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Announcements

Homework 1 is out!

® Deadline: Friday, October 11
® Start early!!!
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| know the course title promised “deep”, but...

Some underlying concepts are the same;

The theory is much better understood;

Linear classifiers are still widely used, fast, effective;

Linear classifiers are a component of neural networks.
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Linear Classifiers and Neural Networks
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Linear Classifiers and Neural Networks
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Linear Classifiers and Neural Networks

Doc

Cat

Linear Classifier

André Martins, Vlad Niculae (IST) Lecture 2: Linear Classifiers DSL, IST Fall 2019 4/115



Linear Classifiers and Neural Networks
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This Unit’s Roadmap

Part I.

® Binary and multi-class classification

® |inear classifiers: perceptron.
Part II.

® Naive Bayes, logistic regression, SVMs
® Regularization and optimization, stochastic gradient descent

® Similarity-based classifiers and kernels.
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Example Tasks

Task: given an e-mail: is it SPAM or NOT-SPAM?
(binary)
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Example Tasks

Task: given an e-mail: is it SPAM or NOT-SPAM?
(binary)

Task: given a news article, determine its topic (politics, sports, etc.)
(multi-class)

AlphaGo Beats Go Human Champ: Spo rts
Godfather Of Deep Learning Tells Us Do L.
& Not Be Afraid Of Al politics

By Aaron Mamiit Teeh Times t h I
Last week, Goagle's artificial intelligence ’ ec n 0 O g y

program AlphaGo sted its match with
South Korean world Go champion Lee Sedol,
winning with 41 score economy

The achievement stunned artificial

relgenceexpers o peiousy oscht weather

that Google's computer program would need
at least 10 mare years before developing

culture

champion.
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©® Data and Feature Representation
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Disclaimer

Many of the following slides are adapted from Ryan McDonald.
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Let’s Start Simple

® Example 1 — sequence: * ¢ o; label: —1
® Example 2 — sequence: x O A; label: —1
® Example 3 — sequence: x A #; label: +1
® Example 4 — sequence: ¢ A o; label: +1
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Let’s Start Simple

® Example 1 — sequence: * ¢ o; label: —1
® Example 2 — sequence: x O A; label: —1
® Example 3 — sequence: x A #; label: +1
® Example 4 — sequence: ¢ A o; label: +1

® New sequence: x ¢ o; label ?
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Let’s Start Simple

® Example 1 — sequence: * ¢ o; label: —1
® Example 2 — sequence: x O A; label: —1
® Example 3 — sequence: x A #; label: +1
® Example 4 — sequence: ¢ A o; label: +1

® New sequence: x ¢ o; label —1

® New sequence: x ¢ Q; label ?
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Let’s Start Simple

® Example 1 — sequence: * ¢ o; label: —1
® Example 2 — sequence: x O A; label: —1
® Example 3 — sequence: x A #; label: +1
® Example 4 — sequence: ¢ A o; label: +1

® New sequence: x ¢ o; label —1
® New sequence: x ¢ Q; label —1

® New sequence: x A o; label ?

Why can we do this?
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's Start Simple: Machine Learning

® Example 1 — sequence: x ¢ o; label: —1
® Example 2 — sequence: x O A; label: —1
® Example 3 — sequence: x A #; label: +1
® Example 4 — sequence: ¢ A o; label: +1

® New sequence: x ¢ Q; label —1

Label —1 Label +1
_ count(» and —1) _ 2 _ __ count(x and +1) _ 1 _
P(—1]%) = —countx) = 3 =067 vs. P(+1]%) = —count(y =3 =033
_ count(e and —1) _ 1 _ _ count(e and +1) _ 1
P(—10) = ~—count(e) ~ — 2= 0.5 vs. P(+1]0) = —Count(e) ~ — 2 0.5
_ count(@ and —-1) _ 1 _ _count(® and +1) _ o _
P(—1|90) = T Count(@) T 1= 1.0 vs. P(+1|9) = —count(@) T 1= 0.0
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's Start Simple: Machine Learning

® Example 1 — sequence: x ¢ o; label: —1
® Example 2 — sequence: x O A; label: —1
® Example 3 — sequence: x A #; label: +1
® Example 4 — sequence: ¢ A o; label: +1

® New sequence: x A o; label 7

Label —1 Label +1
_ count(x and —1) _ 2 _ __ count(x and +1) _ 1 _
P(—1lx) = ~count(x) ~ — 3= 0.67 vs. P(+1]*) = —Count(x)  — 3~ 0.33
_ count(a and —1) _ 1 _ _ count(a and +1) _ 2 _
P(—1]A) = —count(ay =3 =033 vs. P(+1|A) = —count(a) = 5 =067
_ count(oand —1) _ 1 _ _ count(o and +1) _ 1 _
P(—1J0) = 7“)3“(0) =5 =05vs. P(+1fo) = 7“)3“(0) =5=05
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Machine Learning

@ Define a model/distribution of interest
® Make some assumptions if needed
® Fit the model to the data
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Machine Learning

@ Define a model/distribution of interest
® Make some assumptions if needed
® Fit the model to the data

® Model: P(label|sequence) = P(label|symboly, . ..symbol,)
® Prediction for new sequence = arg max|4,¢| P(label|sequence)

¢ Assumption (naive Bayes—more later):

P(symboly, ..., symbol,|label) = H P(symbol;|label)
i=1

¢ Fit the model to the data: count!! (simple probabilistic modeling)
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Some Notation: Inputs and Outputs

® Input x € X
® e.g., a news article, a sentence, an image, ...
e Qutputy €Y
® e.g., fake/not fake, a topic, a parse tree, an image segmentation

® Input/Output pair: (z,y) € X x Y
® e.g., a news article together with a topic
® e.g., a sentence together with a parse tree
® e.g., an image partitioned into segmentation regions
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Supervised Machine Learning

® We are given a labeled dataset of input/output pairs:

D= {(xnayn)}rlyzl C X x y

Goal: use it to learn a classifier h: X — Y that generalizes well to
arbitrary inputs.

At test time, given & € X, we predict

g = h(z).

Hopefully, ¥ ~ y most of the time.
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Things can go by different names depending on what Y is...
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Regression

Deals with continuous output variables:
® Regression: Y =R

® e.g., given a news article, how much time a user will spend reading it?

¢ Multivariate regression: Y = RX
® e.g., predict the X-Y coordinates in an image where the user will click
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Classification

Deals with discrete output variables:

® Binary classification: Y = {£1}
® e.g., fake news detection

¢ Multi-class classification: Y = {1,2,..., K}
® e.g., topic classification

® Structured classification: Y exponentially large and structured
® e.g., machine translation, caption generation, image segmentation

Later in this course, we'll cover structured classification

... but first, binary and multi-class classification.
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Feature Representations

Feature engineering is an important step in linear classifiers:

® Bag-of-words features for text, also lemmas, parts-of-speech, ...
® SIFT features and wavelet representations in computer vision

® QOther categorical, Boolean, and continuous features
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Feature Representations

We need to represent information about «

Typical approach: define a feature map 1 : X — RP
® 4)(x) is a feature vector representing object x.

Example: & ="Buy a time sh4re tOday!”

Y(x) = ]
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Feature Representations

We need to represent information about «

Typical approach: define a feature map 1 : X — RP
® 4)(x) is a feature vector representing object x.

Example: & ="Buy a time sh4re tOday!”

'z,b(ac) = [53237 ]

¢ Counts (e.g.: number of words, number of characters)
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Feature Representations

We need to represent information about «

Typical approach: define a feature map 1 : X — RP
® 4)(x) is a feature vector representing object x.

Example: & ="Buy a time sh4re tOday!”

P(x) = [5,23,4.6, |

¢ Counts (e.g.: number of words, number of characters)

e Continuous (e.g.: average word length)

André Martins, Vlad Niculae (IST) Lecture 2: Linear Classifiers DSL, IST Fall 2019 18 /115



Feature Representations

We need to represent information about «

Typical approach: define a feature map 1 : X — RP
® 4)(x) is a feature vector representing object x.

Example: & ="Buy a time sh4re tOday!”

(@) = [5,23,4.6, 1, ]

¢ Counts (e.g.: number of words, number of characters)
e Continuous (e.g.: average word length)

® Binary (e.g.: presence of digits inside words)
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Feature Representations

We need to represent information about «

Typical approach: define a feature map 1 : X — RP
® 4)(x) is a feature vector representing object x.

Example: & ="Buy a time sh4re tOday!”

P(x) =[5,23,4.6,1,0,1,0,0]

Counts (e.g.: number of words, number of characters)

Continuous (e.g.: average word length)

Binary (e.g.: presence of digits inside words)

(Coded) categorical (e.g., question/exclamation/statement/none)
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Binary Classification Teaser

¥ (x) = [5,23,4.6,1,0,1,0,0]
Is it spam? Y = {—1,+1}. We want a prediction rule y = h(x).

In this example the true y =
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Binary Classification Teaser

P(x) = [5,23,4.6,1,0,1,0,0]
Is it spam? Y = {—1,+1}. We want a prediction rule y = h(x).
In this example the true y = + 1.

Linear classifier: hy(x) = sign(w - ¥(x)).
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Binary Classification Teaser

¥ (x) = [5,23,4.6,1,0,1,0,0]
Is it spam? Y = {—1,+1}. We want a prediction rule y = h(x).
In this example the true y = + 1.
Linear classifier: hy(x) = sign(w - ¥(x)).

For example:
w = [0,0,-0.5,10,0,2,0, —1]

w is a vector in R?, w; is the weight of feature J.
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Binary Classification Teaser

¥ (x) = [5,23,4.6,1,0,1,0,0]
Is it spam? Y = {—1,+1}. We want a prediction rule y = h(x).
In this example the true y = + 1.
Linear classifier: hy(x) = sign(w - ¥(x)).

For example:
w = [0,0,-0.5,10,0,2,0, —1]

w is a vector in R?, w; is the weight of feature J.
z=w P(x)=> wip(x)=5-0+23-0+46-—05+---=97>0

J

A positive weight for feature i means the higher the feature, the more the
object looks like it should be labeled +1.

Think of z as the score of the positive class.
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How do we learn the weights? (teaser)

Think of the score z.

A few example criteria we will revisit later.

® Make z > 0 if y = +1, z < 0 otherwise. (perceptron)
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How do we learn the weights? (teaser)

Think of the score z.

A few example criteria we will revisit later.

® Make z > 0 if y = +1, z < 0 otherwise. (perceptron)
® Make z > 1 if y = +1, z < —1 otherwise. (SVM)
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How do we learn the weights? (teaser)

Think of the score z.
A few example criteria we will revisit later.
® Make z > 0 if y = +1, z < 0 otherwise. (perceptron)

® Make z > 1 if y = +1, z < —1 otherwise. (SVM)
® P(g = +1|x) x exp(z); maximize P(g = y|x). (logistic regression)
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From binary to multiclass

Linear binary classifier: hy,(x) = sign (w -9 (z)); w € RP.
—_———

zeR
What to do when we have K classes, Y = {1,2,...,K}?

André Martins, Vlad Niculae (IST) Lecture 2: Linear Classifiers DSL, IST Fall 2019 21/115



From binary to multiclass

Linear binary classifier: hy,(x) = sign (w -9 (z)); w € RP.
—_———

zeR
What to do when we have K classes, Y = {1,2,...,K}?

Idea: Compute a score zx for each class, select the winner!
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From binary to multiclass

Linear binary classifier: hy,(x) = sign (w -9 (z)); w € RP.
—_———

zeR
What to do when we have K classes, Y = {1,2,...,K}?

Idea: Compute a score zx for each class, select the winner!

K
zeR":  h(x) =argmaxz,
yey
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From binary to multiclass

Linear binary classifier: hy,(x) = sign (w -9 (z)); w € RP.
—_———

zeR
What to do when we have K classes, Y = {1,2,...,K}?

Idea: Compute a score zx for each class, select the winner!

K. —
zeR":  h(x) =argmaxz,

yeY
A different linear model for each class:
W = e RFP 7z =Wap(x) = [wy - P(x),..., wk - P(x)].
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From binary to multiclass

Linear binary classifier: hy,(x) = sign (w -9 (z)); w € RP.
—_———

zeR
What to do when we have K classes, Y = {1,2,...,K}?

Idea: Compute a score zx for each class, select the winner!

K. —
zeR":  h(x) =argmaxz,

yeY
A different linear model for each class:
W = e RFP 7z =Wap(x) = [wy - P(x),..., wk - P(x)].

The binary classifier before is a special case:

—0- 00 0 00
W_[ ]_[00—0.5 10 0

N O
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What about the bias?

You may be used to seeing classifiers (or neural network layers) written as

z =Wy (xz)+ b.

Adding a “constant feature” of 1 allows the bias to be “absorbed” into W.
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What about the bias?

You may be used to seeing classifiers (or neural network layers) written as

z =Wy (xz)+ b.

Adding a “constant feature” of 1 allows the bias to be “absorbed” into W.
Define (z) = [1,%(x)] and W = [b, W]. Multiplication reveals

W(z) = Wap(z) + b
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How do we learn the weights? (teaser)

Think of the score vector z.

A few example criteria we will revisit later.

® Make z, > z, (perceptron)
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How do we learn the weights? (teaser)

Think of the score vector z.

A few example criteria we will revisit later.

® Make z, > z, (perceptron)
® Make zy > 1+ z, (SVM)

André Martins, Vlad Niculae (IST) Lecture 2: Linear Classifiers DSL, IST Fall 2019 23/115



How do we learn the weights? (teaser)

Think of the score vector z.
A few example criteria we will revisit later.
® Make z, > z, (perceptron)
® Make zy > 1+ z, (SVM)
* P(g = ylx) oxx exp(zy); maximize P(g§ = y|x) (logistic regression)
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Feature Representations: Joint Feature Mappings

For multi-class/structured classification, a joint feature map
¢ X xY — RP is sometimes more convenient

® ¢(x,y) instead of ¢(x)

Each feature now represents a joint property of the input  and the
candidate output y.

We'll use this notation from now on.
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Feature Representations — ¥(x) vs. ¢(x,y)

To recover multi-class classifier from before:

h(x) = arg;nax[Ww(m)]y = argzrl’nax wy - P(x)
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Feature Representations — ¥(x) vs. ¢(x,y)

To recover multi-class classifier from before:

h(x) = arg;nax[Ww(m)]y = arg max wy, - P(x)

y
Consider one-hot label representations e, := [0,...,0,1,0,...,0]
—0—
Outer product e, ® ¥(x) = | —p(@)- | € RKXP  (same shape as W!)
Zo-
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Feature Representations — ¥(x) vs. ¢(x,y)

To recover multi-class classifier from before:

h(x) = arg;nax[Ww(m)]y = arg max wy, - P(x)

y

Consider one-hot label representations e, := [0,...,0,1,0,...,0]
—0—

Outer product e, ® ¥(x) = | —p(@)- | € RKXP  (same shape as W!)
Zo-

Let ¢(x,y) = vec (ey ® Y(x)), and w = vec(W).
Then, w - ¢(x,y) = wy - P(x) = 2!
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Feature Representations — ¥(x) vs. ¢(x,y)

To recover multi-class classifier from before:

h(x) = arg;nax[Ww(m)]y = arg max wy, - P(x)

y

Consider one-hot label representations e, := [0,...,0,1,0,...,0]
—0—

Outer product e, ® ¥(x) = | —p(@)- | € RKXP  (same shape as W!)
Jo-

Let ¢(x,y) = vec (ey ® Y(x)), and w = vec(W).
Then, w - ¢(z, y) = wy - () = z,!
* ()

® x=General George Washington — (x) =[1 10 1]

* ¢(x,y)
® x=General George Washington, y=Person — ¢(x,y)=[1101000 0]
® x=General George Washington, y=0bject — ¢(z,y) =[0000 110 1]

¢(x,y) is more expressive (allows complex features of y, allows pruning!)
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® 1 is a document and vy is a label
1 if & contains the word “interest”
oj(xz,y) = and y = “financial”
0 otherwise
¢j(x,y) = % of words in & with punctuation and y = "“scientific”

® 1 is a word and vy is a part-of-speech tag

| 1 ifx= "bank” and y = Verb
(. y) _{ 0 otherwise
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More Examples

® 1 is a name, y is a label classifying the type of entity

1  if @ contains “George” 1  if @ contains “George”

and y = “Person” Pa(x,y) = and y = “Location”
0  otherwise

bo(z, y) = {

0  otherwise

1 if & contains “Washington” 1  if  contains “Washington”
and y = “Location”

P1(z,y) = and y = "Person” bs(z, y) =
0  otherwise 0  otherwise

1 if  contains “Bridge” 1 if « contains “Bridge”
b2z, y) = and y = “Person” Pe(x, y) = and y = “Location”
otherwise 0  otherwise
1  if & contains “General” 1  if & contains “General”
P3(x, y) = and y = “Person” Pr(x,y) = and y = “Location”
0  otherwise 0  otherwise

® x=General George Washington, y=Person — ¢(x,y)=[1101000 0]
® x=George Washington Bridge, y=Location — ¢(x,y)=[00001 11 0]
® x=George Washington George, y=Location — ¢(x,y) =[00001 10 0]
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Feature Engineering and NLP Pipelines

Classical NLP pipelines consist of stacking together several linear classifiers

Each classifier's predictions are used to handcraft features for other
classifiers

Examples of features:
® POS tags: adjective counts for sentiment analysis

® Spell checker: misspellings counts for spam detection

® Parsing: depth of tree for readability assessment.
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Example: Translation Quality Estimation

Google # 0 @

Translate Tum off instant translation | €
English Spanish French Detectlanguage ~ 4,  French Spanish Portuguese ~

does machine translation work? * | Le travail de traduction automatique?

LONE N - R 35000 | WD O < ’
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Example: Translation Quality Estimation

Wrong translation!
Google # 0 @
Translate Tum off instant translation | €

English Spanish French Detectlanguage ~ Ch Spanish Portuguese ~

does machine translation work? Le travail de traduction automatique?

O Y=~ 30/5000
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André Martins, Vlad Niculae (IST)

Example: Translation Quality Estimation

Wrong translation!
Google

o8&

Tum off instant translation | €

Translate

English Spanish French Detectlanguage ~

Ch Spanish Portuguese ~

Le travail de traduction automatique?

does machine translation work?

30/5000

Goal: estimate the quality of a translation on the fly (without a reference)!

Lecture 2: Linear Classifiers

DSL, IST Fall 2019 29 /115



Example: Translation Quality Estimation

Hand-crafted features:

® no of tokens in the source/target segment

® LM probability of source/target segment and their ratio

® % of source 1-3-grams observed in 4 frequency quartiles of source corpus
® average no of translations per source word

® ratio of brackets and punctuation symbols in source & target segments

® ratio of numbers, content/non-content words in source & target segments
® ratio of nouns/verbs/etc in the source & target segments

® % of dependency relations b/w constituents in source & target segments
® diff in depth of the syntactic trees of source & target segments

® diff in no of PP/NP/VP/ADJP/ADVP/CONJP in source & target

® diff in no of person/location/organization entities in source & target

® features and global score of the SMT system

® number of distinct hypotheses in the n-best list

® 1-3-gram LM probabilities using translations in the n-best to train the LM
® average size of the target phrases

® proportion of pruned search graph nodes;

® proportion of recombined graph nodes.
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Representation Learning

Feature engineering is a black art and can be very time-consuming

But it's a good way of encoding prior knowledge, and it is still widely used
in practice (in particular with “small data”)

Neural networks will alleviate this!
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Let's assume a multi-class classification problem, with || labels (classes).
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Linear Classifiers

® Parametrized by a weight vector w € RP (one weight per feature)

The score (or probability) of a particular label is based on a linear
combination of features and their weights

At test time (known w), predict the class y with highest score:

Y = h(z) = argmaxw ' ¢(x,y)
y€eyY

At training time, different strategies to learn w yield different linear
classifiers: perceptron, naive Bayes, logistic regression, SVMs, ...
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Binary Linear Classifier

A binary linear classifier w can be visualized as a line (hyperplane)
separating positive and negative data points:

2 \
== Points along line

have scores of 0
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Multiclass Linear Classifier

Defines regions of space.
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Linear Classi

® Prediction rule:

linear in w
——N—
= h(a) = argmax w - p()
ye

<)

® The decision boundary is defined by the intersection of half spaces

® In the binary case (|Y| = 2) this corresponds to a hyperplane classifier
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Linear Separability

® A set of points is linearly separable if there exists a w such that
classification is perfect

Separable Not Separable
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Outline

® Perceptron
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Perceptron (Rosenblatt, 1958)

® |nvented in 1957 at the
Cornell Aeronautical
Laboratory by Frank
Rosenblatt

® |mplemented in custom-built
hardware as the “Mark 1
perceptron,” designed for
image recognition

® 400 photocells, randomly
connected to the “neurons.”
Weights were encoded in
potentiometers

L]
i
i
i
i
i
i
l:ﬁ
|

L
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]
I
i
|

M

® Weight updates during
learning were performed by
(Extracted from Wlklpedla) electric motors.
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Perceptron in the News...

André Marti

NEW NAVY DEVICE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Di d to

ings, Perceptron will make mis-
takes at first, but will grow,
wiser as it gains experience, he
said, .

Dr: Rosenblatt, a research!
i at the -Cornell

Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
able to walk, talk, see, write,
reproduce itself and be .con-|
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 “704” com-
puter—learned to differentiate
between right and left after|
fifty aftempts in the Navy's
demonstration for newsmen.,

The service said it would use
this principle to build the first|
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be!
finished in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
‘signer of the Perceptron, con-
ducted the demonstration. He
said ‘the machine would be the
first device to think as the hu-

psy
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers.

Withont Human Controls ‘

The Navy said the perceptron
would be the- first non-living
mechanism “capable of receiv-
ing, recognizing and identifying
its surroundings without -any
human training or control.” I

The “brain” is designed to
remember images and informa-
tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. .

Later Perceptrons will be able
to recognize people and call out
‘their names and instantly trans-
late speech in one language to
speech or writing in another
language, it was predicted.

Mr. Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-

1958 New York
Times...

In today’s demonstration, the
“704” was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing

In the first fifty trials, the
machine made no distinction be-
tween them. It then started
registering a “Q” for the left
squares and “O"” for the right

squares.
Dr. Rosenblatt said he could
explain why the machine

learned only in highly teéchnical
terms. But he said the computer
had undergone a ‘‘self-induced
change in the wiring diagram.”
The first Perceptron will
have about 1,000 electronic
“association cells” receiving
electrical impulses from an eye-
like scanning device with 400
photo-cells. The human brain
has 10,002,000.000 responsive

duce t s on an y
line and which would be con-'

man brain. As do human be-

Vlad Niculae (IS

scious of their existence.

cells, 100,000,000 con-

nections with the eyes.
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Perceptron in the News...

NEW NAVY DEVICE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer,
today that it expects will be
able to walk, talk, see, write,
reproduce itself and be . con-|
scious of its existence,

The embryo—the Weather,
Bureau's $2,000,000 “704” com-|
puter—learned to differentiate
between right and left after|
fifty aftempts in the Navy's
demonstration for newsmen.,

The service said it would use|
this principle to build the first|
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
|signer of the Perceptron, con-
ducted the demonstration. He
said ‘the machine would be the
first device to think as the hu-

man brain. As do human be-

André Martins, Vlad Niculae (I

ings, Perceptron will make mis-
takes at first, but will grow,|
wiser as it gains experience, he
said. .

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers.

‘Without Human Controls

The Navy said the perceptron
would be the. first non-living
mechanism “capable of receiv-
ing, recognizing and identifying
its surroundings without -any
human training or control.” I

The “brain” is designed to
remember images and informa-
tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. .

Later Perceptrons will be able
to recognize people and call out
their names and instantly trans-
late speech in one language to
speech or writing in another
language, it was predicted.

Mr, Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce themselves on an assembly
|line and which would be con-
|scious of their existence.

1958 New York
Times...

In today’'s demonstration, the
“704” was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing

In the first fifty trials, the
machine made no distinction be-
tween them. It then started
registering a “Q” for the left
squares and “O” for the right
squares.

Dr. Rosenblatt said he could
explain why the machine
learned only in highly technical
terms. But he said the computer
had undergone a ‘“self-induced
change in the wiring diagram.”
The first Perceptron will
have about 1,000 electronic

jon cells” T g
electrical impulses from an eye-
like scanning device with
photo-cells. The human brain
has 10,000,000,000 responsive
cells, including 100,000,000 con-
nections with the eyes.

, IST Fall 2019
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Perceptron Algorithm

® Online algorithm: process one data point at each round
® Take x;; apply the current model to make a prediction for it
® |f prediction is correct, proceed
® Else, correct model: add feature vector w.r.t. correct output &
subtract feature vector w.r.t. predicted (wrong) output
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Perceptron Algorithm

input: labeled data D
initialize w(® = 0
initialize k = 0 (number of mistakes)
repeat
get new training example (x;,y;)
predict y; = arg maxycy w . p(x;,y)
if ’g,' = y; then
update wk™) = w) + @(x;,y;) — ¢(xi, Ui)
increment k
end if
until maximum number of epochs
output: model weights w
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Perceptron’s Mistake Bound

A couple definitions:

® the training data is linearly separable with margin v > 0 iff there is a
weight vector u with ||u|| = 1 such that

u¢(m,,y,)2u¢(m,,yf)+'y, VI, Vy;#yl

® radius of the data: R = max; yr,,. [|¢(zi, yi) — &(xi, )l
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Perceptron’s Mistake Bound

A couple definitions:

® the training data is linearly separable with margin v > 0 iff there is a
weight vector u with ||u|| = 1 such that

u¢(m,,y,)2u¢(m,,yf)+'y, VI, Vy;#yl
® radius of the data: R = max; yr,,. [|¢(zi, yi) — &(xi, )l

Then we have the following bound of the number of mistakes:

Theorem (Novikoff (1962))

The perceptron algorithm is guaranteed to find a separating hyperplane
2 o
after at most % mistakes.
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One-Slide Proof

¢ Lower bound on |[w(**+D|;

w-wkD = ww® +u - (p(xi,yi) — d(xi, yi))
u-wk) Y
k~y.

AVARLYS

Hence [|w* D] = |lul| - [[w* D || > w - wk+D) > kv (from CSI).
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One-Slide Proof

¢ Lower bound on |[w(**+D|;

w-wl ) = ww® 4w (@i, yi) — B, )
> u- w4y
> k.
Hence [|w* D] = |lul| - [[w* D || > w - wk+D) > kv (from CSI).

e Upper bound on |[w(k+1)|;

w12 = (w2 + (|p(ai, i) — dai, i)
+2w ™ - (@(zi,yi) — (i, §7))
< Jw®)?+ R?
< kR

Equating both sides, we get (kv)?> < kR? = k < R?/~4? (QED).
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What a Simple Perceptron Can and Can’t Do

® Remember: the decision boundary is linear (linear classifier)
® It can solve linearly separable problems (OR, AND)

OR (x1,$2) ‘AND (x_lv fl'fg) AND (xlvx_Q)

A 4 ,
I~ A A ! A s O I o o,
N N N /7 N y;
) N ) , ) ,
N 7
0 o A o], o o 0 o 7 A
/7
N > ’ >
0 I 0 I 0 o
xrq T T
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What a Simple Perceptron Can and Can’t Do

® The logical XOR mapping: h(x1,x2) = XOR(x1, x2).

XOR (.’El, 1'2)
| A o
s 2
0 o A
0 | >
Z
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What a Simple Perceptron Can and Can’t Do

® The logical XOR mapping: h(x1,x2) = XOR(x1, x2).

XOR (.’El, 1'2)

I A (o)
4

0 o) A

)

A 4

Z

® Not linearly separable! The perceptron fails.
® Result attributed to Minsky and Papert (1969) but known well before.
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What a Simple Perceptron Can and Can’t Do

® The logical XOR mapping: h(x1,x2) = XOR(x1, x2).

XOR (.’El, 1'2)

I A (o)
4

0 o) A

)

A 4

Z

® Not linearly separable! The perceptron fails.
® Result attributed to Minsky and Papert (1969) but known well before.
® quiz: Our “objects” x here are pairs of bits. What is ¢(x)?
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What a Simple Perceptron Can and Can’t Do

® The logical XOR mapping: h(x1,x2) = XOR(x1, x2).

XOR (.’El, 1'2)

I A (o)
4

0 o) A

)

A 4

Z

® Not linearly separable! The perceptron fails.
® Result attributed to Minsky and Papert (1969) but known well before.

® quiz: Our “objects” x here are pairs of bits. 1 (x) = [x1, x2].
now, is there some other 1 that could “help” the perceptron?
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What a Simple Perceptron Can and Can’t Do

® The logical XOR mapping: h(x1,x2) = XOR(x1, x2).

XOR (.'131,1'2) XOR (Z’l,LEQ)
| A o Iiinl N A
g ? S AN
0 o A % 0 o M_a
. < N
0 P ) T
Tl AND (77, z2)

® Not linearly separable! The perceptron fails.
® Result attributed to Minsky and Papert (1969) but known well before.

® quiz: Our “objects” x here are pairs of bits. 1 (x) = [x1, x2].
now, is there some other 1 that could “help” the perceptron?

André Martins, Vlad Niculae (IST) Lecture 2: Linear Classifiers DSL, IST Fall 2019 46 /115



Limitations of the Perceptr

Marvin L. Minsky and Seymour A. Papert

=
i)
°
[#3]
o
@
|
=

b

Minsky and Papert (1969):

® Shows limitations of multi-layer
perceptrons and fostered an “Al
winter” period.

Perceptrons

Reissue of |

An Introduction to Computational Geometry
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This Unit’s Roadmap

Part I.

® Binary and multi-class classification

® |inear classifiers: perceptron.
Part II.

® Naive Bayes, logistic regression, SVMs
® Regularization and optimization, stochastic gradient descent

® Similarity-based classifiers and kernels.
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Outline

© Naive Bayes
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Probabilistic Models

® For a moment, forget linear classifiers and parameter vectors w

® A probabilistic classifier models the conditional probability of labels y
given inputs x, i.e. P(y|x).
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Probabilistic Models

® For a moment, forget linear classifiers and parameter vectors w

® A probabilistic classifier models the conditional probability of labels y
given inputs x, i.e. P(y|x).

® Possible implementation: a function f(x) := [p1,. .., pk], where
pc := P(y = clx).
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Probabilistic Models

® For a moment, forget linear classifiers and parameter vectors w

® A probabilistic classifier models the conditional probability of labels y
given inputs x, i.e. P(y|x).

® Possible implementation: a function f(x) := [p1,. .., pk], where
pc := P(y = cl|x).

® |f we can construct this distribution, then classification becomes:

y = arg max P(y|x
y = argmax (ylx)

But modelling P(y|x) directly is hard (or else we wouldn't need ML)!
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Bayes Rule

® One way to model P(y|x) is through Bayes Rule:

Ply|z) = P(yF))/(’a(;)vly)
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Bayes Rule

® One way to model P(y|x) is through Bayes Rule:

Ply|z) = P(yF))/(’a(;)vly)

argmax P(y|x) = arg max P(y)P(z|y)
Yy Yy
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Bayes Rule

® One way to model P(y|x) is through Bayes Rule:

Ply|z) = P(yF))/(’a(;)vly)

argmax P(y|x) = arg max P(y)P(z|y)
Yy Yy

® P(y)P(x|y) = P(x,y): a joint probability
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Bayes Rule

® One way to model P(y|x) is through Bayes Rule:

Ply|z) = P(yF))/(’a(;)vly)

argmax P(y|x) = arg max P(y)P(z|y)
Yy Yy

® P(y)P(x|y) = P(x,y): a joint probability

® Above is a "generative story”: Pick y; then pick x given y.”
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Bayes Rule

® One way to model P(y|x) is through Bayes Rule:

Ply|z) = P(yF))f’a(;)vly)

argmax P(y|x) = arg max P(y)P(z|y)
Yy Yy

® P(y)P(x|y) = P(x,y): a joint probability

® Above is a "generative story”: Pick y; then pick x given y.”

® Models that consider P(x,y) are called “generative models”, because
they come with a generative story.
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Why is P(y)P(x|y) better than P(y|x)? Let's consider a special case.
Say input x is partitioned as vy,..., v, where v, € V
Example:

® 1 is a document of length L

® v, is the k™ token (a word)

® The set V is the vocabulary, e.g. V = {dog, cat, the, platypus, ...}

P(vi,...,vi|y)

€T

(quiz: What data structure? How many parameters?)
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Why is P(y)P(x|y) better than P(y|x)? Let's consider a special case.
Say input x is partitioned as vy,..., v, where v, € V
Example:

® 1 is a document of length L

® v, is the k™ token (a word)

® The set V is the vocabulary, e.g. V = {dog, cat, the, platypus, ...}

Naive Bayes Assumption
(conditional independence)

P(vi,. .. vily) = [Teey P(vly)

€T

(quiz: What data structure? How many parameters?)

André Martins, Vlad Niculae (IST) Lecture 2: Linear Classifiers DSL, IST Fall 2019 52 /115



Multinomial Naive Bayes

L
P(z.y) = P(y)P(v1,..., v ly) = P(y) || P(vilw)

T

o All tokens are conditionally independent, given the label

® The word order doesn’'t matter ( “bag-of-words")

Classifier that we can now implement:

h(x) = arg max P(y H P(vkly)

Small caveat: we assumed that the document has a fixed length L.
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Multinomial Naive Bayes — Arbitrary Length

Solution: introduce a distribution over document length P(|x|)
® e.g. a Poisson distribution.

We get:

|z|

P(z,y) = P(y) P(lz]) [ P(wly)

k=1

-~

P(z|y)
P(]z|) is constant (independent of y), so nothing really changes

® the posterior P(y|x) is the same as before.
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What Does This Buy Us?

L
P(vi,...,v|y) = kl:[l P(vily)

xr

What do we gain with the Naive Bayes assumption?
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What Does This Buy Us?

L
P(vi,...,v|y) = kl:[l P(vily)

xr

What do we gain with the Naive Bayes assumption?

® A huge reduction in the number of parameters!

e Without factorization assumptions, P(vi,...,v/|y): O(|V|})
parameters.

® With Naive Bayes, O(|V|) parameters.
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What Does This Buy Us?

L
P(vi,...,v|y) = kl:[l P(vily)

xr

What do we gain with the Naive Bayes assumption?

® A huge reduction in the number of parameters!

e Without factorization assumptions, P(vi,...,v/|y): O(|V|})
parameters.

® With Naive Bayes, O(|V|) parameters.

Fewer parameters reduce computation, increace generalization power.
Generally: reduce overfitting but might underfit.
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Naive Bayes — Learning

P(y)P(vi,...,Vv v
(y)P(v1 Lly) = H kly)

~

T

® Input: dataset D = {(x¢,y:)}V_; (examples assumed i.i.d.)

e Parameters © = {P(y), P(v|y)}

® Objective: Maximum Likelihood Estimation (MLE): choose
parameters that maximize the likelihood of observed data

N N L
D) = H P(z:, y:) = H ('D(yt) H P(vk(wt)|yt)>

t=1

HERIEER

k=1

André Martins, Vlad Niculae (IST) Lecture 2: Linear Classifiers DSL, IST Fall 2019 56 /115



Naive Bayes — Learning via MLE

For the multinomial Naive Bayes model, MLE has a closed form solution!!
It all boils down to counting and normalizing!!

(The proof is left as an exercise...)
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Naive Bayes — Learning via MLE

N L
© =arg m(gx H < H Vi (¢ ‘.%))

t=1 k=1

ﬁ(y) _ Zi\lzl[[l:\ylt = y]]

Zt 1 Zk 1[vk(zt) = v and y; = y]
LY [[ye = y]]

P(v]y) =

[[X]] is 1 if property X holds, 0 otherwise (lverson notation)
Fraction of times a feature appears in training cases of a given label
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Naive Bayes Example

® Corpus of movie reviews: 7 examples for training

’ Doc ‘ Words Class

1 Great movie, excellent plot, renown actors Positive

2 | had not seen a fantastic plot like this in good 5 | Positive
years. Amazing!!!

3 Lovely plot, amazing cast, somehow | am in love | Positive
with the bad guy

4 Bad movie with great cast, but very poor plot and | Negative
unimaginative ending

5 | hate this film, it has nothing original Negative

6 Great movie, but not... Negative

7 Very bad movie, | have no words to express how | | Negative
dislike it
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Naive Bayes Example

® Features: adjectives (bag-of-words)

’ Doc \ Words Class

1 Great movie, excellent plot, renowned actors Positive

2 | had not seen a fantastic plot like this in good 5 | Positive
years. amazing !l

3 Lovely plot, amazing cast, somehow | am in love | Positive
with the bad guy

4 Bad movie with great cast, but very poor plot and | Negative
unimaginative ending

5 | hate this film, it has nothing original. Really bad | Negative

6 Great movie, but not... Negative

7 Very bad movie, | have no words to express how | | Negative
dislike it
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Naive Bayes Example

Relative frequency:

Priors:

N ..
= t
P(positive) = 2==1l1¥ — Vell 317 043

N .
= t
P(negative) = 2 e=llye N negativel] =4/7=0.57

Assume standard pre-processing: tokenization, lowercasing, punctuation
removal (except special punctuation like 1)
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Naive Bayes Example

Likelihoods: Count adjective v in class y / adjectives in y

Zt 1 Ek [vk(ze) = v and y¢ = y]

P(v
i) = LZt:l[[yt = y]]
P(amazing|positive) = 2/10 | P(amazing|negative) =0/8
P(bad|positive) =1/10 | P(bad|negative) =3/8
P(excellent|positive) = 1/10 | P(excellent|negative) =0/8
P(fantastic|positive) = 1/10 | P(fantastic|negative) =0/8
P(good|positive) = 1/10 | P(good|negative) =0/8
P(great|positive) = 1/10 | P(great|negative) =2/8
P(lovely|positive) = 1/10 | P(lovely|negative) =0/8
P(original|positive) = 0/10 | P(original|negative) =1/8
P(poor|positive) = 0/10 | P(poor|negative) =1/8
P(renowned|positive) = 1/10 | P(renowned|negative) =0/8
P(unimaginative|positive) = 0/10 | P(unimaginative|negative)= 1/8
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Naive Bayes Example: Test Time

h(x) = arg max P(y H P(vk|y)

Doc | Words Class
8 This was a fantastic story, good, lovely 777
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Naive Bayes Example: Test Time

h(x) = arg max P(y H P(vk|y)

Doc | Words Class
8 This was a fantastic story, good, lovely 777

Final decision

P(positive) x P(fantastic|positive) * P(good|positive) x P(lovely|positive)

3/7%1/10 % 1/10 % 1/10 = 0.00043

P(negative) x P(fantastic|negative) * P(good|negative) x P(lovely|negative)

4/7x0/8x0/8+x0/8=0

So: sentiment = positive
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Naive Bayes Example: Test Time

Doc | Words Class
10 Boring movie, annoying plot, unimaginative ending | 777

Final decision

P(positive) * P(boring|positive) x P(annoying|positive) * P(unimaginative|positive)

3/7%0/10%0/10%0/10 = 0

P(negative) x P(boring|negative) x P(annoying|negative) x P(unimaginative|negative)

4/7%0/8+0/8%1/8=0

So: sentiment = 7?77
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Laplace Smoothing

Add smoothing to feature counts (add 1 to every count):

Yter Sk llvi(@e) = v and ye = y]] + 1
N
LYt llye = yll + [V
where |V| = number of distinct adjectives in training (all classes) = 12

P(vly) =

Interpretation: as if we inserted a dummy document containing a single
word: One for each known word, one for each class label.
Doc | Words Class
11 Boring movie, annoying plot, unimaginative ending | 777
Final decision

P(positive) = P(boring|positive) x P(annoying|positive) « P(unimaginative|positive)
3/7 % ((0 4 1)/(10 + 12)) * ((0 + 1)/(10 + 12)) % ((0 + 1)/(10 + 12)) = 0.000040
P(negative) x P(boring|negative) x P(annoying|negative) x P(unimaginative|negative)

4/7 % ((0+1)/(8+ 12)) = (0 + 1)/(8 + 12)) = (1 + 1)/(8 + 12)) = 0.000143

So: sentiment = negative
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Finally...

Multinomial Naive Bayes is a Linear Classifier!
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One Slide Proof

e Let by = logP(y), Yy €Y
o Let [wy], =log P(v]y), Vy € Y,v eV
e Let [¢(x)], = S i_y[[vi(x) = V]|, Yv € V (# times v occurs in x)

L
argmax P(ylx) o argmax <P(y) I | P(vk(ac)y)>
y y
= log P(y) + E log P(
arg m;x <og og P(vk(x )

= argmax | log P(y)+ > [w(@)], log P(v]y)
Yy Hb,_/ vev ———
'y

= argmax (wy - () + by).

[wylv
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Discriminative versus Generative

® Generative models attempt to model inputs and outputs
® e.g., Naive Bayes = MLE of joint distribution P(x,y)
® Statistical model must explain generation of input

® Can we sample a document from the multinomial Naive Bayes model?
How?
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Discriminative versus Generative

® Generative models attempt to model inputs and outputs
® e.g., Naive Bayes = MLE of joint distribution P(x,y)
® Statistical model must explain generation of input

® Can we sample a document from the multinomial Naive Bayes model?
How?

® Occam's Razor: why model input?
® Discriminative models

® Use loss function that directly optimizes P(y|x) (or something related)
® Logistic Regression — MLE of P(y|x)
® Perceptron and SVMs — minimize classification error

André Martins, Vlad Niculae (IST) Lecture 2: Linear Classifiers DSL, IST Fall 2019 68 /115



Discriminative versus Generative

Generative models attempt to model inputs and outputs
® e.g., Naive Bayes = MLE of joint distribution P(x,y)
® Statistical model must explain generation of input

® Can we sample a document from the multinomial Naive Bayes model?
How?

Occam’s Razor: why model input?

Discriminative models

® Use loss function that directly optimizes P(y|x) (or something related)
® Logistic Regression — MLE of P(y|x)
® Perceptron and SVMs — minimize classification error

Generative and discriminative models use P(y|x) for prediction
® They differ only on what distribution they use to set w
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We have covered:

® The perceptron algorithm
¢ (Multinomial) Naive Bayes.
We saw that both are instances of linear classifiers.

Perceptron finds a separating hyperplane (if it exists), Naive Bayes is a
generative probabilistic model

Next: a discriminative probabilistic model.
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S

Handcrafted
Features Cat

N

Linear Classifier

y=argmax(Wep(z)+b), W= | —wy— |, b= | by

equivalent to

y = argmaxw - ¢(x,y) where w = vec([b,W])
y
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Outline

O Logistic Regression
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stic Regression

A linear model gives us a score for each class, w - ¢(x, y).
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Logistic Regression

A linear model gives us a score for each class, w - ¢(x, y).

Define a conditional probability:

exp(w - ¢(x,y))

P(y|z) = 7 . where Z, = > exp(w - ¢(,9))

y'eY
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Logistic Regression

A linear model gives us a score for each class, w - ¢(x, y).

Define a conditional probability:

exp(w - ¢(x,y))
Zy '

P(y|z) = where Z, = > exp(w - ¢(x,y))

y'eY

Note: still a linear classifier

argmax P(y|x) = argmax exp(w - ¢(z,y))

= argmax exp(w - p(z,y))

= argmax w- ¢(x,y)
Yy
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Binary Logistic Regression

Binary labels (Y = {£1})
Scores: z = [0, w - ¢(x)]

exp(w - ()

Ply=+1z) = 17 exp(w - §(z))
1
T 1t exp(-w- ¢(x))
= o(w-¢p(x)).

This is called a sigmoid transformation (more later!)
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Sigmoid Transformation

Widely used in neural networks

Can be regarded as a 2D softmax

“Squashes” a real number between 0 and 1

The output can be interpreted as a probability

Positive, bounded, strictly increasing
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Multinomial Logistic Regression

Puw(ylx) =

® How do we learn weights w?
® Set w to maximize the conditional log-likelihood of training data:

N N
w = arg &%@ log (tlj[l Pw(yt|:ct)> = argwnélﬂgD —;IOg Py (yelz:) =

N
i | . "V)—w -
argﬂ)ﬂ;&\o; og Y _exp(w - B(ae, y}))—w - p(xr,ye) |,

Yy

i.e., set w to assign as much probability mass as possible to the
correct labels!
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Logistic Regression

® This objective function is convex
® Therefore any local minimum is a global minimum

® No closed form solution, but lots of numerical techniques

® Gradient methods (gradient descent, conjugate gradient)
® Quasi-Newton methods (L-BFGS, ...)
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Recap: Convex functions

Pro: Guarantee of a global minima v/

/

) R (v, 7 (9))
(w,f(:c% - /

S _—

Figure: lllustration of a convex function. The line segment between any two
points on the graph lies entirely above the curve.
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Recap: Iterative Descent Methods

Goal: find the minimum/minimizer of f : RY — R

® Proceed in small steps in the optimal direction till a stopping
criterion is met.
e Gradient descent: updates of the form: x(k*1) < x(k) —p, V£ (x(¥))

Figure: lllustration of gradient descent. The red lines correspond to steps taken
in the negative gradient direction.
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Gradient Descent

Let L(w; (z,y)) = log >, exp(w - (z.y'))—w - p(x,y)
® This is our loss function!

® We want to find arg min,, ZQ’ZI L(w; (z¢, ye))

® Setw’ =0

® |terate until convergence (for suitable stepsize 7y):

Wt = wk — VY, (Zf’zl L(w; (a:, yt)))

= wf =N Ve l(w; (x4, y:))

Vawl(w) is gradient of L w.r.t. w

® For convex L, with minor assumptions on 7,
gradient descent will always find the optimal w!
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Gradient Optimization

It turns out this works with a Monte Carlo approximation of the gradient:

Set w® =
Iterate until convergence

® Pick (x¢,y:) randomly
* Update w*! = wk — iV, L(w; (24, 1))

® j.e. we approximate the true gradient with a noisy, unbiased, gradient,
based on a single sample

® Variants exist in-between (mini-batches)

All guaranteed to find the optimal w (for suitable step sizes)
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Computing the Gradient

® For this to work, we need to be able to compute V., L(w; (¢, y:)),
where

L(w; (z,y)) = log Y exp(w - p(x, ) —w - p(,y)

Some reminders:
O V., log Flw) = F(w)V F(w)
A V., exp F(w) = exp(F(w)) Vo F(w)
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Computing the Gradient

Vwl(w;(z,y)) = Vw (Iogzexp(w~¢(m,y'))—w~¢>(w7y)>
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Computing the Gradient

Vul(w; (z,y)) V (Iog > exp(w - gz, y')—w - P(a, y))

Vo log Y exp(w - ¢(2,y))—Vww - ¢z, y)
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Computing the Gradient

Vul(w; (z,y)) V (Iog > exp(w - gz, y')—w - P(a, y))

Vo log Y exp(w - ¢(2,y))—Vww - ¢z, y)

= Z / exp(wl- ¢($ y/)) Z Vuw eXp(w . (’b(;z;‘ y/))_¢($7y)
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Computing the Gradient

Vaw (|0g Z exp(’w . ¢(m7 yl))_w . (f)(:l}, y))

= Vuwlog) exp(w- d(@,y"))~Veww - ¢(z,y)

y’

Vwl(w; (x,y))

- Z exp(wl-tb(m y'))vaexp(w'qﬁ(wvy’))—qb(ay)

- Zexp (z,y))Voww - p(z,y')—¢(x,y)
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Computing the Gradient

Vaw (|0g Z exp(’w . ¢(m7 yl))_w . (f)(:l}, y))

= Vuwlog) exp(w- d(@,y"))~Veww - ¢(z,y)

y’

Vwl(w; (x,y))

- Z exp(wl-tb(m y'))vaexp(w'qﬁ(wvy’))—qb(ay)

- Zexp (z,y))Voww - p(z,y')—¢(x,y)

= > wwz—wmvy/)_w,y)
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Computing the Gradient

Vaw (|0g Z exp(’w . ¢(m7 yl))_w . (f)(:l}, y))

= Vuwlog) exp(w- d(@,y"))~Veww - ¢(z,y)
y/
1

- T el yf))vaexp(w'qﬁ(wvy'))—gb(ay)

Vwl(w; (x,y))

- Zexp (z,y))Voww - p(z,y')—¢(x,y)

-2 %‘Mcﬁ(m y)- (= v)

= ZP (V'|z)¢(z,y)—d(=, y)
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Computing the Gradient

Vaw (|0g Z exp(’w . ¢(m7 yl))_w . (f)(:l}, y))

= Vuwlog) exp(w- d(@,y"))~Veww - ¢(z,y)
y/
1

- T el yf))vaexp(w'qﬁ(wvy'))—gb(ay)

Vwl(w; (x,y))

- Zexp (z,y))Voww - p(z,y')—¢(x,y)

-2 %‘Mcﬁ(m y)- (= v)

= ZP (Y |z)d(z, y')—p(z, y)
— EY[¢(m, Y)l-o(z,y).
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Logistic Regression Summary

® Define conditional probability

exp(w - ¢(z, y))
Ly

Pw(y|m) =
® Set weights to maximize conditional log-likelihood of training data:

w = arg mu?xz log Puw(y:|x:) = arg min Z L(w; (xt,yt))
t w t

® Can find the gradient and run gradient descent (or any gradient-based
optimization algorithm)

Vwl(w; (2,y)) = Ey[o(z, Y)|-¢(z,y)
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The Story So Far

® Naive Bayes: generative, maximizes joint likelihood Py, (x,vy)
® closed form solution (boils down to counting and normalizing)
® Logistic regression: discriminative, max. conditional likelihood P, (y|x)

® also called log-linear model and max-entropy classifier
® no closed form solution
® stochastic gradient updates look like

Wkl — kot 77(‘15(33’?1) —Ey[é(z, Y)])
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The Story So Far

® Naive Bayes: generative, maximizes joint likelihood Py, (x,vy)
® closed form solution (boils down to counting and normalizing)
® Logistic regression: discriminative, max. conditional likelihood P, (y|x)

® also called log-linear model and max-entropy classifier
® no closed form solution
® stochastic gradient updates look like

Wkl — kot n(¢($7y) —Ey[é(z, Y)])

® The Perceptron: discriminative, non-probabilistic classifier

wt = wk + ¢(z,y) — d(x.7)

André Martins, Vlad Niculae (IST) Lecture 2: Linear Classifiers DSL, IST Fall 2019 84 /115



The Story So Far

® Naive Bayes: generative, maximizes joint likelihood Py, (x,vy)
® closed form solution (boils down to counting and normalizing)
® Logistic regression: discriminative, max. conditional likelihood P, (y|x)

® also called log-linear model and max-entropy classifier
® no closed form solution
® stochastic gradient updates look like

Wkl — kot 77(‘15(137?1) —Ey[é(z, Y)])

® The Perceptron: discriminative, non-probabilistic classifier
w T = wk + ¢(z,y) — P(w, )

¢ Relationship: LR/Perceptron differ in how they interact with the current
state of the model during training:
the prediction ¢(x,y) vs. the expectation Ey [¢p(x, Y)].
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Maximizing Margin

® For a training set D

® Margin of a weight vector w is smallest 7 such that

w - ¢(wt7yt) —w- ¢(5'3t>'y,) 2 Y

e for every training instance (z¢,y:) € D,y €Y
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Training

Denote the
value of the
margin by ~

Testing
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Maximizing Margin

® Intuitively maximizing margin makes sense

® More importantly, generalization error to unseen test data is
proportional to the inverse of the margin

R2
€EX —5——
v2 x N
® Perceptron:
® [f a training set is separable by some margin, the perceptron will find a
w that separates the data
® However, the perceptron does not pick w to maximize the margin!
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Outline

@ Support Vector Machines
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Maximizing Margin

Let v >0
max
|lw||<1
subject to
w- (@, ye) —w- (2, y') >y
for all (z¢,y:) €D
andy' €Y

® Note: algorithm still minimizes error (0!) if data is separable
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Maximizing Margin

Let v >0
max
|lw||<1
subject to
w- (@, ye) —w- (2, y') >y
for all (z¢,y:) €D
andy' €Y

® Note: algorithm still minimizes error (0!) if data is separable

® ||wl| is bound since scaling trivially produces larger margin
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Max Margin = Min Norm

Let v >0
Max Margin: Min Norm:
i min 2w’
subject to _ subject to
w- (e, ye) —w- Pz, y') > W P(Tr, Ye) —w- P(xr,y') > 1
for all (x¢,y:) € D for all (z¢,y:) €D
andy’' €Y andy’ €Y

¢ Instead of fixing ||w|| we fix the margin v =1

® Make substitution w’ = w/~; then we have v = ||||;”,|‘| = ”1},,”.
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Support Vector Machines

.1 2
w = argmin =||wl||
w 2

subject to
w - ¢)(513t7yt) —w- ¢($t7 y/) 2 1
for all (z;,y:) € Dand y' €Y

® Quadratic programming problem with many constraints

® Can be solved with many techniques.
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Support Vector Machines

What if data is not separable?

= argmm H'w||2+ CZ&

subject to

w - P(xe,yr) —w- p(xe,y’) >1— & and & >0

for all (z¢,y:) € D and y' € Y

&t trade-off between margin per example and ||w||
Larger C = more examples correctly classified
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Support Vector Machines

N
o1
w = argmin =||w|]® + CZ@}
we 2 t=1
such that:
w- P(xr,yr) —w- d(x,y') > 1 &
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Support Vector Machines

N
1 2
w = argmin =||lwl||*+ C
ig 2H I z_:ft
’ t=1
such that:

w- ¢(ze,yr) — max w- Pl y) =1 &
Y'Yt
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Support Vector Machines

N
o1 5
w = aringln §|]w|| + CZ@}
, t=1
such that:
gt Z 1 + max w - ¢(Cct7 y/) —w- ¢(wt7yt)
Y #Ye
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Support Vector Machines

1

N
A 2
w =argmin Z||lw|[*+ ) & A= —
we 2 ; ¢

such that:
gt Z 1 + max w - ¢(Cct7 y/) —w- ¢(wt7yt)
Y FYe
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Support Vector Machines

1

N
A 2
w = argmin —||lwl||* + E &t A= —
W,E 2 t=1 C

such that:
gt Z 1 + max w - ¢(Cct7 y/) —w- ¢($t7yt)
Y FYe

If [|Jw]|| classifies (z¢,y:) with margin 1, penalty & =0
Otherwise penalty & = 1+ maxy/ 4y, w - P(xt,y") — w - d(xs, yt)
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Support Vector Machines

1

N
A 2
w = argmin —||lwl||* + E &t A= —
W,E 2 t=1 C

such that:
gt Z 1 + max w - ¢(Cct7 y/) —w- ¢(mt7yt)
Y FYe

If [|Jw]|| classifies (z¢,y:) with margin 1, penalty & =0
Otherwise penalty & = 1+ maxy/ 4y, w - P(xt,y") — w - d(xs, yt)

Hinge loss:
L(w; (mt:yt)) = max (07 1+ maXy/ sy, W- d)(mt’ y/) —w- (b(zt: yt))
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Support Vector Machines

N
A
w = arg min §||w|\2 + th
g t=1

such that:
gt Z 1 + ?;p;?;; w - ¢(mt7y,) —w- ¢(mt7yt)

Hinge loss equivalent
_argmmZL (e, y:)) + f||'w||2

where L(w; (x,y)) = max(0,1 + r'r,17aéx w-P(z,y) —w- d(z,y))
Y2y

~ (poy w-s(es) + [0 #9)) - 0 $(ew)

Y
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From Gradient to Subgradient

The hinge loss is a piecewise linear function—not differentiable everywhere
Cannot use gradient descent, we must turn to subgradient descent.

Implementation is identical, but convergence properties can be worse.
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Recap: Subgradient

f(z)

fl1) + g1 (z — 21),
'_,f(l“z) + 95 (xz — )

f(x2) + g5 (2 — @2)

e Defined for convex functions f : RP = R
® Generalizes the notion of gradient—in points where f is differentiable,
there is a single subgradient which equals the gradient

® QOther points may have multiple subgradients

DSL, IST Fall 2019 96 /115

Lecture 2: Linear Classifiers

André Martins, Vlad Niculae (IST)



Subgradient Descent

i) = (mox w-dley) + Iy #9l)) - w- dley)

A subgradient of the hinge loss is

8’wL(w; (way)) > (f)(CC,’:y\) - qb(a:,y)

where
y=arg max w - o(x,y') + [[v # vl

This gives us a way to train SVMs with (stochastic) sub-gradients!
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Perceptron and Hinge-Loss

SVM update:
yi=argmaxw - $(@r, y)+Hly' # vell;
y'e

S 0, R if w- <7.5(ﬂ'3t7 Yt) > w - d(xe, Y)
d(xze,g) — p(xt,y:), otherwise

Perceptron update: (with n = 1)
Y :=argmaxw - ¢(zt,y’)
y'eY

Wkl Cawk — n 0, if w- dl)(mt,yt) > w - P(xr, Y)
(e, y) — p(xt,y:), otherwise

Perceptron = Stochastic subgradient updates on the marginless hinge

L(w; (,y)) = maxw - y(x, y/) —w - Y(z,y)

=max (0,1 max w- (@, y) —w- P(a, yr))
Y FYe
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Loss Functions

Perceptron:

L(w (w y)) = max ( ¢($, y/)) —w- ’l,b(m, y)

y'eY
SVM (a.k.a. Hinge, Max-Margin)
Multinomial Logistic Regression (a.k.a. Cross-Entropy, MaxEnt)

L(w; (,y)) = log Y _ exp ( z,y')) —w - P(z,y)

y'eY

® (Clearly, they are very similar!
® Tractable surrogates for the misclassification error rate.
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Loss Functions

6
Zero-one loss
54 Perceptron loss
= Hinge loss
4 -
° = |0g loss
=
g 3-
2]
wn
S 24
1 -
0 -

-4 -2 0 2 4
Score given to positive class
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What we have covered

® |inear Classifiers

® Naive Bayes

® |ogistic Regression

® Perceptron

® Support Vector Machines

What is next

® Regularization

® Non-linear classifiers
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Outline

@ Regularization
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Regularization
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If the model is too complex (too many parameters) and the data is scarce,
we run the risk of overfitting:

Y Y Y
] (]
(] m
] BE L] ] s
LN [ g L) o
. 8 a2 B s !
s® ®
L. L.
X X’
Underfitting Balanced Overfitting

® We saw one example already when talking about add-one smoothing
in Naive Bayes!
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Empirical Risk Minimization

D ———————————————

Underfitting Overfitting

Predictive
Error

Error on Test Data

/

i
Error on Training Data

Model Complexity
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Regularization

In practice, we regularize models to prevent overfitting

N
arg min Z L(w; (x¢, y¢)) + AQ(w),

w t=1

where Q(w) is the regularization function, and A controls how much to
regularize.

® Gaussian prior (f2), promotes smaller weights:
Qw) = [w|3 = wf.
i

® Laplacian prior (¢1), promotes sparse weights!

Qw) = [Jwll ZZIW:'I
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Logistic Regression with ¢/, Regularization

N N A\
Y L(wi (e, ye)) + A2(w) = =Y log (exp(w - d(@e, 1))/ Ze) + S lwl®

t=1 t=1

® What is the new gradient?

N
Z w; (z+,Ye)) + Vp AQ(w)

® We know V, L(w; (x+,yt))
® Just need V,,3|w|? = \w
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Support Vector Machines

Hinge-loss formulation: ¢ regularization already happening!

w = argmlnz w; (e, yt)) + AQ(w)

= argmin Z max (0,1 4+ max w - ¢(xe,y) — w - d(xr,yt)) + AQ(w)
w

Y7yt
~ A
= argmin Zmax 0,1+ max w- ¢(ms,y) —w - d(xr, yr)) + = ||w]|?
w YFYt 2

T SVM optimization 1

(Of course, 1 or other penalties might be better in some cases!)
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Outline

@ Non-Linear Classifiers
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Recap: What a Linear Classifier Can Do

® |t can solve linearly separable problems (OR, AND)

OR (71, z5) AND (77, 25) AND (21, 73)

I~ A A ! A s O I o o,
9\l AN (a\l Ve o\l Vi
) N 8 , 8 ,

0 O\\A of,”o o 0 o 7 A

Ve

N - > s >

0 I 0 I 0 o
X1 Ty T
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Recap: What a Linear Classifier Do

® . but it can’t solve non-linearly separable problems such as simple
XOR (unless input is transformed into a better representation):

XOR (1, x2) XOR (z1, x9)
A =
I A o |i«| NA
o N RN
0 o A % 0 o LA
. << N
0 P 0 T
1 AND (.T_l, .’132)

® This was observed by Minsky and Papert (1969) (for the perceptron)
and motivated strong criticisms
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: Linear Classifiers

We've seen

® Perceptron

Naive Bayes
® | ogistic regression

® Support vector machines

All lead to convex optimization problems = no issues with local
minima/initialization

All assume the features are well-engineered such that the data is nearly
linearly separable
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What If Data Are Not Linearly Separable?
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What If Data Are Not Linearly Separable?

Engineer better features (often works!)
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What If Data Are Not Linearly Separable?

Engineer better features (often works!)

Kernel methods: (not in this class)
e works implicitly in a high-dimensional feature space
® ... but still need to choose/design a good kernel

® model capacity confined to positive-definite kernels
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What If Data Are Not Linearly Separable?

Engineer better features (often works!)

Kernel methods: (not in this class)
e works implicitly in a high-dimensional feature space

® ... but still need to choose/design a good kernel

® model capacity confined to positive-definite kernels
Neural networks

® embrace non-convexity and local minima

® instead of engineering features, engineer the model architecture
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Conclusions

® |inear classifiers are a broad class including well-known ML methods
such as perceptron, Naive Bayes, logistic regression, support vector
machines

® They all involve manipulating weights and features

® They either lead to closed-form solutions or convex optimization
problems (no local minima)

® Stochastic gradient descent algorithms are useful if training datasets
are large

® However, they require manual specification of feature representations
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