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Today’s Roadmap

Today we’re starting to talk about structure, more specifically sequences:

® Generative sequence models: (hidden) Markov models

e Dynamic programming: the Viterbi and Forward-Backward algorithms
e Viterbi decoding and minimum risk decoding

e Unsupervised learning with the Baum-Welch (EM) algorithm
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© Structured Prediction
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So far, we looked at classification:
simply predicting one-of-K classes.

How about more complicated
output spaces?
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Named Entity Recognition

McGrath  left out of Ireland World Cup squad

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 5/89



Named Entity Recognition

I 0 0 0 I I I 0
McGrath  left out of Ireland World Cup squad

e Classify each word independently:
x; = McGrath; 1y =1,
x, = left; Yy, =0, ...
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Named Entity Recognition

B 0 0 0 B B I 0
McGrath  left out of Ireland World Cup squad

e Classify each word independently:
x; = McGrath; vy, =B,
x, = left; Yy, =0, ...
® This labeling scheme is called BI0 (beginning/inside/outside).
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Named Entity Recognition

B 0 0 0 B B I 0
McGrath  left out of Ireland World Cup squad

e Classify each word independently:
x; = McGrath; vy, =B,
x, = left; Yy, =0, ...

® This labeling scheme is called BI0 (beginning/inside/outside).

® Could add more context into , e.g. a window:
1 = ($, McGrath, left); y; =B,
x; = (McGrath, left, out); 1y, =0, ...
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Named Entity Recognition

B 0 0 0 B B I 0
McGrath  left out of Ireland World Cup squad

Classify each word independently:
x; = McGrath; vy, =B,
x, = left; Yy, =0, ...
This labeling scheme is called BI0 (beginning/inside/outside).
Could add more context into x, e.g. a window:
1 = ($, McGrath, left); y; =B,
x; = (McGrath, left, out); 1y, =0, ...
But the predictions can’t depend on one another!
0T is not allowed; BB is allowed but relatively rare!
... what do we really want?
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Named Entity Recognition

B 0 0 0 B B I 0
McGrath  left out of Ireland World Cup squad

Classify each word independently: this makes a big assumption!
x; = McGrath; vy, =B,
Really, we should think at sentence-level:
x; = McGrath leftoutof...; =B 00 0BB IO
Can capture more statistics (BB is rare, BBBB even rarer, 00 is common...)
Can we attempt this with our multi-class toolbox (e.g. naive Bayes?)
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Named Entity Recognition

B 0 0 0 B B I 0
McGrath  left out of Ireland World Cup squad

Classify each word independently: this makes a big assumption!
x; = McGrath; vy, =B,
Really, we should think at sentence-level:
x; = McGrath leftoutof...; =B 00 0BB IO
Can capture more statistics (BB is rare, BBBB even rarer, 00 is common...)
Can we attempt this with our multi-class toolbox (e.g. naive Bayes?)
How many sentences have thelabelB 0 0 0 B B I 07

rank sequence count
1 0 1072
2 BO 663
3 BOOOOOOO 446
4 BOBO 378
5 0BIOBOO 272
4856 BOOOBBTIO 1
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We are essentially treating each label
sequence y as a distinct object,
ignoring its internal structure!



We are essentially treating each label
sequence y as a distinct object,
ignoring its internal structure!

We’ve never seen sentences labelled0 0 0 0 0 0 B,
but we have seen sentences labelled0 0 0 0 0 B.
Surely that could help!



Structured Prediction

A framework for handling structured, constrained, inter-dependent outputs.

NLP Speech Processing Computer Vision
® Named Entity ® Speaker ID * Object detection
Recognition
° ° i
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computational biology, robotics / planning, time series forecasting, etc.
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Structured Prediction

VERB PREP  NOUN
dog on wheels
NOUN PREP  NOUN
dog on wheels
NOUN DET  NOUN
dog on wheels
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Structured Prediction

- dog hond
VERB PREP  NOUN N~ on><op
dog on wheels % dog on wheels .
wheels — wielen
NOUN PREP  NOUN ﬁ dog — hond
on — op
dog on wheels * dog on wheels .
wheels — wielen
NOUN DET  NOUN AK\ dog hond
* dog on wheels on op
dog on wheels .
wheels wielen

Today, we talk about sequences.

Vlad Niculae & André Martins (IST)
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Roadmap: Models for Structured Prediction

Binary/Multi-class Structured Prediction

Naive Bayes ?
Logistic Regression ?
Perceptron ?
SVMs ?
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@ Generative Sequence Models
Markov Models
Hidden Markov Models

Unsupervised learning
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@ Generative Sequence Models
Markov Models
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Probabilities over sequences

To begin, let’s forget for a moment about « and focus on y.
P(y=1[0 00 B]) =?
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Probabilities over sequences

To begin, let’s forget for a moment about « and focus on y.
P(y=1[0 0 0 B]) =2
What are all possible labellings?
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Probabilities over sequences

To begin, let’s forget for a moment about « and focus on y.
P(y=1[0 00 B]) =?

What are all possible labellings?

LetY = {B,1,0}.Then,Y =* =Y UX2UX3U..
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Probabilities over sequences

To begin, let’s forget for a moment about « and focus on y.
P(y=1[0 00 B]) =?

What are all possible labellings?

LetY = {B,1,0}.Then,Y =* =Y UX2UX3U..

Could set P(y) o #y
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Probabilities over sequences

To begin, let’s forget for a moment about « and focus on y.
P(y=1[0 00 B]) =?

What are all possible labellings?

LetY = {B,1,0}.Then,Y =* =Y UX2UX3U..

rank  sequence count

1 1072

2 BO 663

3 BOOOOOOO 446

Could set P(y) o« #y 4 BOBO 3718
5 0BIOBOO 272

4856 BOOOBBIO 1
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Probabilities over sequences

To begin, let’s forget for a moment about « and focus on y.
P(y=1[0 00 B]) =?

What are all possible labellings?

LetY = {B,1,0}.Then,Y =* =Y UX2UX3U..

rank  sequence count

1 0 1072

2 BO 663

3 BOOOOOOO 446

Could set P(y) o« #y 4 BOBO 3718
5 0BIOBOO 272

4856 i?;'ODOBBIO 1
Issues:
P(y) = 0 for most y!
No sharing between sequences that are similar!
Ignores the fact thaty = [y, ..., ]
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Lower extreme: Bag-of-words model

Lety = [y1,...,y]. P(y)= HP( i)

® Also called “unigram” model

e Assumes every word is generated independently of other words
therefore, abandons the structure of y entirely.
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Lower extreme: Bag-of-words model

Lety = [y1,...,y]. P(y)= HP( i)

® Also called “unigram” model

e Assumes every word is generated independently of other words
therefore, abandons the structure of y entirely.

® Probability of a string is insensitive to word order:

P ([0,8,0]) = P ([5,0,0]) = P(8) P(0)*
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Lower extreme: Bag-of-words model

Lety = [y1,...,y]. P(y)= HP( i)

Also called “unigram” model

Assumes every word is generated independently of other words
therefore, abandons the structure of y entirely.

Probability of a string is insensitive to word order:

P ([0,8,0]) = P ([5,0,0]) = P(8) P(0)*

How many parameters do we need to estimate and how?
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Upper extreme: Full history model

Lety =[start,y,)2,...,Y,end].
P(y) =
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Upper extreme: Full history model

Lety =[start,y,)2,...,Y,end].

P(y) =P(nstart)
-P(ya|start,y)

: P(J/L|Sta1"ta)’17)/2; v 7yL—1)
-P(end|start,yr, Y2, ..., Y1-1,Y1)
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Upper extreme: Full history model

Lety =[start,y,)2,...,Y,end].

P(y) =P(yi|start)
P(y2|start, y)

P(J/L|Starta)’17)/2a cee 7yL—1)

P(end|3tart7Y1,YZ7 oo 7yL—1ayL)
L+1

_HP(yI|y17 '7yl 'I)

y
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Upper extreme: Full history model

Lety =[start,y,)2,...,Y,end].

P(y) =P(yi|start)
P(y2|start, y)

P(J/L|Starta)’17)/2a cee 7yL—1)

P(end|3tart7Y1,YZ7 oo 7yL—1ayL)
L+1

_HP(yI|y17 '7yl 'I)

y

e Each symbol y; generated based on entire history y'.
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Upper extreme: Full history model

Lety =[start,y,)2,...,Y,end].

P(y) =P(yi|start)
P(y2|start, y)

P(J/L|Starta)’17)/2a cee 7yL—1)

P(end’Stal"tJh}/z) oo 7yL—1ayL)
L+1

_HP(yI|y17 '7yl 'I)

y

e Each symbol y; generated based on entire history y'.
® Must estimate P(y|y’) for every possible history y'!
... and we’re back where we started: same as counting sequences.
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Upper extreme: Full history model

Lety =[start,y,)2,...,Y,end].

P(y) =P(yi|start)
P(y2|start, y)

P()/L|Stal"ta)’17)/27 cee 7yL—1)

P(end’StaIt7y17y27 oo 7yL—1ayL)
L+1

_HP(yI|y17 '7yl 'I)

y

e Each symbol y; generated based on entire history y'.
® Must estimate P(y|y’) for every possible history y'!

... and we’re back where we started: same as counting sequences.
e |dea: condition only on the last few symbols.
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In-between: Markov Models

Lety =[start,y,)a,...,Y, end].

P(y) =P(n|start) - P(yaly1) - ... - P(yelyr—1) - P(end|y;)
L+1

= H P(yilyi-—1)

e Each symbol only depends on the previous word.

* \We estimate transition probabilities P(y;|y;_1);
Including initial and final probabilities P(y;|start) and P(end|y; ).

e Total number of parameters:
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In-between: Markov Models

Lety =[start,y,)a,...,Y, end].

P(y) =P(n|start) - P(yaly1) - ... - P(yelyr—1) - P(end|y;)
L+1

= H P(yilyi-—1)

e Each symbol only depends on the previous word.
* \We estimate transition probabilities P(y;|y;_1);

Including initial and final probabilities P(y;|start) and P(end|y; ).
* Total number of parameters: O(|Z|2).

P(B|start) = 393 P(B|B) =.009 P(B|T) =.003 P(B|0) =.102

P(I|start) = P(1|B) =.369 P(1|1) =178 P(1|0) =.0

P(0O|start) = 607 P(0|B) =.610 P(0|1) =.779 P(0]0) =.815
P(end|start) = P(end|B) =.013  P(end|I) =.040 P(end|0) =.084
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Aside: k" order Markov Models

L+1
Lety = [start,y,¥,...,y1,end]. P(y)= H PWilyizt,---,Yi—k)
i=1

Each symbol depends on k previous symbols.
® Transition probabilities P(y;|yj_1, ..., Yi—k)
Total number of parameters: O(|X|*t1)
Widely used in language modeling

® Here, ¥ =the vocabulary of English words.
® Goal: next word prediction; P(w|“can we rely”) =7
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Estimating Markov Models: Maximum Likelihood

P(yi = blyj1=2) = Z#a[;f:, ]b,] = #7[;:]

b’ex

P(B|start) =.393 P(B|B) =.009 P(B|1) =.003 P(B|0) =.102

P(I|start) =.0 P(1|B) =.369 P(I|1) =178 P(1]0) =.0

P(0|start) =.607 P(0|B) =.610 P(0|T) =779 P(0]0) =.815
P(end|start) =.0 P(end|B) =.013  P(end|I) =.040 P(end|0) =.084
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Estimating Markov Models: Maximum Likelihood

P(yi = blyj1=2) = Z#a[‘:fab, ]b,] = #7[;:]

b’ex

P(B|start) =.393 P(B|B) =.009 P(B|1) =.003 P(B|0) =.102

P(I|start) =.0 P(1|B) =.369 P(I|1) =178 P(1]0) =.0

P(0|start) =.607 P(0|B) =.610 P(0|T) =779 P(0]0) =.815
P(end|start) =.0 P(end|B) =.013  P(end|I) =.040 P(end|0) =.084

We never saw [0 I],soP(I]|0)=0.
The model rules out any sequence containing [0 I]!
P([start,0,0,I,B,0,end]) = P(O|]start) - P(0|0) - P(1|0)-... =0
=0

18/89
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Estimating Markov Models: Maximum Likelihood

P(yi = blyj1=2) = Z#a[;fab, ]b,] = #7[;.,:]

b’ex

P(B|start) =.393 P(B|B) =.009 P(B|1) =.003 P(B|0) =.102

P(I|start) =.0 P(1|B) =.369 P(I|1) =178 P(1]0) =.0

P(0|start) =.607 P(0|B) =.610 P(0|T) =779 P(0]0) =.815
P(end|start) =.0 P(end|B) =.013  P(end|I) =.040 P(end|0) =.084

We never saw [0 I],soP(I]|0)=0.
The model rules out any sequence containing [0 I]!
P([start,0,0,I,B,0,end]) = P(O|]start) - P(0|0) - P(1|0)-... =0
=0
Here, this is correct; other times it may be just due to insufficient data.
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Estimating Markov Models: Maximum Likelihood

_ #la] _ #[a)
S #ee] #a

b’ex

P(yi = blyi—1 = a)

P(B|start) =.393 P(B|B) =.009 P(B|1) =.003 P(B|0) =.102

P(I|start) =.0 P(I|B) =.369 P(I|1) =178 P(1]0) =.0

P(0|start) =.607 P(0[B) =.610 P(0|T) =779 P(0]0) =.815
P(end|start) =.0 P(end|B) =.013  P(end|I) =.040 P(end|0) =.084

We never saw [0 I],soP(I]|0)=0.
The model rules out any sequence containing [0 I]!

P([start,0,0,I,B,0,end]) = P(O|]start) - P(0|0) - P(1|0)-... =0
=0
Here, this is correct; other times it may be just due to insufficient data.
Smoothing (one way): pretend we saw each possible transition once more

B N 4#[ab] 1+#[ab)]
P(yi=bly1=2a)= S H#[RD] T [E[4H#a
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What can we do with a Markov Model?

P(B|start) = .393 P(B|B) = .009 P(B|1) = .003 P(B|0) = .102

P(I|start) = .0 P(I|B) = .369 P(I|]T) = 178 P(Ij0)= .0

P(O|start) = .607  P(0|B)= .610  P(0|T) = .779 P(0j0) = .815
P(end|start) = .0 P(end|B) = .013  P(end|I) = .040 P(end|0) = .084

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 19/89



What can we do with a Markov Model?

P(B|start) = .393 P(B|B) = .009 P(B|1) = .003 P(BJ0) = .10
P(I|start) = .0 P(I|B) = .369 P(I]1) = 78 P(1]0) = .0
P(0|start) = .607 P(0|B) = .610 P(0|1) = .779 P(0jo) = .815

P(end|start) = .0 P(end|B) = .013  P(end|I) = .040 P(end|0) = .084

® Given a sequence, assess its likelihood under the model.
= [start,B, 0,0, end]

P(y) = P(B|start) P(0[B) P(0|0) P(end|0)
— .393-.610 - .815-.084 = .0164
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What can we do with a Markov Model?

P(B|start) = .393 P(B|B) = .009 P(B|I) = .003 P(B|0) = .10

P(I|start) = .0 P(I|B) = .369 P(I|]T) = 178 P(1]0) = .0

P(0jstart) = .607  P(0[B) = .610 P(0|T) = .779 P(0j0) = .815
P(end|start) = .0 P(end|B) = .013  P(end|I) = .040 P(end|0) = .084

® Given a sequence, assess its likelihood under the model.

= [start,B, 0,0, end]
P(y) = P(B|start) P(0[B) P(0|0) P(end|0)
=.393..610-.815-.084 = .0164

e Sample sequences, going from left to right!
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P(end|start) = .0 P(end|B) = .013 P(end|I) = .040 P(end|0) = .084

® Given a sequence, assess its likelihood under the model.

= [start,B, 0,0, end]
P(y) = P(B|start) P(0[B) P(0|0) P(end|0)
=.393..610-.815-.084 = .0164

e Sample sequences, going from left to right!
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What can we do with a Markov Model?

P(B|start) = .393 P(B|B) = .009 P(B|I) = .003 P(B|0) = .10

P(I|start) = .0 P(I|B) = .369 P(I|]T) = 178 P(1]0) = .0

P(0jstart) = .607  P(0[B) = .610 P(0|T) = .779 P(0j0) = .815
P(end|start) = .0 P(end|B) = .013  P(end|I) = .040 P(end|0) = .084

® Given a sequence, assess its likelihood under the model.
= [start,B, 0,0, end]
P(y) = P(B|start) P(0|B) P(0]0) P(end|0)
= .393-.610-.815:.084 = .0164

e Sample sequences, going from left to right!
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What can we do with a Markov Model?

P(B|start) = .393 P(B|B) = .009 P(B|I) = .003 P(B|0) = .10

P(I|start) = .0 P(I|B) = .369 P(I|]T) = 178 P(1]0) = .0

P(0jstart) = .607  P(0[B) = .610 P(0|T) = .779 P(0j0) = .815
P(end|start) = .0 P(end|B) = .013  P(end|I) = .040 P(end|0) = .084

® Given a sequence, assess its likelihood under the model.
= [start,B, 0,0, end]
P(y) = P(B|start) P(0|B) P(0]0) P(end|0)
= .393-.610-.815:.084 = .0164

e Sample sequences, going from left to right!

start /;\ /;\ /;\ end
NN
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What can we do with a Markov Model?

P(B|start) = .393 P(B|B) = .009 P(B|I) = . 03 P(B|0) = .10

P(I|start) = .0 P(I|B) = .369 P(I]I) = 1 P(1]0) = 0

P(0jstart) = .607  P(0[B) = .610 P(OJT) = . 79 P(0j0) = .815
P(end|start) = .0 P(end|B) = .013  P(end|I)= .0 P(end|0) = .084

® Given a sequence, assess its likelihood under the model.

= [start,B, 0,0, end]
P(y) = P(B|start) P(0[B) P(0|0) P(end|0)
=.393..610-.815-.084 = .0164

e Sample sequences, going from left to right!

start /;\ /;\ /;\ end
NN AN

e Predict the most likely next symbol (like your phone’s autocomplete)!
(As above, but take max instead of a random sample.
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What can we do with a MM? Incomplete data warm-up

P(B|start) = .393 P(B|B) = .009 P(B|I) = .003 P(B|0) = .102

P(I|]start) = .0 P(I|B) = .369 P(I]I) = 178 P(1jo) = .0

P(0|start) = .607 P(0|B) = .610 P(0]T) = .779 P(0|o) = .815
P(end|start) = .0 P(end|B) = .013  P(end|I) = .040 P(end|0) = .084

e What is the probability that the second symbol in a sequence is B?
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What can we do with a MM? Incomplete data warm-up

P(B|start) = .393 P(B|B) = .009 P(B|I) = .003 P(B|0) = .102

P(I|]start) = .0 P(I|B) = .369 P(I]I) = 178 P(1jo) = .0

P(0|start) = .607 P(0|B) = .610 P(0]T) = .779 P(0|o) = .815
P(end|start) = .0 P(end|B) = .013  P(end|I) = .040 P(end|0) = .084

e What is the probability that the second symbol in a sequence is B?
P([start,?,B]) = P(yo = start,y, =B) =7
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What can we do with a MM? Incomplete data warm-up

P(B|start) = .393 P(B|B) = .009 P(B|I) = .003 P(B|0) = .102

P(I|]start) = .0 P(I|B) = .369 P(I]I) = 178 P(1jo) = .0

P(0|start) = .607 P(0|B) = .610 P(0]T) = .779 P(0|o) = .815
P(end|start) = .0 P(end|B) = .013  P(end|I) = .040 P(end|0) = .084

e What is the probability that the second symbol in a sequence is B?
P([start,?,B]) = P(yo = start,y, =B) =7

* We must consider all possible choices for y;. Recall P(b) = >, P(a, b)!
P([start,?,B]) = Eye): P([start,y,B])

= P([start, B, B]) + P([start, I,B]) + P([start, 0, B])
=.393..009 4.0 - .003 + .607 - .102 = .065
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What can we do with a MM? Incomplete data warm-up

P(B|start) = .393 P(B|B) = .009 P(B|I) = .003 P(B|0) = .102
P(I|]start) = .0 P(I|B) = .369 P(I]I) = 178 P(1jo) = .0
P(0|start) = .607 P(0|B) = .610 P(0]1) = .779 P(0|o) = .815
P(end|start) = .0 P(end|B) = .013  P(end|I) = .040 P(end|0) = .084

e What is the probability that the second symbol in a sequence is B?
P([start,?,B]) = P(yo = start,y, =B) =7

* We must consider all possible choices for y;. Recall P(b) = >, P(a, b)!
P([start,?,B]) = Eye): P([start,y,B])

= P([start, B, B]) + P([start, I,B]) + P([start, 0, B])
=.393..009 4.0 - .003 + .607 - .102 = .065

* How about the proba of B as third symbol?
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What can we do with a MM? Incomplete data warm-up

P(B|start) = .393 P(B|B) = .009 P(B|I) = .003 P(B|0) = .102

P(I|]start) = .0 P(I|B) = .369 P(I]I) = 178 P(1jo) = .0

P(0|start) = .607 P(0|B) = .610 P(0]T) = .779 P(0|o) = .815
P(end|start) = .0 P(end|B) = .013  P(end|I) = .040 P(end|0) = .084

e What is the probability that the second symbol in a sequence is B?
P([start,?,B]) = P(yo = start,y, =B) =7

* We must consider all possible choices for y;. Recall P(b) = >, P(a, b)!
P([start,?,B]) = Zye): P([start,y,B])
= P([start, B, B]) + P([start, I,B]) + P([start, 0, B])
=.393-.009 + .0 - .003 4 .607 - .102 = .065
* How about the proba of B as third symbol?

P([start,?,?,B]) = Zy162 Zyzei P([start,y,,y,,B]) = P([start, B, B, B]) + P([start, B, I,B]) +
(regrouping) =P([start,?,B,B]) + P([start, ?,1,B]) + P([start,?,0,B])
=P([start, ?,B]) P(B|B) + P([start, 7, I]) P(B|I) 4+ P([start, ?,0]) P(B|0)
= Zyzez P([start,?,y,]) P(y,|B) (A pattern we’ll see again soon!)
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What can we do with a MM?

P(B|start) = .393 P(B|B) = .009 P(B]1) = .003 P(B|0) =

P(I|start) = .0 P(I|B) = .369 P(I]1) = 178 P(1]0) =

P(0|start) = .607 P(0|B) = .610 P(0|1) = .779 P(0j0) = 815
P(end|start) = .0 P(end[B) = .013  P(end|I) = .040 P(end|0) = .084

102

e Canwedo NER?
start B 0 0 end

Halloween is coming

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 21/89



What can we do with a MM?

P(B|start) = .393 P(B|B) = .009 P(B]1) = .003 P(B|0) = .10
P(I|start) = .0 P(I|B) = .369 P(I|1) = 178 P(z]0) = 0
P(0|start) = .607 P(0|B) = .610 P(0|1) = .779 P(0j0) = .815
P(end|start) = .0 P(end[B) = .013  P(end|I) = .040 P(end|0) = .084

® Canwedo NER?
start B 0 0 end

Halloween is coming

Not well! —a model of P(y) does not take x into account!
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What can we do with a MM?

P(B|start) = .393 P(B|B) = .009 P(B]1) = .003 P(B|0) = .10
P(I|start) = .0 P(I|B) = .369 P(I|1) = 178 P(z]0) = 0
P(0|start) = .607 P(0|B) = .610 P(0|1) = .779 P(0j0) = .815
P(end|start) = .0 P(end[B) = .013  P(end|I) = .040 P(end|0) = .084

® Canwedo NER?
start B 0 0 end

Halloween is coming

Not well! —a model of P(y) does not take x into account!
® We want a model that can take x into account, too.
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@ Generative Sequence Models

Hidden Markov Models
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Remember Naive Bayes

* We want P(y|x) for prediction.
* We build two simpler models:

P(y)

P(zly)

e Observe x and use Bayes’ rule:
P(y|z) o< P(y) P(z|y)
® For NER, a form of NB:

P(y) = H P(vi)
P(z]y) = H P(xily:)
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Remember Naive Bayes

e We want P(y|x) for prediction. B I 0
. . P(y)= .15 .052 .833

® We build two simpler models: P(Southly) = .0051 .0002 .0

P(y) P(Africaly) = .0003 .0056 .0
P(underly) = .0 .0 .0009

P(Mountains|y) = .0 .0002 .0
P(z|y) P(of|y): 0 L0127 .0212

e Observe x and use Bayes’ rule:
P(y|z) o< P(y) P(z|y)
® For NER, a form of NB:

P(y) = H P(vi)
P(z]y) = H P(xily:)
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Remember Naive Bayes

e We want P(y|x) for prediction. B I 0
. . P(y)= .15 .052 .833

® We build two simpler models: P(Southly) = .0051 .0002 .0

P(y) P(Africaly) = .0003 .0056 .0
P(underly) = .0 .0 .0009

P(Mountains|y) = .0 .0002 .0
P(z|y) P(of|y): 0 L0127 .0212

e Observe x and use Bayes’ rule:

Plyle) x P(y) P(aly) ’ G G
® For NER, a form of NB:

P(’!/)ZHP(Y:')

R OIOIO
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Remember Naive Bayes

e We want P(y|x) for prediction. B I 0
. . P(y)= .15 .052 .833

® We build two simpler models: P(Southly) = .0051 .0002 .0

P(y) P(Africaly) = .0003 .0056 .0
P(underly) = .0 .0 .0009

P(Mountains|y) = .0 .0002 .0
P(z|y) P(of|y): 0 L0127 .0212

e Observe x and use Bayes’ rule:

Plyle) x P(y) P(aly) ’ G G
® For NER, a form of NB:

P(’!/)ZHP(Y:')

-l & () (=
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Remember Naive Bayes

e We want P(y|x) for prediction. B I 0
. . P(y)= .15 .052 .833

® We build two simpler models: P(Southly) = .0051 .0002 .0

P(y) P(Africaly) = .0003 .0056 .0
P(underly) = .0 .0 .0009

P(Mountains|y) = .0 .0002 .0
P(z|y) P(of|y): 0 L0127 .0212

e Observe x and use Bayes’ rule:

Plyle) x P(y) P(aly) ’ ‘ ‘
® For NER, a form of NB:

P(’!/)ZHP(Y:')

-l & () (=
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Remember Naive Bayes

e We want P(y|x) for prediction. B I 0
. . P(y)= .15 .052 .833

® We build two simpler models: P(Southly) = .0051 .0002 .0

P(y) P(Africaly) = .0003 .0056 .0
P(underly) = .0 .0 .0009

P(Mountains|y) = .0 .0002 .0
P(z|y) P(of|y): 0 L0127 .0212

e Observe x and use Bayes’ rule:

Plyle) x P(y) P(aly) ’ ‘ ‘
® For NER, a form of NB:

P(’!/)ZHP(Y:')

-l & () (=

Why so bad?
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Remember Naive Bayes

e We want P(y|x) for prediction. B I 0

P(y)= .15 .052 .833
® We build two simpler models: P(Southly) — .0051 .0002 «
P(y) PP(Africa|y)— .0003 .0056 ¢
(underly) € .0009
P(Mountains|y) = .0002 ¢
P(z|y) P(of|y) 0127 .0212

e Observe x and use Bayes’ rule:

Plyle) x P(y) P(aly) ’ ‘ ‘
® For NER, a form of NB:

P(’!/)ZHP(Y:')

-l & () (=

Why so bad? Smoothing doesn’t fix it.
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Remember Naive Bayes

e We want P(y|x) for prediction. B I 0

P(y)= .15 .052 .833
® We build two simpler models: P(Southly) — .0051 .0002 «
P(y) PP(Africa|y)— .0003 .0056 ¢
(underly) € .0009
P(Mountains|y) = .0002 ¢
P(z|y) P(of|y) 0127 .0212

e Observe x and use Bayes’ rule:

Plyle) x P(y) P(aly) ’ ‘ ‘
® For NER, a form of NB:

P(’!/)ZHP(Y:')

-l & () (=

Why so bad? Smoothing doesn’t fix it.
P([L 0 I])=.225> 0!
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Hidden Markov Models

e Jointly model a sequence of observations x; and hidden states y;.
e States modeled by a first-order Markov model.
e Each observation is conditioned only on the corresponding state.

x=[x,....,x]; y=][start,y,...,y,end].
L+1 L

P(z,y) = H P(yilyi-1) - H P(xilyi)

P(y) P(xy)
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Estimating HMMs: Maximum Likelihood

L(x)+1 L(x)
maximize < H P(x,vy) H H P(ilyi- H P(XIU’i))

(x,y)eD (z,y)eD i=1 i=1

A HMM is “just” a Markov model and an emission model :P
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Estimating HMMs: Maximum Likelihood

L(x)+1 L(x)
maximize < H P(x,vy) H H P(ilyi- H P(XIU’i))
i=1

A HMM is “just” a Markov model and an emission model :P
Transition probabilities: P(y; = by = a) = % just like the MM!

P(B|start) =.393 P(B|B) =.009 P(B|1) =.003 P(B|0) =.102

P(I|start) =.0 P(1|B) =.369 P(1|1) =178 P(1]0) =.0

P(0|start) =.607 P(0|B) =.610 P(0|T) =779 P(0|0) =.815
P(end|start) =.0 P(end|B) =.013  P(end|I) =.040 P(end|0) =.084
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Estimating HMMs: Maximum Likelihood

L(x)+1

L(x)
maximize < H P(x,vy) H H P(ilyi- H P(XIU’i))
i=1

A HMM is “just” a Markov model and an emission model :P

Transition probabilities: P(y; = by = a) = % just like the MM!

P(B|start) =.393 P(B|B) =.009 P(B|1) =.003 P(B|0) =.102

P(I|start) =.0 P(1|B) =.369 P(1|1) =178 P(1]0) =.0

P(0|start) =.607 P(0|B) =.610 P(0|T) =779 P(0|0) =.815
P(end|start) =.0 P(end|B) =.013  P(end|I) =.040 P(end|0) =.084

~— — — —

Emission probabilities: P(x; = w|y; = a) = % just like NB!
B I 0
P(Southly) = .0051 .0002 e
P(Africaly) = .0003 .0056 ¢
P(Mountains|y) = .0002 €
P(of|y) = .0127 .0212
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What can we do with an HMM?

B I 0
start B I 0
P(Bly) = .393 .009 .003 .102 P(Southly) = .0051 0002 ¢
P(Africaly) = .0003 .0056 ¢
P(Ily)=.0  .369 .178 .0 :
P(oly) = .607 610 .779 815 P(Mountains|y) = e .0002 ¢
’ ’ ' ’ P(ofly) = € .0127 .0212

P(endly) = .0  .013 .040 .084
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What can we do with an HMM?

B I 0
start B I 0
P(Bly) = .393 .009 .003 .102 P(Southly) = .0051 0002 ¢
P(Africaly) = .0003 .0056 ¢
P(Ily)=.0  .369 .178 .0 :
P(oly) = .607 610 .779 815 P(Mountains|y) = e .0002 ¢
’ ’ ' ’ P(ofly) = € .0127 .0212

P(endly) = .0  .013 .040 .084

® Given a labeled sequence (x, y), assess its likelihood under the model.
x = [Mountains, of, Africa]; y = [start,B,0,B, end]
P(x,y) = P(B|start) P(0|B) P(B|0) P(end|B)
- P(Mountains|B) P(of|0) P(Africa|B) = 8 - 107"
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What can we do with an HMM?

B I 0
start B I 0
P(Bly) = .393 .009 .003 .102 P(Southly) = .0051 0002 ¢
P(Africaly) = .0003 .0056 ¢
P(Ily)=.0  .369 .178 .0 :
P(oly) = .607 610 .779 815 P(Mountains|y) = e .0002 ¢
’ ’ ' ’ P(ofly) = € .0127 .0212

P(endly) = .0  .013 .040 .084

® Given a labeled sequence (x, y), assess its likelihood under the model.
x = [Mountains, of, Africa]; y = [start,B,0,B, end]
P(x,y) = P(B|start) P(0|B) P(B|0) P(end|B)
- P(Mountains|B) P(of|0) P(Africa|B) = 8 - 107"

e Sample labelled sequences.
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What can we do with an HMM?

B I 0
start B I 0
P(Bly) = .393 .009 .003 .102 P(Southly) = .0051 0002 ¢
P(Africaly) = .0003 .0056 ¢
P(Ily)= .0  .369 .178 .0 )
P(oly) = .607 610 .779 815 P(Mountains|y) = e .0002 ¢
’ ] ' ’ P(ofly) = € .0127 .0212

P(endly) = .0 .013 .040 .084

® Given a labeled sequence (x, y), assess its likelihood under the model.
x = [Mountains, of, Africa]; y = [start,B,0,B, end]
P(x,y) = P(B|start) P(0|B) P(B|0) P(end|B)
- P(Mountains|B) P(of|0) P(Africa|B) = 8 - 107"

e Sample labelled sequences.
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What can we do with an HMM?

B I 0
start B I 0
P(Bly) = .393 .009 .003 .102 P(Southly) = .0051 0002 ¢
P(Africaly) = .0003 .0056 ¢
P(Ily)=.0  .369 .178 .0 :
P(oly) = .607 610 .779 815 P(Mountains|y) = e .0002 ¢
’ ’ ' ’ P(ofly) = € .0127 .0212

P(endly) = .0  .013 .040 .084

® Given a labeled sequence (x, y), assess its likelihood under the model.
x = [Mountains, of, Africa]; y = [start,B,0,B, end]
P(x,y) = P(B|start) P(0|B) P(B|0) P(end|B)
- P(Mountains|B) P(of|0) P(Africa|B) = 8 - 107"

e Sample labelled sequences.
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What can we do with an HMM?

B I 0
start B I 0
P(Bly) = .393 .009 .00% .102 P(Southly) = .0051 0002 ¢
P(Africaly) = .0003 .0056 ¢
P(Ily)=.0  .369 .178 .0 )
P(oly) = .607 610 .77 815 P(Mountains|y) = e .0002 ¢
’ ’ N P(ofly) = € .0127 .0212

P(endly) = .0  .013 .04( .084

® Given a labeled sequence (x, y), assess its likelihood under the model.
x = [Mountains, of, Africa]; y = [start,B,0,B, end]
P(x,y) = P(B|start) P(0|B) P(B|0) P(end|B)
- P(Mountains|B) P(of|0) P(Africa|B) = 8 - 107"

e Sample labelled sequences.

)
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What can we do with an HMM?

B I 0
start B I 0
P(Bly) = .393 .009 .003 .102 P(Southly) = .0051 0002 ¢
P(Africaly) = .0003 .0056 ¢
P(Ily)=.0  .369 .178 .0 :
P(oly) = .607 610 .779 815 P(Mountains|y) = e .0002 ¢
’ ’ ' ’ P(ofly) = € .0127 .0212

P(endly) = .0  .013 .040 .084

® Given a labeled sequence (x, y), assess its likelihood under the model.
x = [Mountains, of, Africa]; y = [start,B,0,B, end]
P(x,y) = P(B|start) P(0|B) P(B|0) P(end|B)
- P(Mountains|B) P(of|0) P(Africa|B) = 8 - 107"

e Sample labelled sequences.

=SRoN0R0
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What can we do with an HMM?

B I 0
start B I 0
P(Bly) = .393 .009 .003 .102 P(Southly) = 0051 ~.0002 ¢
P(Africaly) = .0003 .0056 ¢
P(Ily)=.0  .369 .178 .0 :
P(oly) = .607 610 .779 815 P(Mountains|y) = € .0002 ¢
’ ’ ' ’ P(ofly) = € .0127 .0212

P(endly) = .0  .013 .040 .084

® Given a labeled sequence (x, y), assess its likelihood under the model.
x = [Mountains, of, Africa]; y = [start,B,0,B, end]
P(x,y) = P(B|start) P(0|B) P(B|0) P(end|B)
- P(Mountains|B) P(of|0) P(Africa|B) = 8 - 107"

e Sample labelled sequences.

=RoNoN0
()
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What can we do with an HMM?

B I 0
start B I 0
P(Bly) = .393 .009 .003 .102 P(Southly) = .0051 0002 ¢
P(Africaly) = .0003 .0056 ¢
P(Ily)=.0  .369 .178 .0 :
P(oly) = .607 610 .779 815 P(Mountains|y) = e .0002 ¢
’ ’ ' ’ P(ofly) = € .0127 .0212

P(endly) = .0  .013 .040 .084

® Given a labeled sequence (x, y), assess its likelihood under the model.
x = [Mountains, of, Africa]; y = [start,B,0,B, end]
P(x,y) = P(B|start) P(0|B) P(B|0) P(end|B)
- P(Mountains|B) P(of|0) P(Africa|B) = 8 - 107"

e Sample labelled sequences.

ENONONO
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What can we do with an HMM?

B I 0
start B I 0
P(Bly) = .393 .009 .003 .102 P(Southly) = .0051 0002 ¢
P(Africaly) = .0003 .0056 ¢
P(Ily)=.0  .369 .178 .0 )
P(0ly) = .607 610 .779 815 P(Mountains|y) = e .0002 ¢
’ ' ] ’ P(ofly) = € .0127 .0212

P(endly) = .0  .013 .040 .084

® Given a labeled sequence (x, y), assess its likelihood under the model.
x = [Mountains, of, Africa]; y = [start,B,0,B, end]
P(x,y) = P(B|start) P(0|B) P(B|0) P(end|B)
- P(Mountains|B) P(of|0) P(Africa|B) = 8 - 107"

e Sample labelled sequences.

ENONONO
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What can we do with an HMM?

B I 0
start B I 0
P(Bly) = .393 .009 .003 .102 P(Southly) = .0051 0002 ¢
P(Africaly) = .0003 .0056 ¢
P(Ily)=.0  .369 .178 .0 :
P(oly) = .607 610 .779 815 P(Mountains|y) = e .0002 ¢
’ ’ ' ’ P(ofly) = € .0127 .0212

P(endly) = .0  .013 .040 .084

® Given a labeled sequence (x, y), assess its likelihood under the model.
x = [Mountains, of, Africa]; y = [start,B,0,B, end]
P(x,y) = P(B|start) P(0|B) P(B|0) P(end|B)
- P(Mountains|B) P(of|0) P(Africa|B) = 8 - 107"

e Sample labelled sequences.

e —(D—O—O—®
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What can we do with an HMM?

B I 0
start B I 0
P(Bly) = .393 .009 .003 .102 P(Southly) = 0051 ~.0002 ¢
P(Africaly) = .0003 .0056 ¢
P(Ily)=.0  .369 .178 .0 :
P(oly) = .607 610 .779 815 P(Mountains|y) = € .0002 ¢
’ ’ ' ’ P(ofly) = € .0127 .0212

P(endly) = .0  .013 .040 .084

® Given a labeled sequence (x, y), assess its likelihood under the model.
x = [Mountains, of, Africa]; y = [start,B,0,B, end]
P(x,y) = P(B|start) P(0|B) P(B|0) P(end|B)
- P(Mountains|B) P(of|0) P(Africa|B) = 8 - 107"

e Sample labelled sequences.

e (OD)—O—O—
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What can we do with an HMM?

B I 0
start B I 0
P(Bly) = .393 .009 .003 .102 P(Southly) = .0051 0002 ¢
P(Africaly) = .0003 .0056 ¢
P(Ily)=.0  .369 .178 .0 :
P(oly) = .607 610 .779 815 P(Mountains|y) = e .0002 ¢
’ ’ ' ’ P(ofly) = € .0127 .0212

P(endly) = .0  .013 .040 .084

® Given a labeled sequence (x, y), assess its likelihood under the model.
x = [Mountains, of, Africa]; y = [start,B,0,B, end]
P(x,y) = P(B|start) P(0|B) P(B|0) P(end|B)
- P(Mountains|B) P(of|0) P(Africa|B) = 8 - 107"

e Sample labelled sequences.

E——O—O—®
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What can we do with an HMM?

B I 0
start B I 0
P(Bly) = .393 .009 .003 .102 P(Southly) = .0051 0002 ¢
P(Africaly) = .0003 .0056 ¢
P(Ily)=.0  .369 .178 .0 )
P(0ly) = .607 610 .779 815 P(Mountains|y) = e .0002 ¢
’ ’ ] ’ P(ofly) = € .0127 .0212

P(endly) = .0  .013 .040 .084

® Given a labeled sequence (x, y), assess its likelihood under the model.
x = [Mountains, of, Africa]; y = [start,B,0,B, end]
P(x,y) = P(B|start) P(0|B) P(B|0) P(end|B)
- P(Mountains|B) P(of|0) P(Africa|B) = 8 - 107"

e Sample labelled sequences.

e O—O—O—
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What can we do with an HMM?

B I 0
start B I 0
P(Bly) = .393 .009 .003 .102 P(Southly) = .0051 0002 ¢
P(Africaly) = .0003 .0056 ¢
P(Ily)=.0  .369 .178 .0 :
P(oly) = .607 610 .779 815 P(Mountains|y) = e .0002 ¢
’ ’ ' ’ P(ofly) = € .0127 .0212

P(endly) = .0  .013 .040 .084

® Given a labeled sequence (x, y), assess its likelihood under the model.
x = [Mountains, of, Africa]; y = [start,B,0,B, end]
P(x,y) = P(B|start) P(0|B) P(B|0) P(end|B)
- P(Mountains|B) P(of|0) P(Africa|B) = 8 - 107"

e Sample labelled sequences.

e —( (D)@
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What can we do with an HMM?

B I 0
start B I 0
P(Bly) = .393 .009 .003 .102 P(Southly) = .0051 0002 ¢
P(Africaly) = .0003 .0056 ¢
P(Ily)=.0  .369 .178 .0 :
P(oly) = .607 610 .779 815 P(Mountains|y) = e .0002 ¢
’ ’ ' ’ P(ofly) = € .0127 .0212

P(endly) = .0  .013 .040 .084

® Given a labeled sequence (x, y), assess its likelihood under the model.
x = [Mountains, of, Africa]; y = [start,B,0,B, end]
P(x,y) = P(B|start) P(0|B) P(B|0) P(end|B)
- P(Mountains|B) P(of|0) P(Africa|B) = 8 - 107"

e Sample labelled sequences.

e—(D—(OD—(—=

¢ Auto-complete equivalent: predict the most likely xx1 given xy, y«.
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Big HMM questions

© Whatis the most likely
label sequence y, given x?

© What is the probability of x?

©® What is the probability of each
assignment y;, given x?

@ What is the probability of each
transitiony — y’, given x?

© What sequence y minimizes the
Hamming cost?
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Big HMM questions: Finding the most likely y

B I 0
P(Southly .0051 .0002 ¢
€
€

start B I 0 )=
P(Africaly) = .0003 .0056
) —
) —

P(Bly) = .393 .009 .003 .102

P(Ily)= .0 .369 .178 .0

P(0Oly) = .607 .610 .779 .815
P(endly) = .0 .013 .040 .084

P(Mountains|y) = .0002

€
P(ofly) = € .0127 .0212

e Can we predict the most likely label sequence y for a given x?

arg max,, P(y|x)
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Big HMM questions: Finding the most likely y

B I 0
P(Southly .0051 .0002 ¢
€
€

start B I 0 )=
P(Africaly) = .0003 .0056
) —
) —

P(Bly) = .393 .009 .003 .102

P(Ily)= .0 .369 .178 .0

P(0Oly) = .607 .610 .779 .815
P(endly) = .0 .013 .040 .084

P(Mountains|y) = ¢ .0002
P(ofly) = € .0127 .0212

e Can we predict the most likely label sequence y for a given x?

arg max,, P(y|x) = arg max, % = arg max,, P(z, y)
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Big HMM questions: Finding the most likely y

B I 0
start B I 0
P(Bly) = .393 .009 .003 .102 P(Southly) = .0051 .0002
P(Africaly) = .00 03 .0056 ¢
P(Ily)= .0  .369 .178 .0 :

P(Mountains|y) = ¢ .0002 ¢

P(0ly) = .607 .610 .779 .815 P(oﬂy)_ ‘ o2 0ot
P(endly) = .0  .013 .040 .084 ' '

e Can we predict the most likely label sequence y for a given x?

arg max,, P(y|x) = arg max, F(,?;;) = arg max,, P(z, y)
One algo: enumeration (correct, but prohibitive):
fory € Xt

compute P(x, y)
Return the highest found.
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Big HMM questions: Finding the most likely y

B I 0
start B I 0
P(Bly) = .393 .009 .003 .102 P(Southly) = .0051 0002 ¢
P(Africaly) = .0003 .0056 ¢
P(Ily)=.0  .369 .178 .0 :
P(Mountains|y) = e .0002 ¢
P(0ly) = .607 .610 .779 .815 P(of|y)— ) o127 0212
P(endly) = .0  .013 .040 .084 : :

e Can we predict the most likely label sequence y for a given x?

arg max,, P(y|x) = arg max,, P,S‘E’j;g) = arg max,, P(z,y)

One algo: enumeration (correct, but prohibitive):

fory, € x:
fory, € &

fory, € ¥
compute P(x, y)
Return the highest found.
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Big HMM questions: Finding the most likely y

Fast idea: Greedy prediction!
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Big HMM questions: Finding the most likely y

Fast idea: Greedy prediction!

® y1 = argmaxycy P(y[start) P(xly)
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Big HMM questions: Finding the most likely y

Fast idea: Greedy prediction!

® y1 = argmaxycy P(y[start) P(xly)
° y2 = argmax,cxy P(y|y1) P(xaly)
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Big HMM questions: Finding the most likely y

Fast idea: Greedy prediction!

® y1 = argmaxycy P(y[start) P(xly)
® Y2 = argmax,cy P(yly1) P(xaly)
® y3 = argmax,cy P(yly2) P(x3|y) P(endly)
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Big HMM questions: Finding the most likely y

Fast idea: Greedy prediction!

® y1 = argmaxycy P(y[start) P(xly)
° y2 = argmax,cxy P(y|y1) P(xaly)

° y3 = argmax,ex P(yly2) P(xsly) P(endly)
Is this algorithm correct? (Does it return arg max,, P(z, y)?)
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Big HMM questions: Finding the most likely y

Greedy prediction!
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Big HMM questions: Finding the most likely y

Greedy prediction!
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Big HMM questions: Finding the most likely y

Greedy prediction!
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Big HMM questions: Finding the most likely y

Greedy prediction!

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 30/89



Big HMM questions: Finding the most likely y

Greedy prediction!

® The true arg max, P(z,y) = [0, B, 0]
® We just got lucky the first time! What went wrong?
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Big HMM questions: Finding the most likely y

Greedy prediction!

® The true arg max, P(z,y) = [0, B, 0]
® We just got lucky the first time! What went wrong?
® We commit to a wrong label in the beginning, and can’t go back.
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Big HMM questions: Finding the most likely y

Greedy prediction!

® The true arg max, P(z,y) = [0, B, 0]

We just got lucky the first time! What went wrong?
® We commit to a wrong label in the beginning, and can’t go back.

We should keep some memory of the past, to be able to undo.

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019
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Big HMM questions: Finding the most likely y
P41 s X331, o1 1) = T PO P(ilyi)

e Atstepi, let’s assign a score to each possible choice for y;. It will
depend on the optimal labels y1, ..., yi_1.
scorei(y) = max P(x, 1., X1, Vi1, X, Vi = V)

But wait!
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Big HMM questions: Finding the most likely y
P41 s X331, o1 1) = T PO P(ilyi)

e Atstepi, let’s assign a score to each possible choice for y;. It will
depend on the optimal labels y1, ..., yi_1.
scorei(y) = max P(x, 1., X1, Vi1, X, Vi = V)
But wait!

= max_(P(qly) POlyi1) POy, - X1, 3ic)
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Big HMM questions: Finding the most likely y
P41 s X331, o1 1) = T PO P(ilyi)

e Atstepi, let’s assign a score to each possible choice for y;. It will
depend on the optimal labels y1, ..., yi_1.

SCOVGI(Y) =ymax P(Xh)/h e s Xie1, Vi1, X Vi :y)

Tyeeesdi—1

But wait!
= max (POl PO POy, 3i01,7i))
= P(xi|y) max ( P(/[y) max P(xi,yr,... X1,V = y’))
y Yy Yi—2
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Big HMM questions: Finding the most likely y
P41 s X331, o1 1) = T PO P(ilyi)

e Atstepi, let’s assign a score to each possible choice for y;. It will
depend on the optimal labels y1, ..., yi_1.

SCOVGI(Y) =ymax P(Xh)/h e s Xie1, Vi1, X Vi :y)

Tyeeesdi—1

But wait!
= max (POl PO POy, 3i01,7i))
= P(xi|y) max ( P(/[y) max P(xi,yr,... X1,V = y’)>
y Yy Yi—2

= Plxly) max ( P(/IY') scorem(y’))
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Big HMM questions: Finding the most likely y
P41 s X331, o1 1) = T PO P(ilyi)

e Atstepi, let’s assign a score to each possible choice for y;. It will
depend on the optimal labels y1, ..., yi_1.

SCOVGI(Y) =ymax P(Xh)/h e s Xie1, Vi1, X Vi :y)

Tyeeesdi—1

But wait!
= max (POl PO POy, 3i01,7i))
= P(xi|y) max ( P(/[y) max P(xi,yr,... X1,V = y’)>
y Yy Yi—2

= Plxly) max ( P(/IY') scorem(y’))

® We can compute the scores recursively!
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Big HMM questions: Finding the most likely y

B

scorei(y) = P(xily) max P(yly’) scorei(y")
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Big HMM questions: Finding the most likely y

B

score;(B)

I | score(I)
CICICIE
scorei(y) = P(xily) max P(yly’) scorei(y")

® At/ =1,the previous label can only be start:
score;(B) = P(New|B) P(B|start)
score)(I) = P(New|I) P(I|start)
score;(0) = P(New|0) P(0|start)
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Big HMM questions: Finding the most likely y

B | .002

I 0

scorei(y) = P(xily) max P(yly’) scorei(y")

e At/ =1,the previous label can only be start:
score;(B) = P(New|B) P(B|start) = .006 - .393
score)(I) = P(New|I) P(I|start) =.001-.0
score;(0) = P(New|0) P(0|start) = .0006 - .607
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Big HMM questions: Finding the most likely y

B | .002

I 0

scorei(y) = P(xily) max P(yly’) scorei(y")

e At/ =1,the previous label can only be start:
score;(B) = P(New|B) P(B|start) = .006 - .393
score)(I) = P(New|I) P(I|start) =.001-.0
score;(0) = P(New|0) P(0|start) = .0006 - .607

° Ati=2:

scorez(B) = P(U.S.|B) max P(B|y’) scorer (y')
y/

P(B|B) score; (B) = .009 -.002 = .00002
= P(U.S.|B) max { P(B|I)score;(I) =.003-.0 .0 = .016 - .00003
P(B|0) score; (D) = .102 - .0003 = .00003
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Big HMM questions: Finding the most likely y

B | .002 5e-7

I 0

scorei(y) = P(xily) max P(yly’) scorei(y")

e At/ =1,the previous label can only be start:
score;(B) = P(New|B) P(B|start) = .006 - .393
score)(I) = P(New|I) P(I|start) =.001-.0
score;(0) = P(New|0) P(0|start) = .0006 - .607

° Ati=2:

scorez(B) = P(U.S.|B) max P(B|y’) scorer (y')
y/

P(B|B) score; (B) = .009 -.002 = .00002
= P(U.S.|B) max { P(B|I)score;(I) =.003-.0 .0 = .016 - .00003
P(B|0) score; (D) = .102 - .0003 = .00003

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 32/89



Big HMM questions: Finding the most likely y

B | .002 5e-7

I 0 Te-n

@ @ @ 0 | .0003 6e12

scorei(y) = P(xily) max P(yly’) scorei(y")

e At/ =1,the previous label can only be start:
score;(B) = P(New|B) P(B|start) = .006 - .393
score)(I) = P(New|I) P(I|start) =.001-.0
score;(0) = P(New|0) P(0|start) = .0006 - .607

° Ati=2:

scorez(B) = P(U.S.|B) max P(B|y’) scorer (y')
y/

P(B|B) score; (B) = .009 -.002 = .00002
= P(U.S.|B) max { P(B|I)score;(I) =.003-.0 .0 = .016 - .00003
P(B|0) score; (D) = .102 - .0003 = .00003
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Big HMM questions: Finding the most likely y

B | .002 5e-7 2e-16

I 0 Te-1 2e-14

@ @ @ 0 | .0003 6e12 5em

scorei(y) = P(xily) max P(yly’) scorei(y")

® At/ =1,the previous label can only be start:
score)(B) = P(New|B) P(B|start) = .006 - .393
score)(I) = P(New|I) P(I|start) =.001-.0
score;(0) = P(New|0) P(0|start) = .0006 - .607

° Ati=2:

scorez(B) = P(U.S.|B) max P(B|y’) scorer (y')
y/

P(B|B) score; (B) = .009 - .002 = .00002
= P(U.S.|B) max q P(B|I)score;(I) =.003-.0 =.0 = .016 - .00003
P(B|0) score; (D) = .102 - .0003 = .00003
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Big HMM questions: Finding the most likely y

B | .002 5e-7 2e-16

I 0 Te-1 2e-14

@ @ @ 0 | .0003 6e12 5em

scorei(y) = P(xily) max P(yly’) scorei(y")

e Atthe end we observe:

max P(end|y) score (y) = maxP(end|y) max P(x,y1,.... XYL =Y)
y y YiyenYi—

=maxP(x,vy)
Y

IST,Fall2019  32/89
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Big HMM questions: Finding the most likely y

B | .002 5e-7 2e-16

I 0 Te-1 2e-14

@ @ @ 0 | .0003 6e12 5em

scorei(y) = P(xily) max P(yly’) scorei(y")

e Atthe end we observe:

max P(end|y) score (y) = maxP(end|y) max P(x,y1,.... XYL =Y)
y y YiyenYi—

=maxP(x,vy)
Y

® |nthis case,

P(end|I)scores(I) = .04 - 2e-14 = 4e-12

P(end|B) score3(B) = .013 - 2e-16
max
P(end|0) scorez(0) = .084 - 5e-11

IST,Fall2019  32/89
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Big HMM questions: Finding the most likely y

B | .002 5e-7 2e-16

I 0 Te-1 2e-14

@ @ @ 0 | .0003 6e12 5em

scorei(y) = P(xily) max P(yly’) scorei(y")

e Atthe end we observe:

max P(end|y) score (y) = maxP(end|y) max P(x,y1,.... XYL =Y)
y y YiyenYi—

=maxP(x,vy)
Y

® |nthis case,

P(end|B) score3(B) = .013 - 2e-16
max ¢ P(end|I)score3(I) = .04 - 2e-14 = 4e-12
P(end|0) scorez(0) = .084 - 5e-11

e What is the y that gives this value?
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Big HMM questions: Finding the most likely y

@ a G G @ B ooz 5e 7 2e 16
Te- 11’\2e 14
@ @ @ o ooo 6e-12 el

scorei(y) = P(xily) max P(yly’) scorei(y")

e Atthe end we observe:

max P(end|y) score; (y) = max P(end|y) max P(x1,y1, -, XL, YL = Y)
y y BARTRER /B

=maxP(x,vy)
Y

® |nthis case,

P(end|B) score3(B) = .013 - 2e-16
m P(end|I)scores(I) = .04 - 2e-14 = 4e-12
P(end|0) scorez(0) = .084 - 5e-11

e What is the y that gives this value? Backtrace remembering each max!
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The Viterbi algorithm

input: sequence xi, ..., x;, emission and transition probabilities

Forward: compute scores recursively
score;(y) = P(y|start) - P(xly) Wy ex
fori=2toLdo

fory € Y do

scorei(y) = P(xily) - max, (P(y|y’) 'score,-_1(y’))
backptr;(y) = argmax, (P(y|y’) . score,q(y’))

Backward: follow backpointers
p = maxy (P(end|y’) . scoreL(y’))
YL = arg max,/ (P(end|y’) . scoreL(y’)>
fori=L —1downto1do
Ji = backptr;, (i)

output: the most likely sequence g = [yi, ..., Y]
and the joint likelihood p = P(x, §)
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Viterbi with log-probabilities

® Notice how probabilities get tiny (1e-14) even for short sequences.
e Multiplying small numbers is not numerically robust. Fortunately,

U<v < logu<logv and logab =loga—+logb
e We can equivalently find § as:
argmax P(x,y) = arg maxlog P(x, y)
y Yy

L+1 L
= arg max log <H P(yilyi—1) - H P(X/|y;))

L+1

= arg max (Z log P(yilyi—1) + Z log P( x,\y,))

i=1

e Mathematically equivalent, but what good is mathematics when
computers can’t represent your numbers?
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Viterbi with log-probabilities (USE THIS ONE)

input: sequence xi, . .., x;, emission and transition log-probabilities

Forward: compute scores recursively
score;(y) = log P(y|start) + log P(x|y) Vy e X
fori=2toLdo

fory ¢ Y do

scorei(y) = log P(xly) + max,: ( log P(yly') -+ score; (1))
backptr;(y) = argmax, <Iog Ply') + sc/B'l%,-_1(y’))

Backward: follow backpointers
[ = max, ( log P(end|y’) + sfara(y'))

91 = arg maxy ( log P(endly’) + sc/B'r/eL(y’))
fori=L —1downto1do
Yi = backptr;(Vis1)

output: the most likely sequencey = [y, ..., i]
and the joint log-likelihood [ = log P(x, §)

note: score;(y) = log score;(y)
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Summing Up: Viterbi

* Computes the most likely sequence of tags: arg max,, P(y|x)
e Thisis called MAP (maximum a posteriori) decoding

¢ Aninstance of a dynamic programming algorithm: makes use of
recurrence to reuse partial solutions.
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Big HMM questions

© Whatis the most likely
label sequence y, given x?

© What is the probability of x?

©® What is the probability of each
assignment y;, given x?

@ What is the probability of each
transitiony — y’, given x?

© What sequence y minimizes the
Hamming cost?
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Big HMM questions: Marginal probability of x

® Treat y as unknown (missing). Marginal probability of «:

P(z) = >, P(z, )
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Big HMM questions: Marginal probability of x

® Treat y as unknown (missing). Marginal probability of «:

P(z) =2, P(z,y)

e Why?
* Compare likelihood of observations ("), z:(2),
e.g. language model, outlier detection...
® Maximize this to learn HMM without supervision.

* Assess P(y|z) = —Pé‘(”:;g).
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Big HMM questions: Marginal probability of x

® Treat y as unknown (missing). Marginal probability of «:
P(x) =3, P(z,v)

e Why?
* Compare likelihood of observations ("), z:(2),
e.g. language model, outlier detection...
® Maximize this to learn HMM without supervision.
® Assess P(y|z) = %.
® One algo: enumeration (correct, but prohibitive):
p<+0
fory € ¥t
p<p+P(x,y)
Returnp
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Big HMM questions: Marginal probability of x

® Treaty as unknown. Marginal probability of z: P(z) = >, P(z,y)
e Remember “what’s the probability that the 3rd label is B?”
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Big HMM questions: Marginal probability of x

® Treaty as unknown. Marginal probability of z: P(z) = >, P(z,y)
e Remember “what’s the probability that the 3rd label is B?”

P(x)zzp(endly) Z P(X17~-~7XL7Y17-~-aYL—17J/L:)’)
y DARTERY /B

a(y)
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Big HMM questions: Marginal probability of x

® Treaty as unknown. Marginal probability of z: P(z) = >, P(z,y)
e Remember “what’s the probability that the 3rd label is B?”

x):ZP(endly) Z P(X17~-~7XL7Y17-~-aYL—17J/L:)’)
y DARTERY /B

a(y)
:Zp(endly) XL|.y Z .y|y Z PX'|7"-3XL—1uy'|7"'7yL—'I:.y/)
y

,,,,,

ai—i(y’)
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Big HMM questions: Marginal probability of x

® Treaty as unknown. Marginal probability of z: P(z) = >, P(z,y)
e Remember “what’s the probability that the 3rd label is B?”

x):ZP(endly) Z P(Xlw-~7XL7Y17-~-aYL—17J/L:)’)
y DARTERY /B

a(y)
:Zp(endly) XL|.y Z .y|y Z PX'|7"-3XL—1ay'|7"'7yL—'I:.y/)
y

,,,,,

ai—i(y’)

® Recurrence: a;(y) = P(xily) 22, P(yly’) ia(y')
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Notice a similarity?

Viterbi recurrence:
scorei(y) = P(xily) max P(yly") score;1(y")
Marginalization recurrence:

y) =Pxily) Y POl cialy
y



Big HMM questions: Marginal probability of x

ai(y) = P(aly) Y P(ylye) cilyi)

Vit
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Big HMM questions: Marginal probability of x

i=1 i=2 i=3
B o7 (B) l
I (a7 (I)

on(0)

ai(y) = P(aly) Y P(ylye) cilyi)
Yir
® Ati=1,the previous label can only be start:
1(B) = P(New|B) P(B|start)
a1(I) = P(New|I) P(I|start)
a1(0) = P(New|0) P(0|start)
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Big HMM questions: Marginal probability of x

B | .002
I 0

ai(y) = P(aly) Y P(ylye) cilyi)
Yir
e Ati =1, the previous label can only be start:
an(B) = P(New|B) P(B|start) = .006 - .393
a1(I) = P(New|I)P(I|start) =.001-.0
a1(0) = P(New|0) P(0|start) = .0006 - .607
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Big HMM questions: Marginal probability of x

B | .002

I 0

ai(y) = P(aly) Y P(ylye) cilyi)
Yir
e Ati =1, the previous label can only be start:
an(B) = P(New|B) P(B|start) = .006 - .393
a1(I) = P(New|I)P(I|start) =.001-.0
a1(0) = P(New|0) P(0|start) = .0006 - .607
° Atji=2:

az(B) = P(US.[B) Y P(BlY) en (')

y

P(B[B) a1 (B) = .009 - .002 = .00002
= P(U.S.[B)sum { P(B|T) as(1) = .003-.0  =.0 = .016 - .00005
P(B[0) a1 (0) = .102 - .0003 = .00003

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 41/89



Big HMM questions: Marginal probability of x

B | .002

8e-6
I 0

ai(y) = P(aly) Y P(ylye) cilyi)
Yir
e Ati =1, the previous label can only be start:
an(B) = P(New|B) P(B|start) = .006 - .393
a1(I) = P(New|I)P(I|start) =.001-.0
a1(0) = P(New|0) P(0|start) = .0006 - .607
° Atji=2:

az(B) = P(US.[B) Y P(BlY) en (')

y

P(B[B) a1 (B) = .009 - .002 = .00002
= P(U.S.[B)sum { P(B|T) as(1) = .003-.0  =.0 = .016 - .00005
P(B[0) a1 (0) = .102 - .0003 = .00003
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Big HMM questions: Marginal probability of x

B | .002 8e-6

I 0 Te-1

@ @ @ 0| .0003 T7e12

ai(y) = P(aly) Y P(ylye) cilyi)
Yir
® Ati =1, the previous label can only be start:
an(B) = P(New|B) P(B[start) = .006 - .393
a1(I) = P(New|I)P(I|start) =.001-.0
a1(0) = P(New|0) P(0|start) = .0006 - .607
° Atji=2:

az(B) = P(US.[B) Y P(BlY) en (')

y

P(B[B) a1 (B) = .009 - .002 = .00002
= P(U.S.[B)sum { P(B|T) as(1) = .003-.0  =.0 = .016 - .00005
P(8[0) a1 (0) = .102 - .0003 = .00003
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Big HMM questions: Marginal probability of x

B | .002 8e-6 2e-16

I 0 Te-1 2e-14

@ @ @ 0| .0003 7e12 e

ai(y) = P(aly) Y P(ylye) cilyi)
Yir
® Ati=1,the previous label can only be start:
a1(B) = P(New|B) P(B[start) = .006 - .393
ai(I) = P(New|I)P(I|start) =.001-.0
a1(0) = P(New|0) P(0|start) = .0006 - .607
° Atji=2:

a2(B) = P(US.[B) Y P(BlY) an(y')
%
P(B[B) a1 (B) = .009 - .002 = .00002
= P(U.S.|B)sum { P(B|T) as(1) = .003- .0 0 = .016 - .00005
P(B|0) a1(0) = .102-.0003 = .00003
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Big HMM questions: Marginal probability of x

B | .002 8e6

I 0 Te-1

@ @ @ 0| .0003 T7e12

ai(y) = P(aly) Y P(ylye) cilyi)
Yir
® At the end we can consider:

P(x) = P(endly) ar(y)
y
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Big HMM questions: Marginal probability of x

B | .002 8e-6 2e-16

I 0 Te-1 2e-14

@ @ @ 0| .0003 7e12 e

ai(y) = P(aly) Y P(ylye) cilyi)
Yir
® At the end we can consider:

P(x) = P(endly) ar(y)
y

P(end|1) az(I) = .04 - 2e-14 = 4e-12

® |nthis case, P(end|B) az(B) = .013 - 2e-16
sum
P(end|0) a3(0) = .084 - 5e-1
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The Forward algorithm

input: sequence xi, ..., x;, emission and transition probabilities

Forward: compute « recursively
an(y) = P(y[start) - P(xly) VyeX
fori=2toLdo

fory € X do

aily) = Plxly) - 35,0 (POIY) - aia(y))
p=5, (P(endly) - au(y))

output: the marginal likelihood p = P(x)
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Big HMM questions: Probability of an assignment

G a @ P(yfzylw)zzylp(y:y,’m)—-

The answer must be influenced by

Pi=y,z) _,

® yi,...,¥i_1 (inturn depending onlyon xy, ..., xj_1)
® yii1,...,y (inturn depending only on xj1q,...,X.)
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Big HMM questions: Probability of an assignment

G a @ P(yfzylfv)zzylp(y:y,’m)

The answer must be influenced by

Plyi=y,x)

® yi,...,¥i_1 (inturn depending onlyon xy, ..., xj_1)
® yii1,...,y (inturn depending only on xj1q,...,X.)

P(y:=y7$)= Z P(J/17-~-7Yi—17yfZyayl'+17-~-7yL>-’13)
Vs osYim1Yig1se o YL

=7
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Big HMM questions: Probability of an assignment

The answer must be influenced by

Plyi=y,x)

P(yi =ylz) = 5

® yi,...,¥i_1 (inturn depending onlyon xy, ..., xj_1)
® yii1,...,y (inturn depending only on xj1q,...,X.)
Plvi=y )= Z PO,y Yimt, Vi = Vs Yisas o, Y1, )

Vlad Niculae & André Martins (IST)

Vs osYim1Yig1se o YL

Lecture 5: Linear Sequential Models

= Z P(yh"'yyf*]?yf:y7X17"'7Xi)'P(yi+17"'

' P(yl = y/a m)

IST, Fall 2019

:YL7XI+17~--7XL|y/' =

43/89

=7
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Big HMM questions: Probability of an assignment

Plyi=y, x)
0 a @ v 2y Pl =y, )

The answer must be influenced by

® yi,...,¥i_1 (inturn depending onlyon xy, ..., xj_1)
® yii1,...,y (inturn depending only on xj1q,...,X.)

P(y:=y7$)= Z P(J/17-~-7Yi—17yf=y7J/i+17-~-7yL>w)
YiseesYimtYigrs YL

= Z P(y17"'7y[7]7yi:y7X]7"'7Xi)'P(yi+]7"'7yL7Xi+.I7"'7XL|.y/':y)

Yo sYim1Yig1s- )L

= Z P(Yhu«,}’i—h)/i:)/7X1,~~~,Xi)' Z P(Yi+1,-~~,YL7XI+17~~-,XL|)//'ZY)

Yi5eeYia Yig1s-- )L

ai(y)
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Big HMM questions: Probability of an assignment

Plyi=y, x)
0 a @ v 2y Pl =y, )

The answer must be influenced by

® yi,...,¥i_1 (inturn depending onlyon xy, ..., xj_1)
® yii1,...,y (inturn depending only on xj1q,...,X.)

P(y:=y7$)= Z P(J/17-~-7Yi—17yf=y7J/i+17-~-7yL>w)
YiseesYimtYigrs YL

= Z P(y17"'7y[7]7yi:y7X]7"'7Xi)'P(yi+]7"'7yL7Xi+.I7"'7XL|.y/':y)

Yo sYim1Yig1s- )L

= Z P(Yhu«,}’i—h)/i:)/7X1,~~~,Xi)' Z P(Yi+1,-~~,YL7XI+17~~-,XL|)//'ZY)

Yi5eeYia Yig1s-- )L

ai(y) Biy)
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Forward in reverse?!

e [ looks a lot like running forward in the other direction...

P(xz) = ZP(y|start) P(xaly) Z P(X2, ... X0, Y2y -y =)
y Y25 )L

Bi(y)

= P(ylstart) P(aly) Y P/ ) P(ly) D PO, X, ys, - ilya = ¥)
y y! Y35y 37

Ba(y")

® Recurrence: B(y) = 3,/ P('ly) P(xitly') Bia (V')
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Big HMM questions: Probability of a transition

Plyi=y,Yin=y'=
@ ° @ @ Pi=y.Yim =Y|z) = ( P(;)] )
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Big HMM questions: Probability of a transition

OO®® T

PWi=y,Yim =y'x)

P(yl:y7w): Z P(ylv"'ayi*hyi:)/7X17--'7Xf)' Z P(}/i+1,--~,yL,Xi+'|,---,XL|yi:y)
Ysee¥ia Yit1--5YL

ai(y) Biy)
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Big HMM questions: Probability of a transition

OO®® T

PWi=y,Yim =y'x)

P(yl :y7m) = Z P(yl»-wa,Vich/i :y7X17"'7Xf)' Z P(yi+17"'7yL7Xi+'|7"'7XL|yi :.y)

NseenYiaa Yig1s---o YL
ai(y) Biy)
/ ! !
P(yl =Y, Yimr =Y ZE) = Z P(ylv e YienYi =YX, 7Xf) ) P(y |.y) ) P(Xi+||y )
Yeesi—
ai(y)
Y PWias YK,y =)
Yit2r- YL
Biay")
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Big HMM questions: Probability of a transition

0 ° @ @ P(YiZYaYI—H :yl|m): P(a})

PWi=y,Yim =y'x)

P(yl :y7w) = Z P(ylv“'ayi*hyi :y7X1a--'7Xf)' Z P(yi+17"'7yL7Xi+17~"7XL|yi :y)

NseenYiaa Yig1s---o YL
ai(y) Biy)
/ ! !
P(yl =Y, Yimr =Y ZE) = Z P(ylv e YienYi =YX, 7Xi) ) P(y |.y) ) P(Xi+||y )
Yeesi—
ai(y)
Y PWias YK,y =)
Yit2r- YL
Biay")

Independent of position (i,i + 1):

P([yvy/]vm) =
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Big HMM questions: Probability of a transition

@ ° @ @ Pi=y.Yim =Y|z) = P(z)

_ Pi=y,yin=y'x)

P(yl :y7m) = Z P(ylv"'ayifhyi :y7X17"'7Xf)' Z P(yi+17"'7yL7Xi+17"'7XL|yi :y)

NseenYiaa Yig1s---o YL
ai(y) Biy)
/ ! !
P(yl =Y, Yimr =Y ZE) = Z P(ylv e YienYi =YX, 7Xi) ) P(y |.y) ) P(Xi+||y )
Yeesi—
ai(y)
Y PWias YK,y =)
Yit2r- YL
Biay")

Independent of position (i i+1):

P,y @) = ZPy, Yyio =y @) = PO ) S oiy) POsaly’) B (V)

i=1
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The Forward-Backward algorithm

input: sequence xy, ..., x;, emission and transition probabilities

Forward: compute « recursively
ai(y) = P(y|start) - P(zly) VyeX
fori=2toLdo

fory ¢ X do

aily) = Plaly) 2, (PO - cia(v)

Forward: compute 3 recursively

Bi(y) =P(endly) VyeX

fori=L —1downto1do
fory € ~ do

80) =5, (PO W) Plusaly) - Bia(1))

output: The marginal likelihood P(z) = >_ , ci(y’) 8;(y') for any i;

Posterior unigram marginal probas P(y; = y|x) = %;

L=
Posterior transition marginal probas P([y,y']|z) = 522 3 ai(y) P(xily’) B4 ().
i=1
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Viterbi recurrence:
score;(y) = P(xily) max P(yly") score;_1(y")

Forward recurrence:

aiy) = P(xily) Y POy aia(v)
>

Backward recurrence:

=Y PYIY) POialy) B (V)

y/



In log-domain:

Viterbi recurrence:
scarei(y) = log P(xly) + max ( log P(y1y') + score;1(v'))
y
Forward recurrence:

Giy) = log P(xly) +log ) exp (lo&P(yly) + a1 (Y))
>

Backward recurrence:

Biy) = log > exp (10g P(Y'ly) + log Plxialy') + Bia(1))
y/

note: a;(y) = log (), etc.



— max(0, t)
—— logsumexp(0, t)

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 49 /89



The Forward-Backward algorithm in log-domain

input: sequence xy, . . ., x;, emission and transition log-probabilities

Forward: compute & recursively
au(y) = log P(y|start) + logP(xily) WYy e X
fori=2toLdo

fory € X do

G(y) = log P(xly) + l0g 3=, exp (log P(yly') +@1()

Backward: compute B recursively
Bi(y) =logP(endly) VyeXx
fori=L —1downto1do

fory ¢ X do

Biy) = log X2, exp (10g P(y/Iy) + log P(xissly’) + B (/)

output: The log-marginal log P(x) = log 3_ , exp (a,(y’) + E,»(y’)) forany i;

Posterior marginal log-probas: unigram

log P(y; = y|@) = ai(y) + Bi(y) — log P();

and transition: _

log P([y,ll&) = log P(y/|y)+log 1=, exp (@i(y)+log P(xisaly')+5,.(1') ) ~log P(=).

note: &;(y) = log a(y), Bi(y) = log B;(y)
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Big HMM questions

© Whatis the most likely
label sequence y, given x?

© What is the probability of x?

©® What is the probability of each
assignment y;, given x?

@ What is the probability of each
transitiony — y’, given x?

© What sequence y minimizes the
Hamming cost?
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Minimizing costs, a.k.a., risks

Our HMM defines a distribution over labelings P(y|x).

The HMM will be given a new sequence « to label, producing 4.

We then observe the true y*, and incur a cost

cost(g,y™).

How do we predict so as to minimize the expected cost

¢ = argmin EP(y\m) [cost(y’ y*)]
Y
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Minimizing costs, a.k.a., risks

e Consider the sequence zero-one cost:

N L, y#9
costoi(y, §) = {o =1

® The cost we may expect to pay is

Ep(y m{costm y,y* ] Z P(y|x)
y#y*

=1 P(y'[)
e We should return the sequence it assigns most probability to:

4 = arg min ( (y]a:)) = arg max P(y|x)
y y

e Viterbi computes this sequence!

Vlad Niculae & André Martins (IST)
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Minimizing costs, a.k.a., risks

® Now consider the Hamming (word-wise) cost:

costy(y,g) = Z costo (v, i)

i

e The expected cost we pay is
Ep(y|z) [COStH Y, y" } ZZCOStm v, 91) P(yi = ylz)
:Z 1-Pl;i=y; |-”3))
i
® Posterior decoding: Get «, 3 (Forward-Backward); pick ¢ such that
Vi = arg max P(yi =ylz) = arg max (@) + Biy))
e Exercise: This can be extended for any cost of the form

COSt(?/?ﬁ) = 2%21 Cu(yi,}/}i) + Zfz_ﬂ Ct(Yi,Yi+17)A/ia)A/i+1)
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Big HMM questions

© Whatis the most likely
label sequence y, given x?

© What is the probability of x?

©® What is the probability of each
assignment y;, given x?

@ What is the probability of each
transitiony — y’, given x?

© What sequence y minimizes the
Hamming cost?
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Two important algorithms for sequential models

All of these big questions are solved by these two similar algorithms.

B
Viterbi .
(find the max
sequence) 0 !
I I I I I

McGrath left out  of IrelandWorld Cup squad

B
Forward-
Backward I-
(find the average
sequence) 0 !
I T T T T

McGrath left out  of IrelandWorld Cup squad
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Dealing with other types of data

e So far y was a sequence of labels, and x a sequence of words,
so emission probabilities P(x;|y;) are just tables.
¢ Everything works with other choices for P(x;|y;). Examples:
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Dealing with other types of data

e So far y was a sequence of labels, and x a sequence of words,
so emission probabilities P(x;|y;) are just tables.
¢ Everything works with other choices for P(x;|y;). Examples:
® x; are sentences. Example: sentence-level review sentiment.

x Yy

x1: I bought this knife set last year. Yiineutral
X2: I was pleasantly surprised with it. ),:positive
Xx3. They’re still sharp. y3:positive

Naive Bayes assumption for emissions: P(xi|y;) = [[,c,, P(wly:)
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Dealing with other types of data

e So far y was a sequence of labels, and x a sequence of words,
so emission probabilities P(x;|y;) are just tables.
¢ Everything works with other choices for P(x;|y;). Examples:
® x; are sentences. Example: sentence-level review sentiment.
x Y
x1: I bought this knife set last year. Yiineutral

X2: I was pleasantly surprised with it. ),:positive
Xx3. They’re still sharp. y3:positive

Naive Bayes assumption for emissions: P(xi|y;) = [[,c,, P(wly:)
* x; € R? are continuous vectors. Example: speech-to-phoneme

A R
‘Lllll‘”'lllll T 1
rw M' ‘“’* mw I hkihw””

4000

. 3000 .

. Gaussian emissions:
I# P(Xi|yi) = N(/‘L}’i?s,\’i)

Frequency (Hz)
w
2
g
g

1000

I \H '
“HMHH\

T 1 1
1000 | 1200 | 1400 ' 1600 | 1300 | 2000
Time (msec)
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Dealing with other types of data

e So far y was a sequence of labels, and x a sequence of words,
so emission probabilities P(x;|y;) are just tables.
¢ Everything works with other choices for P(x;|y;). Examples:
® x; are sentences. Example: sentence-level review sentiment.

x Yy

x1: I bought this knife set last year. Yiineutral
X2: I was pleasantly surprised with it. ),:positive
Xx3. They’re still sharp. y3:positive

Naive Bayes assumption for emissions: P(xi|y;) = [[,c,, P(wly:)
* x; € R9are continuous vectors. Example: speech-to-phoneme

‘Zﬂ [rﬂmli IS a:r |

000 II I“” LN I”‘II

L IWLTT W’, 1

. Gaussian emissions:
I# P(Xi|yi) = N(/‘L}’i?s,\’i)

Frequency (Hz)
w
2
g
g

1000

I I \N '
| ‘m»mn'\

T 1 1
0 40 | 60 | 800 | 1000 | 1200 | 1400 1600 | 1300 | 2000
Time (msec)

e Or, turn to feature-based discriminative models (later.)

0

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019



@ Generative Sequence Models

Unsupervised learning
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Unsupervised learning

How to estimate the emission probabilities P(x;|y;) and the transition
probabilities P(y;|yi_1)?

© Supervised learning: assumes we have labeled training data
{(zM,y™), ..., (™, yM)} - we've seen this!

© Unsupervised learning: assumes all we have is unlabeled training
data {z(",... 2}
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HMM Unsupervised Learning

Assumes all we have is unlabeled training data {z(), ... (")}

Maximum Likelihood Estimation with incomplete data!

maximize H P(z(M) = H Z P(z(™,

n=1 vy

Algorithm: Expectation-Maximization (EM).
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Expectation-Maximization (Baum-Welch)

If we knew y, could fit HMM by counting and normalizing

If we knew the model parameters, we could estimate the posterior marginal
probabilities (soft counts) P(y; | ) and P(y;_1, y; | )

This is a chicken-and-egg problem!
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Expectation-Maximization (Baum-Welch)

Initialize HMM at random.

Alternate:

e E-step: Get a soft-labelling of & from current model,
keep track of soft counts P(y; | ) and P(y;_1,y; | x)

® Forward-Backward for each data point.
e M-step: Do a “supervised” update of the HMM
® Count & normalize the soft-labels!

Guarantees improvement, but the problem has multiple optima.
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Summary of HMMs

e Assumptions? Markov assumption on states; words are
conditionally independent given the state.

¢ Decoding algorithms: Viterbi/forward-backward.

® Learning? Maximum likelihood (count and normalize) for the
supervised case, EM for the unsupervised case.
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So far: Structured prediction models

Binary/Multi-class Structured Prediction

Naive Bayes HMMs
Perceptron ?
Logistic Regression ?
SVMs ?
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© Discriminative Sequence Models
Structured Perceptron
Conditional Random Fields
Structured SVM
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Recall: Generative vs discriminative

Generative models
® Model the joint P(x, y) by choosing P(y), P(z|y)
® E.g., Naive Bayes
® Easy to fit: just count, one pass over the data.
* Make predictions: arg max,, P(y|x) = arg max, P(z, y)
e Use Bayes’ rule to get P(y|x)
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Recall: Generative vs discriminative

Generative models
® Model the joint P(x, y) by choosing P(y), P(z|y)
® E.g., Naive Bayes
® Easy to fit: just count, one pass over the data.
* Make predictions: arg max,, P(y|x) = arg max, P(z, y)
e Use Bayes’ rule to get P(y|x)

Discriminative models

e Directly try to assign a score to each class
® linear, feature-driven: s, = w - ¢(x, y),
® oraneural network: s, = f(y; )
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Recall: Generative vs discriminative

Generative models
® Model the joint P(x, y) by choosing P(y), P(z|y)
® E.g., Naive Bayes
® Easy to fit: just count, one pass over the data.
* Make predictions: arg max,, P(y|x) = arg max, P(z, y)
e Use Bayes’ rule to get P(y|x)

Discriminative models

e Directly try to assign a score to each class
® linear, feature-driven: s, = w - ¢(x, y),
® oraneural network: s, = f(y; )

® Make predictions: arg max,, s,
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Recall: Generative vs discriminative

Generative models

® Model the joint P(x, y) by choosing P(y), P(z|y)

® E.g., Naive Bayes

® Easy to fit: just count, one pass over the data.
* Make predictions: arg max,, P(y|x) = arg max, P(z, y)
e Use Bayes’ rule to get P(y|x)

Discriminative models

e Directly try to assign a score to each class
® linear, feature-driven: s, = w - ¢(x, y),
® oraneural network: s, = f(y; )
® Make predictions: arg max,, sy
e Harder to train, needs iterative optimization
® Perceptron: Try to make syme > s,
* Logistic regression: Define P(y|x) o exp(sy), maximize P(y"™¢|x).
® SVM:Try to make sywme > 145,
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Recall: Generative vs discriminative

Generative models
® Model the joint P(x, y) by choosing P(y), P(z|y)
® E.g., Naive Bayes
® Easy to fit: just count, one pass over the data.
* Make predictions: arg max,, P(y|x) = arg max, P(z, y)

® Use Bayes’ rule to get P(y|x) —_—

Discriminative models

\

In HMM, with Viterbi

. . resp. Forward-Backward
e Directly try to assign a score to each class

® linear, feature-driven: s, = w - ¢(x, y),

® oraneural network: s, = f(y; )
® Make predictions: arg max,, sy Does the same trick work?
e Harder to train, needs iterative optimization

® Perceptron: Try to make syme > s,

* Logistic regression: Define P(y|x) o exp(sy), maximize P(y"™¢|x).

® SVM:Try to make sywme > 145,
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© Discriminative Sequence Models

Structured Perceptron
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Recall the simple & powerful Perceptron algorithm.

* Process one pair (z, y'"¢) at each round
® Take x; predict a sequence y.
® |f prediction is correct, proceed. If not, adjust.
input: labeled data D
initialize w
repeat
get new training example (x, y'™¢)
predict y = arg max,cy f(y; )
if y # y'"® then
update w + w + V,f(y'"™®; x) — Vf (7; )
until max. epochs
output: model weights w
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Recall the simple & powerful Perceptron algorithm.

* Process one pair (z, y'"¢) at each round
® Take x; predict a sequence y.
® |f prediction is correct, proceed. If not, adjust.
input: labeled data D
initialize w
repeat
get new training example (x, y'™¢)
predict y = arg max,cy f(y; )
if y # y'"® then
update w + w + V,f(y'"™®; x) — Vf (7; )
until max. epochs
output: model weights w
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Recall the simple & powerful Perceptron algorithm.

* Process one pair (z, y'"¢) at each round
® Take x; predict a sequence y.
® |f prediction is correct, proceed. If not, adjust.
input: labeled data D
initialize w
repeat
get new training example (x, y'™¢)
predict y = arg max,cy f(y; )
if y # y'"® then
update w + w + V,f(y'"™®; x) — Vf (7; )
until max. epochs
output: model weights w

Why couldn’t y be an entire sequence here?
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Recall the simple & powerful Perceptron algorithm.

* Process one pair (z, y'"¢) at each round
® Take x; predict a sequence y.
® |f prediction is correct, proceed. If not, adjust.
input: labeled data D
initialize w
repeat
get new training example (x, y'™¢)
predict y = arg max,cy f(y; )
if y # y'"® then
update w + w + V,f(y'"™®; x) — Vf (7; )
until max. epochs
output: model weights w

Why couldn’t y be an entire sequence here?
Mathematically, all is cool. Algorithmically...
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Recall the simple & powerful Perceptron algorithm.

* Process one pair (z, y'"¢) at each round
® Take x; predict a sequence y.
® |f prediction is correct, proceed. If not, adjust.
input: labeled data D
initialize w
repeat
get new training example (x, y'™¢)
predict y = arg max,, .y f(y; )
if y # y'"® then
update w + w + V,f(y'"™®; x) — Vf (7; )
until max. epochs
output: model weights w

Why couldn’t y be an entire sequence here?
Mathematically, all is cool. Algorithmically...

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 68/89



Everything would be fine if we had a way to calculate

argmax f(y; x)
yey

This would work, but prohibitive:.

fory = [start,y,...,y,end] € Ydo
compute f(y; x) #e.g. w- ¢d(x,y),ornnet forward pass
return the highest scoring y
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Everything would be fine if we had a way to calculate

argmax f(y; x)
yeyY
This would work, but prohibitive:.

fory = [start,y,...,y,end] € Ydo
compute f(y; x) #e.g. w- ¢d(x,y),ornnet forward pass
return the highest scoring y

This looks similar to the problem Viterbi solved in HMMs!

arg max log P(y, x)
yeyY
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Everything would be fine if we had a way to calculate

argmax f(y; x)
yey

This would work, but prohibitive:.

fory = [start,y,...,y,end] € Ydo
compute f(y; x) #e.g. w- ¢d(x,y),ornnet forward pass
return the highest scoring y

This looks similar to the problem Viterbi solved in HMMs!

arg max log P(y, x)
yeyY

What magic made Viterbi work there? - can we replicate it?
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The HMM magic formula: decomposition into parts

Viterbi was able to efficiently compute

arg max log P(y, x)
yeY
because of the decomposition into parts:
L L+1

log P(y,z) = > logP(xily;) +>_ logP(yilyi-1)

=1 emission log-proba =1 transition log-proba

We should try to design our scorer f such that

L L
flyie) =Y i)+ Ky z)
i=1 " i=2 LY
unary score transition score

000" - oHo-
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The HMM magic formula: decomposition into parts

Viterbi was able to efficiently compute

arg max log P(y, x)
yeY
because of the decomposition into parts:
L L+

log P(y,z) = > logP(xily;) +>_ logP(yilyi-1)

=1 emission log-proba =1 transition log-proba

We should try to design our scorer f such that

L L
fly;x) = Z f,-(u)(yi: x) + Z f,-(t)(y/',yi—ﬂ x)
i=1 v i=2 LY
unary score transition score
()

Given x, unary scores forma |X| x L arrays,

and transition scores forma |X| x |X| x L array sf, )y,

Transitions from start and to end?
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The HMM magic formula: decomposition into parts

Viterbi was able to efficiently compute

arg max log P(y, x)

yeY
because of the decomposition into parts:
L L+1
log P(y,z) = > logP(xily;) +>_ logP(yilyi-1)
i=1 i | i=1 T
emission log-proba transition log-proba

We should try to design our scorer f such that

L L
fly;x) = Z f,-(u)(yi: x) + Z f,-(t)(y/',yi—ﬂ x)
i=1 v i=2 LY
unary score transition score
()

Given x, unary scores forma |X| x L arrays, i
and transition scores forma |X| x |X| x L array S,y

Transitions from start and to end? Can be added to s)(, 1), SIB
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Score-based Viterbi

input: Unary scores s“) (|X| x L array)
Transition scores s() (|| x || x (L — 1) array)

Forward: compute scores recursively
score;(y) = ( ) VyeX
fori=2tol do

fory € Y do

scarei(y) = s.)

+ maxy ( ﬁ)y, + Scorej_1(y’ ))
backptr;(y) = argmax, ( (t) ; + score; (Y’ ))

Backward: follow backpointers
f* = maxys score, (')
Y1 = arg max, score, (y’)
fori=L —1downto1do

Yi = backptr;,(Vis1)

output: The highest-scoringy = [, . .., y1] and its total score *.
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Decomposable scorers

fly;z) = ZS, +Z i

® More expressive than an HMM: can look at entire x. Useful cases:

e We cansimulatean HMM: W) e REXE ) ¢ RIZIxIVI,
(f) (1)

}(,)y,—l(/v) (|gnore:candl)
u
yl = Wyx
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Decomposable scorers

fly;z) = ZS, +Z i

® More expressive than an HMM: can look at entire x. Useful cases:

e We cansimulatean HMM: W) e REXE ) ¢ RIZIxIVI,

(t) _ ()

N

u

y/ - W,VX:
e Transitions as above; linear / neural model for unary scores

® A word-level classifier augmented with transition scores.

(|gnorem and )
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Decomposable scorers

flyiz) = Zs, S

i=2

® More expressive than an HMM: can look at entire x. Useful cases:
e We cansimulatean HMM: W) e REXE ) ¢ RIZIxIVI,

SO 0

}(,)y, |(/v) (|gnorea:andl)
u

yl_W,VX,

e Transitions as above; linear / neural model for unary scores
® A word-level classifier augmented with transition scores.
® Linear scores: sﬁ‘,’,) = w® . ¢ ((x,i),y) Unary features:
® y = B, capitalized
® y = B, x,_; indefinite article (a/an)
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Decomposable scorers

f(y; :1:)—25’ ) i

i=2

® More expressive than an HMM: can look at entire x. Useful cases:

e Wecan simulate anHMM: WO ¢ RIFXE - ww) ¢ RIEXVI
f/ul) - WJ(’ )2,
e Transitions as above; linear / neural model for unary scores
® A word-level classifier augmented with transition scores.
® Linear scores: sﬁ‘,’,) = w® . ¢ ((x,i),y) Unary features:
® y = B, capitalized
® y = B, x,_; indefinite article (a/an)
® Neural unary scores (example)
© Encode each word into a vector h; = g(z, i).
© apply “output layer”: ( ) = = (Wh,; 4 b)),

(|gnorem and )
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Decomposable feature-based scorers

y CE) Z S(U) Z —1.Yio

® Lots of NLP literature uses feature representations for everything.
i) = w60 (@.).y)
SO ® . 5O N (v
y Yol w ¢ ((:B,I),(y,y))
or,compactly,  f(y,z) = w- ¢(z,y)
where ¢(y’ :I!) = cat |:ZI ¢(u)((m7 i)vyi), Zi ¢(t)((w7 i)vyiayi+1)
w = cat ['w(”), 'w(t)}

® Unary features: just like in multi-class. Transition features:
® y=B,y =0 (equivalentto learning transition scores)
y=B,y=0,i=3
y = B,y’ = 0, x; capitalized, x,_; = "from"
® y=B,y =0,Xast ="7"
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Structured Perceptron

input: labeled data D
initialize w
repeat
get new training example (z, y'¢)
compute unary and transition scores, s(), s(9),
predict y = arg max,cy f(y; =) using Viterbi.
if y # y'™® then
update w <+ w + V,f(y'"™¢; x) — Vf (7; )
until max. epochs
output: model weights w

e |flinear f(y; x) = w - ¢p(x, y), then V f(y; ) = ¢(x, y).
o Ifneural, Vo f(yiz) = Y, sz)(/:l} +30, szj(/fihyh, from autodiff.
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© Discriminative Sequence Models

Conditional Random Fields
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Logistic Regression

What if we want a discriminative probabilistic model?
i.e., one that gives P(y|x) and not just a prediction y?

For multi-class, we had logistic regression.

exp Sy

Plyle) = ———
(y| ) Z;expsg
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Logistic Regression

exps
Plylz) = < '—

Dy EXP Sy
To learn, we maximize

log P(y™¢|) = syme — log Z exp Sy
y
with gradient descent, noting that

Vv IOg P(ytrue\w) = Vsytrue — ]EyVSy.
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Logistic Regression

exps
Plylz) = < '—

Dy EXP Sy
To learn, we maximize

log P(y™¢|) = syme — log Z exp Sy
y
with gradient descent, noting that

V IOg P(ytrue\w) = Vsytrue — ]EyVSy.
In particular, for linear models,
Vuw log P(y™¢|z) = ¢(x,y"™) — E¢(x, y)
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Logistic Regression

exps
Plylz) = < '—

Dy EXP Sy
To learn, we maximize

log P(y™¢|) = syme — log Z exp Sy
y
with gradient descent, noting that

Vlog P(y"™*®|x) = Vs, e — Ey Vs,
In particular, for linear models,
Vuw log P(y™¢|z) = ¢(z,y") — E¢(z, y)
For neural nets, grad wrt. score vector
Vs log P(y™¢|z) = e,me — Eey

= e, me — softmax(s)

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 77/89



Logistic Regression

exps
Plylz) = < '—

Dy EXP Sy
To learn, we maximize

log P(y™¢|) = syme — log Z exp Sy
y
with gradient descent, noting that

Vlog P(y"™*®|x) = Vs, e — Ey Vs,
In particular, for linear models,
Vuw log P(y™¢|z) = ¢(z,y") — E¢(z, y)
For neural nets, grad wrt. score vector
Vs log P(y™¢|z) = e,me — Eey

= e, me — softmax(s)

For sequence models, Forward-Backward computes what we need!
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Conditional Random Fields

Discriminative (non-generative) structured models.
log P(y|z) = f(y; @) —log > _expf(y’;x)

y/

Given a decomposable sequence scorer,

flyi =) = ZS, oo

i=2
Forward-Backward computes

* Normalizer / log-partition function log 3>, expf(y’; ) = log Z.
e Unary and transition posterior marginals:
log P(y; = y|x), log P(yi = y,Yir1 = y'|z).
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Score-based Forward-Backward

input: Unary scoress(“) (|X| x L array)
Transition scores s (|| x |Z| x (L — 1) array)

Forward: compute a recursively
a1(y)—s”) Yy ex
fori=2tolLdo

fory ¢ Y do

Gily) = s} +10g 5, exp (517, + i (y))

Backward: compute ;’ recursively

BL(Y) =0
fori=L — 1downto1do
fory ¢ X do

Biy) =log X, exp (s, + 5, + Bran(v)

output: The log-partition function log Z = log 3° , exp (&;(y’) + B,-(y’)) forany i;
Posterior unigram and transition marginal log-probas:

log P(yi = ylz) = ai(y) + B;(y) — log Z;

log P(yi = y,yiv1 = ¥'|2) = &(y) + By (V) + sy 51, 1, — log Z.
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Training a linear model CRF

We want to maximize
log P(y™¢|z) = w - ¢p(x, y"™®) — IogZeXpw (z,y)

where
$(y.2) = cat | 00 ((.0).). 6O (@.1).yiyis)]

w = cat [w(“), 'w(t)}.
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Training a linear model CRF

We want to maximize
log P(y™¢|z) = w - ¢p(x, y"™®) — IogZeXpw (z,y)
where
¢(y’ 13) = cat |:ZI ¢(u)(($a i)ayi)a Zi ¢(t)((ma i)ayi’YH-I)]
w = cat [w(“), w(t)}.

Similar to logistic regression, we get

Vo log Py |) = 32, ($)((@, 1), 1)~ By (=, 1))

= 3 (. 1))~ X, 6((@.,1).9) Pl = yIa) )
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Training a linear model CRF

We want to maximize
log P(y"™¢|x) = w - ¢(x, y"™e) — IogZeXpw (z,y)
where
d’(y? fl?) = cat |:Z, (f)(u)((a:a i)ayi)v Zi ¢(t)((m7 i)ayi?yi-ﬁ-'l)]
w = cat [w(“), w(t)}.

Similar to logistic regression, we get

Vo log P(y™|z) = 3, (d’(u)((ﬂ% ), yie) —Ey ) ((2, i),y,-))

= 3 (. 1))~ X, 6((@.,1).9) Pl = yIa) )

and, for transitions,
Vw0 log P(y™|z) = 52, (60w, i), i, yi)

= 5, (@03, ) P = y5i = ¥|e))
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Training a neural CRF

We want to maximize

log P(y™|z) = f(z,y) — log Y _ expf(,y)
Y
where

w y) ZS(U) + ZS 1Yl
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Training a neural CRF

We want to maximize
log P(y™|z) = f(z,y) — log Y _ expf(,y)

Y
where
w y) ZS(U) + ZS Yl
Note that
of(x,y) )1, yi=y of(z,y) B o
85}(,”,) a 0, otherwise = =11 0s % ; =i =yyi=yll
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Training a neural CRF

We want to maximize

log P(y™|z) = f(z,y) — log Y _ expf(,y)

Y
where
w y) ZS(U) Z ERN7N
Note that
of(z,y) _ ] yvi= of(z,y) o
8S(u-) - 0, OtherWISe [D// y]]7 s (t) [[yl—1 =V, Vi=Yy ]]
v Syy'i
Therefore,
0 log P(y'™e|x y
QlogPLy™8e) _ (e — y) - Py = yie)
8sy,
Olog P(yte|x
A ) [y =y =yl - PO =y =)
V.Y
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Visually:

Vs(u) Iog P(ytrue|w) —

B B
I —I
0 0
| I I I |
o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 17
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© Discriminative Sequence Models

Structured SVM
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SVM and the hinge loss

SVMs are non-probabilistic max-margin classifiers.

The soft-margin perspective: minimizing a “hinge loss”:

L(w; (2, y"™)) = maxw - $(x,y) + [y # Yl - w - o, y"e)

Intuition: the score of the correct class must be greater than the score of
wrong classes by at least 1.
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Structured SVM

true) true)

L(w; (z,y"™*)) = maxf(z,y) + cost(y, y"**) — f(z,y
]

where cost(y, y™¢) = 3", [[y; # y™¢]] is the Hamming cost.
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Structured SVM

L(w; (z,y"™e)) = m;x f(x,y) + cost(y, y™e) — f(x, y"™®)

where cost(y, y™¢) = 3", [[y; # y™¢]] is the Hamming cost.
Cost-augmented decoding:

Finding arg max,, f(x, y) + cost(y, y"™®) can be done by Viterbi with
adjusted unary scores

§(u_) _ S}E/Z’; yi= yltrue
b2 Sy,i 41 Vi 7,éyltrue

Intuition: We give a boost to the wrong labels, and we want the global
prediction to still be correct.

Similar algorithm to Structured Perceptron.
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Structured SVM

input: labeled data D, learning rate n
initialize w
repeat
get new training example (z, y'"¢)
compute unary and transition scores, s(”), s®

predict J = arg max f(y; ) + cost(y, y'"™®) (cost-augmented Viterbi)
yeY

if y # y then
update w < w + (Vo f(y™ z) — Vuf(7; z))
until max. epochs
output: model weights w

e Iflinearf(y; x) = w- ¢(x,y), then Vo, f(y; ) = ¢(x, y).
* Ifneural, Vo f(y; @) = Yoiy Vs, ) Wt 2sz(t)1y ; from autodiff.
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Visually:

Unlike CRF, subgradient updates for Perceptron/SSVM look like:

oL 5
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Structured prediction models

Binary/Multi-class Structured Prediction

Naive Bayes HMMs
Perceptron Structured Perceptron
Logistic Regression CRF
SVMs Structured SVM
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Discriminative vs HMM

e HMM is less expressive, but fast to train.
e Discriminative models are powerful, but require iterative training.

e HMM and CRF have probabilistic interpretations.
(Useful when posterior analyses are desirable)

e Structured SVM is a good classifier,
can be extended to other cost functions.

® Perceptron and Structured SVM updates are sparse;
(may be faster for very large ¥.)

e For structures more complicated than sequences, we may not have a
Forward-Backward equivalent, but we may be able to approximate
arg max,, f(y; ).
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