RVs: fX ,Y (x , y), such that

P
(
(X ,Y ) ∈ A

)
=

∫ ∫
A
fX ,Y (x , y) dx dy .

Extends trivially to more than two RVs.

• Marginalization: fY (y) =


∑
x

fX ,Y (x , y), if X is discrete∫ ∞
−∞

fX ,Y (x , y) dx , if X continuous

• Independence:

X ⊥⊥ Y ⇔ fX ,Y (x , y) = fX (x) fY (y)

⇒
6⇐ E(X Y ) = E(X )E(Y )

.
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Conditionals and Bayes’ Theorem

• Conditional pmf (discrete RVs):

fX |Y (x |y) = P(X = x |Y = y) =
P(X = x ∧ Y = y)

P(Y = y)
=

fX ,Y (x , y)

fY (y)
.

• Conditional pdf (continuous RVs): fX |Y (x |y) =
fX ,Y (x , y)

fY (y)
...the meaning is technically delicate.

• Bayes’ theorem: fX |Y (x |y) =
fY |X (y |x) fX (x)

fY (y)
(pdf or pmf).

• Also valid in the mixed case (e.g., X continuous, Y discrete).
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Joint, Marginal, and Conditional Probabilities: An
Example

• A pair of binary variables X ,Y ∈ {0, 1}, with joint pmf:

• Marginals: fX (0) = 1
5 + 2

5 = 3
5 , fX (1) = 1

10 + 3
10 = 4

10 ,

fY (0) = 1
5 + 1

10 = 3
10 , fY (1) = 2

5 + 3
10 = 7

10 .

• Conditional probabilities:
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An Important Multivariate RV: Multinomial

• Multinomial: X = (X1, ...,XK ), Xi ∈ {0, ..., n}, such that
∑

i Xi = n,

fX (x1, ..., xK ) =

{ ( n
x1 x2 ··· xK

)
px11 px22 · · · p

xK
k ⇐

∑
i xi = n

0 ⇐
∑

i xi 6= n(
n

x1 x2 · · · xK

)
=

n!

x1! x2! · · · xK !

Parameters: p1, ..., pK ≥ 0, such that
∑

i pi = 1.

• Generalizes the binomial from binary to K -classes.

• Example: tossing n independent fair dice, p1 = · · · = p6 = 1/6.
xi = number of outcomes with i dots. Of course,

∑
i xi = n.
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André Martins (IST) Lecture 1 IST, Fall 2019 63 / 82



An Important Multivariate RV: Multinomial

• Multinomial: X = (X1, ...,XK ), Xi ∈ {0, ..., n}, such that
∑

i Xi = n,

fX (x1, ..., xK ) =

{ ( n
x1 x2 ··· xK

)
px11 px22 · · · p

xK
k ⇐

∑
i xi = n

0 ⇐
∑

i xi 6= n(
n

x1 x2 · · · xK

)
=

n!

x1! x2! · · · xK !

Parameters: p1, ..., pK ≥ 0, such that
∑

i pi = 1.

• Generalizes the binomial from binary to K -classes.

• Example: tossing n independent fair dice, p1 = · · · = p6 = 1/6.
xi = number of outcomes with i dots. Of course,

∑
i xi = n.
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An Important Multivariate RV: Gaussian

• Multivariate Gaussian: X ∈ Rn,

fX (x) = N(x ;µ,C ) =
1√

det(2π C )
exp

(
−1

2
(x − µ)TC−1(x − µ)

)

• Parameters: vector µ ∈ Rn and matrix C ∈ Rn×n.
Expected value: E(X ) = µ. Meaning of C : next slide.
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Covariance, Correlation, and all that...

• Covariance between two RVs:

cov(X ,Y ) = E
[(
X − E(X )

) (
Y − E(Y )

)]
= E(X Y )− E(X )E(Y )

• Relationship with variance: var(X ) = cov(X ,X ).

• Correlation: corr(X ,Y ) = ρ(X ,Y ) = cov(X ,Y )√
var(X )

√
var(Y )

∈ [−1, 1]

• X ⊥⊥ Y ⇔ fX ,Y (x , y) = fX (x) fY (y)

⇒
6⇐ cov(X , Y ) = 0 (example)

• Covariance matrix of multivariate RV, X ∈ Rn:

cov(X ) = E
[(
X − E(X )

)(
X − E(X )

)T ]
= E(X XT )− E(X )E(X )T

• Covariance of Gaussian RV, fX (x) = N(x ;µ,C ) ⇒ cov(X ) = C
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More on Expectations and Covariances

Let A ∈ Rn×n be a matrix and a ∈ Rn a vector.

• If E(X ) = µ and Y = AX , then E(Y ) = Aµ;

• If cov(X ) = C and Y = AX , then cov(Y ) = ACAT ;

• If cov(X ) = C and Y = aTX ∈ R, then var(Y ) = aTCa ≥ 0;

• If cov(X ) = C and Y = C−1/2X , then cov(Y ) = I ;

• If fX (x) = N(x ; 0, I ) and Y = µ+ C 1/2X , then fY (y) = N(y ;µ,C );

• If fX (x) = N(x ;µ,C ) and Y =C−1/2(X − µ), then fY (y)=N(y ; 0, I ).
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André Martins (IST) Lecture 1 IST, Fall 2019 66 / 82



More on Expectations and Covariances

Let A ∈ Rn×n be a matrix and a ∈ Rn a vector.

• If E(X ) = µ and Y = AX , then E(Y ) = Aµ;

• If cov(X ) = C and Y = AX , then cov(Y ) = ACAT ;

• If cov(X ) = C and Y = aTX ∈ R, then var(Y ) = aTCa ≥ 0;

• If cov(X ) = C and Y = C−1/2X , then cov(Y ) = I ;

• If fX (x) = N(x ; 0, I ) and Y = µ+ C 1/2X , then fY (y) = N(y ;µ,C );

• If fX (x) = N(x ;µ,C ) and Y =C−1/2(X − µ), then fY (y)=N(y ; 0, I ).
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Central Limit Theorem

Take n independent r.v. X1, ...,Xn such that E[Xi ] = µi and var(Xi ) = σ2i

• Their sum, Yn =
n∑

i=1

Xi satisfies:

E[Yn] =
n∑

i=1

µi ≡ µ

var(Yn) =
∑
i

σ2i ≡ σ

• ...thus, if Zn =
Yn − µ
σ

E[Zn] = 0 var(Zn) = 1

• Central limit theorem (CLT): under some mild conditions on X1, ...,Xn

lim
n→∞

Zn ∼ N(0, 1)
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Central Limit Theorem

Illustration
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Important Inequalities

• Markov’s ineqality: if X ≥ 0 is an RV with expectation E(X ), then

P(X > t) ≤ E(X )

t

Simple proof:

t P(X > t) =

∫ ∞
t

t fX (x) dx ≤
∫ ∞
t

x fX (x) dx = E(X )−
∫ t

0

x fX (x) dx︸ ︷︷ ︸
≥0

≤ E(X )

• Chebyshev’s inequality: µ = E(Y ) and σ2 = var(Y ), then

P(|Y − µ| ≥ s) ≤ σ2

s2

...simple corollary of Markov’s inequality, with X = |Y − µ|2, t = s2
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Other Important Inequalities: Cauchy-Schwartz

• Cauchy-Schwartz’s inequality for RVs:

|E(X Y )| ≤
√

E(X 2)E(Y 2)

...why? Because 〈X ,Y 〉 ≡ E[XY ] is a valid inner product

• Important corollary: let E[X ] = µ and E[X ] = ν,

|cov(X ,Y )| = E[(X − µ)(Y − ν)]

≤
√

E[(X − µ)2]E[(Y − ν)2]

=
√

var(X ) var(Y )

• Implication for correlation:

corr(X ,Y ) = ρ(X ,Y ) =
cov(X ,Y )√

var(X )
√

var(Y )
∈ [−1, 1]
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Other Important Inequalities: Jensen

• Recall that a real function g is convex if, for any x , y , and α ∈ [0, 1]

g(αx + (1− α)y) ≤ αg(x) + (1− α)g(y)

Jensen’s inequality: if g is a real convex function, then

g(E(X )) ≤ E(g(X ))

Examples: E(X )2 ≤ E(X 2) ⇒ var(X ) = E(X 2)− E(X )2 ≥ 0.

E(logX ) ≤ logE(X ), for X a positive RV.
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Entropy and all that...

Entropy of a discrete RV X ∈ {1, ...,K}: H(X ) = −
K∑

x=1

fX (x) log fX (x)

• Positivity: H(X ) ≥ 0 ;
H(X ) = 0 ⇔ fX (i) = 1, for exactly one i ∈ {1, ...,K}.

• Upper bound: H(X ) ≤ logK ;
H(X ) = logK ⇔ fX (x) = 1/k , for all x ∈ {1, ...,K}

• Measure of uncertainty/randomness of X

Continuous RV X , differential entropy: h(X ) = −
∫

fX (x) log fX (x) dx

• h(X ) can be positive or negative. Example, if
fX (x) = Uniform(x ; a, b), h(X ) = log(b − a).

• If fX (x) = N(x ;µ, σ2), then h(X ) = 1
2 log(2πeσ2).

• If var(Y ) = σ2, then h(Y ) ≤ 1
2 log(2πeσ2)
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Kullback-Leibler divergence

Kullback-Leibler divergence (KLD) between two pmf:

D(fX‖gX ) =
K∑

x=1

fX (x) log
fX (x)

gX (x)

Positivity: D(fX‖gX ) ≥ 0
D(fX‖gX ) = 0 ⇔ fX (x) = gX (x), for x ∈ {1, ...,K}

KLD between two pdf:

D(fX‖gX ) =

∫
fX (x) log

fX (x)

gX (x)
dx

Positivity: D(fX‖gX ) ≥ 0
D(fX‖gX ) = 0 ⇔ fX (x) = gX (x), almost everywhere
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D(fX‖gX ) = 0 ⇔ fX (x) = gX (x), almost everywhere
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Mutual information

Mutual information (MI) between two random variables:

I (X ;Y ) = D
(
fX ,Y ‖fX fY

)

Positivity: I (X ;Y ) ≥ 0
I (X ;Y ) = 0 ⇔ X ,Y are independent.

MI is a measure of dependency between two random variables
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Recommended Reading

• K. Murphy, “Machine Learning: A Probabilistic Perspective”, MIT
Press, 2012.

• L. Wasserman, “All of Statistics: A Concise Course in Statistical
Inference”, Springer, 2004.
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Minimizing a function

• We are given a function f : Rn → R.

• Goal: find x∗ that minimizes f : Rn → R.

• Global minimum: for any x ∈ Rn, f (x∗) ≤ f (x).

• Local minimum: for any ‖x − x∗‖ ≤ δ ⇒ f (x∗) ≤ f (x).

Are these global minima ?

• No, (local minima, saddle points, . . . )
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Iterative descent methods

Goal: find the minimum/minimizer of f : Rd → R

• Proceed in small steps in the optimal direction till a stopping
criterion is met.
• Gradient descent: updates of the form: x (t+1) ← x (t)− η(t)∇f (x (t))

Figure: Illustration of gradient descent.The blue circles correspond to the
function values at different points, while the red lines correspond to steps taken in
the negative gradient direction.
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Convex functions

Pro: Guarantee of a global minima X

Figure: Illustration of a convex function. The line segment between any two
points on the graph lies entirely above the curve.
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Non-Convex functions

Pro: No guarantee of a global minima 7

Figure: Illustration of a non-convex function. Note the line segment intersecting
the curve.
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Thank you!

Questions?
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