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Today’s Roadmap

Today we’re starting to talk about structure, more specifically sequences:

• Generative sequence models: (hidden) Markov models
• Dynamic programming: the Viterbi and Forward-Backward algorithms
• Viterbi decoding andminimum risk decoding
• Unsupervised learning with the Baum-Welch (EM) algorithm
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Outline

1 Structured Prediction

2 Generative Sequence Models

Markov Models

Hidden Markov Models

Unsupervised learning

3 Discriminative Sequence Models

Structured Perceptron

Conditional Random Fields

Structured SVM
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So far, we looked at classification:
simply predicting one-of-K classes.

How about more complicated
output spaces?
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Named Entity Recognition

I O O O I I I O

McGrath le� out of Ireland World Cup squad

• Classify each word independently:
x1 = McGrath; y1 =I,
x2 = le�; y2 =O, ...

• This labeling scheme is called BIO (beginning/inside/outside).
• Could addmore context into x, e.g. a window:

x1 = ($,McGrath, le�); y1 =B,
x2 = (McGrath, le�, out); y2 =O, ...

• But the predictions can’t depend on one another!
OI is not allowed; BB is allowed but relatively rare!
... what do we reallywant?
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Named Entity Recognition

B O O O B B I O
McGrath le� out of Ireland World Cup squad

• Classify each word independently: this makes a big assumption!
x1 = McGrath; y1 =B,

• Really, we should think at sentence-level:
x1 = McGrath le� out of...; y1 =B O O O B B I O

• Can capture more statistics (BB is rare, BBBB even rarer, OO is common...)
• Can we attempt this with our multi-class toolbox (e.g. naïve Bayes?)

Howmany sentences have the label B O O O B B I O?
rank sequence count

1 O 1072
2 B O 663
3 B O O O O O O O 446
4 B O B O 378
5 O B I O B O O 272

...
4856 B O O O B B I O 1
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We are essentially treating each label
sequence y as a distinct object,
ignoring its internal structure!

We’ve never seen sentences labelled O O O O O O B,
but we have seen sentences labelled O O O O O B.
Surely that could help!



We are essentially treating each label
sequence y as a distinct object,
ignoring its internal structure!

We’ve never seen sentences labelled O O O O O O B,
but we have seen sentences labelled O O O O O B.
Surely that could help!



Structured Prediction

A framework for handling structured, constrained, inter-dependent outputs.

NLP
• Named Entity
Recognition

• Machine Translation
• Syntactic Parsing

sleep the clock around

Speech Processing

• Speaker ID
• Speech
Recognition

Computer Vision

• Object detection
• Segmentation

computational biology, robotics / planning, time series forecasting, etc.
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Structured Prediction

VERB PREP NOUN

dog on wheels

NOUN PREP NOUN

dog on wheels

NOUN DET NOUN

dog on wheels

· · ·

? dog on wheels

? dog on wheels

? dog on wheels

· · ·

dog
on

wheels

hond
op
wielen

dog
on

wheels

hond
op
wielen

dog
on

wheels

hond
op
wielen

Today, we talk about sequences.
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Roadmap: Models for Structured Prediction

Binary/Multi-class Structured Prediction

Naive Bayes ?
Logistic Regression ?

Perceptron ?
SVMs ?
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Outline

1 Structured Prediction

2 Generative Sequence Models

Markov Models

Hidden Markov Models

Unsupervised learning

3 Discriminative Sequence Models

Structured Perceptron

Conditional Random Fields

Structured SVM
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Probabilities over sequences

To begin, let’s forget for a moment about x and focus on y.
P
(
y = [O O O B]

)
=?

What are all possible labellings?
LetΣ = {B, I, O}. Then, Y = Σ? = Σ ∪ Σ2 ∪ Σ3 ∪ ...

Could set P(y) ∝ #y

rank sequence count
1 O 1072
2 B O 663
3 B O O O O O O O 446
4 B O B O 378
5 O B I O B O O 272

...
4856 B O O O B B I O 1

Issues:
P(y) = 0 formost y!
No sharing between sequences that are similar!
Ignores the fact that y = [y1, . . . , yL].

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 13 / 89



Probabilities over sequences

To begin, let’s forget for a moment about x and focus on y.
P
(
y = [O O O B]

)
=?

What are all possible labellings?

LetΣ = {B, I, O}. Then, Y = Σ? = Σ ∪ Σ2 ∪ Σ3 ∪ ...

Could set P(y) ∝ #y

rank sequence count
1 O 1072
2 B O 663
3 B O O O O O O O 446
4 B O B O 378
5 O B I O B O O 272

...
4856 B O O O B B I O 1

Issues:
P(y) = 0 formost y!
No sharing between sequences that are similar!
Ignores the fact that y = [y1, . . . , yL].

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 13 / 89



Probabilities over sequences

To begin, let’s forget for a moment about x and focus on y.
P
(
y = [O O O B]

)
=?

What are all possible labellings?
LetΣ = {B, I, O}. Then, Y = Σ? = Σ ∪ Σ2 ∪ Σ3 ∪ ...

Could set P(y) ∝ #y

rank sequence count
1 O 1072
2 B O 663
3 B O O O O O O O 446
4 B O B O 378
5 O B I O B O O 272

...
4856 B O O O B B I O 1

Issues:
P(y) = 0 formost y!
No sharing between sequences that are similar!
Ignores the fact that y = [y1, . . . , yL].

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 13 / 89



Probabilities over sequences

To begin, let’s forget for a moment about x and focus on y.
P
(
y = [O O O B]

)
=?

What are all possible labellings?
LetΣ = {B, I, O}. Then, Y = Σ? = Σ ∪ Σ2 ∪ Σ3 ∪ ...

Could set P(y) ∝ #y

rank sequence count
1 O 1072
2 B O 663
3 B O O O O O O O 446
4 B O B O 378
5 O B I O B O O 272

...
4856 B O O O B B I O 1

Issues:
P(y) = 0 formost y!
No sharing between sequences that are similar!
Ignores the fact that y = [y1, . . . , yL].

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 13 / 89



Probabilities over sequences

To begin, let’s forget for a moment about x and focus on y.
P
(
y = [O O O B]

)
=?

What are all possible labellings?
LetΣ = {B, I, O}. Then, Y = Σ? = Σ ∪ Σ2 ∪ Σ3 ∪ ...

Could set P(y) ∝ #y

rank sequence count
1 O 1072
2 B O 663
3 B O O O O O O O 446
4 B O B O 378
5 O B I O B O O 272

...
4856 B O O O B B I O 1

Issues:
P(y) = 0 formost y!
No sharing between sequences that are similar!
Ignores the fact that y = [y1, . . . , yL].

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 13 / 89



Probabilities over sequences

To begin, let’s forget for a moment about x and focus on y.
P
(
y = [O O O B]

)
=?

What are all possible labellings?
LetΣ = {B, I, O}. Then, Y = Σ? = Σ ∪ Σ2 ∪ Σ3 ∪ ...

Could set P(y) ∝ #y

rank sequence count
1 O 1072
2 B O 663
3 B O O O O O O O 446
4 B O B O 378
5 O B I O B O O 272

...
4856 B O O O B B I O 1

Issues:
P(y) = 0 formost y!
No sharing between sequences that are similar!
Ignores the fact that y = [y1, . . . , yL].

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 13 / 89



Lower extreme: Bag-of-wordsmodel

Let y = [y1, . . . , yL]. P(y) =
L∏
i=1

P(yi)

• Also called “unigram”model
• Assumes every word is generated independently of other words

therefore, abandons the structure of y entirely.

• Probability of a string is insensitive to word order:

P
(
[O, B, O]

)
= P

(
[B, O, O]

)
= P(B) P(O)2

• Howmany parameters do we need to estimate and how?
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Upper extreme: Full historymodel

Let y =[start, y1, y2, . . . , yL, end].

P(y) =

P(y1|start)

·P(y2|start, y1)
· . . .
·P(yL|start, y1, y2, . . . , yL−1)
·P(end|start, y1, y2, . . . , yL−1, yL)

=
L+1∏
i=1

P(yi| y1, . . . , yi−1︸ ︷︷ ︸
y′

)

• Each symbol yi generated based on entire history y′.
• Must estimate P(y|y′) for every possible history y′!

... and we’re back where we started: same as counting sequences.
• Idea: condition only on the last few symbols.
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In-between: Markov Models

Let y =[start, y1, y2, . . . , yL, end].

P(y) = P(y1|start) · P(y2|y1) · . . . · P(yL|yL−1) · P(end|yL)

=
L+1∏
i=1

P(yi|yi−1)

• Each symbol only depends on the previous word.
• We estimate transition probabilities P(yi|yi−1);

Including initial and final probabilities P(y1|start) and P(end|yL).
• Total number of parameters:

O(|Σ|2).

P(B|start) =.393 P(B|B) =.009 P(B|I) =.003 P(B|O) =.102
P(I|start) =.0 P(I|B) =.369 P(I|I) =.178 P(I|O) =.0
P(O|start) =.607 P(O|B) =.610 P(O|I) =.779 P(O|O) =.815

P(end|start) =.0 P(end|B) =.013 P(end|I) =.040 P(end|O) =.084
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Aside: kth order Markov Models

Let y = [start, y1, y2, . . . , yL, end]. P(y) =
L+1∏
i=1

P(yi|yi−1, . . . , yi−k)

• Each symbol depends on k previous symbols.
• Transition probabilities P(yi|yi−1, . . . , yi−k)
• Total number of parameters: O(|Σ|k+1)
• Widely used in languagemodeling

• Here,Σ = the vocabulary of English words.
• Goal: next word prediction; P(w|“can we rely”) =?

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 17 / 89



Estimating Markov Models: Maximum Likelihood

P(yi = b|yi−1 = a) =
#[a, b]∑

b’∈Σ

#[a, b’]
=

#[a, b]

#a

P(B|start) =.393 P(B|B) =.009 P(B|I) =.003 P(B|O) =.102
P(I|start) =.0 P(I|B) =.369 P(I|I) =.178 P(I|O) =.0
P(O|start) =.607 P(O|B) =.610 P(O|I) =.779 P(O|O) =.815

P(end|start) =.0 P(end|B) =.013 P(end|I) =.040 P(end|O) =.084

We never saw [O I], so P(I|O) = 0.
The model rules out any sequence containing [O I]!

P([start, O, O, I, B, O, end]) = P(O|start) · P(O|O) · P(I|0)︸ ︷︷ ︸
=0

· . . . = 0

Here, this is correct; other times it may be just due to insu�icient data.
Smoothing (one way): pretend we saw each possible transition once more

P(yi = b|yi−1 = a) = 1+#[a,b]∑
b’ 1+#[a,b’] = 1+#[a,b]

|Σ|+#a
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P([start, O, O, I, B, O, end]) = P(O|start) · P(O|O) · P(I|0)︸ ︷︷ ︸
=0

· . . . = 0

Here, this is correct; other times it may be just due to insu�icient data.
Smoothing (one way): pretend we saw each possible transition once more

P(yi = b|yi−1 = a) = 1+#[a,b]∑
b’ 1+#[a,b’] = 1+#[a,b]

|Σ|+#a
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What can we dowith a Markov Model?

P(B|start) = .393 P(B|B) = .009 P(B|I) = .003 P(B|O) = .102
P(I|start) = .0 P(I|B) = .369 P(I|I) = .178 P(I|O) = .0
P(O|start) = .607 P(O|B) = .610 P(O|I) = .779 P(O|O) = .815

P(end|start) = .0 P(end|B) = .013 P(end|I) = .040 P(end|O) = .084

• Given a sequence, assess its likelihood under the model.

y = [start, B, O, O, end]

P(y) = P(B|start) P(O|B) P(O|O) P(end|O)

= .393 · .610 · .815 · .084 = .0164

• Sample sequences, going from le� to right!

start y1

y2 y3 y4

• Predict the most likely next symbol (like your phone’s autocomplete)!
(As above, but takemax instead of a random sample.
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What can we dowith a MM? Incomplete data warm-up

P(B|start) = .393 P(B|B) = .009 P(B|I) = .003 P(B|O) = .102
P(I|start) = .0 P(I|B) = .369 P(I|I) = .178 P(I|O) = .0
P(O|start) = .607 P(O|B) = .610 P(O|I) = .779 P(O|O) = .815

P(end|start) = .0 P(end|B) = .013 P(end|I) = .040 P(end|O) = .084

• What is the probability that the second symbol in a sequence is B?

P([start, ?, B]) = P(y0 = start, y2 = B) =?

• Wemust consider all possible choices for y1. RecallP(b) =
∑

a P(a, b)!
P([start, ?, B]) =

∑
y∈Σ P([start, y, B])

= P([start, B, B]) + P([start, I, B]) + P([start, O, B])

=.393 · .009 + .0 · .003 + .607 · .102 = .065

• How about the proba of B as third symbol?

P([start, ?, ?, B]) =
∑

y1∈Σ

∑
y2∈Σ P([start, y1, y2, B]) = P([start, B, B, B]) + P([start, B, I, B]) + ...

(regrouping) = P([start, ?, B, B]) + P([start, ?, I, B]) + P([start, ?, O, B])

= P([start, ?, B]) P(B|B) + P([start, ?, I]) P(B|I) + P([start, ?, O]) P(B|O)

=
∑

y2∈Σ P([start, ?, y2]) P(y2|B) (A pattern we’ll see again soon!)
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• Can we do NER?
start B O O end

Halloween is coming

Not well! — amodel of P(y) does not take x into account!
• Wewant a model that can take x into account, too.

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 21 / 89



What can we dowith a MM?

P(B|start) = .393 P(B|B) = .009 P(B|I) = .003 P(B|O) = .102
P(I|start) = .0 P(I|B) = .369 P(I|I) = .178 P(I|O) = .0
P(O|start) = .607 P(O|B) = .610 P(O|I) = .779 P(O|O) = .815

P(end|start) = .0 P(end|B) = .013 P(end|I) = .040 P(end|O) = .084

• Can we do NER?
start B O O end

Halloween is coming

Not well! — amodel of P(y) does not take x into account!

• Wewant a model that can take x into account, too.

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 21 / 89



What can we dowith a MM?

P(B|start) = .393 P(B|B) = .009 P(B|I) = .003 P(B|O) = .102
P(I|start) = .0 P(I|B) = .369 P(I|I) = .178 P(I|O) = .0
P(O|start) = .607 P(O|B) = .610 P(O|I) = .779 P(O|O) = .815

P(end|start) = .0 P(end|B) = .013 P(end|I) = .040 P(end|O) = .084

• Can we do NER?
start B O O end

Halloween is coming

Not well! — amodel of P(y) does not take x into account!
• Wewant a model that can take x into account, too.

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 21 / 89



Outline

1 Structured Prediction

2 Generative Sequence Models

Markov Models

Hidden Markov Models

Unsupervised learning

3 Discriminative Sequence Models

Structured Perceptron

Conditional Random Fields

Structured SVM

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 22 / 89



Remember Naïve Bayes
• Wewant P(y|x) for prediction.
• We build two simpler models:

y P(y)

x P(x|y)

• Observe x and use Bayes’ rule:
P(y|x) ∝ P(y) P(x|y)

• For NER, a form of NB:

P(y) =
∏
i

P(yi)

P(x|y) =
∏
i

P(xi|yi)

B I O
P(y) = .115 .052 .833

P(South|y) = .0051 .0002 .0
P(Africa|y) = .0003 .0056 .0
P(under|y) = .0 .0 .0009

P(Mountains|y) = .0 .0002 .0
P(of|y) = .0 .0127 .0212

. . .

y1

x1

y2

x2

y3

x3

Why so bad?

Smoothing doesn’t fix it.
P([I O I]) = .225� 0!
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Hidden Markov Models

• Jointly model a sequence of observations xi and hidden states yi.
• States modeled by a first-order Markov model.
• Each observation is conditioned only on the corresponding state.

y1

x1

y2

x2

y3

x3

y3 endstart

x = [x1, . . . , xL]; y = [start, y1, . . . , yL, end].

P(x,y) =
L+1∏
i=1

P(yi|yi−1)︸ ︷︷ ︸
P(y)

·
L∏
i=1

P(xi|yi)︸ ︷︷ ︸
P(x|y)
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Estimating HMMs: Maximum Likelihood

maximize

( ∏
(x,y)∈D

P(x,y) =
∏

(x,y)∈D

L(x)+1∏
i=1

P(yi|yi−1) ·
L(x)∏
i=1

P(xi|yi)

)

A HMM is “just” a Markov model and an emission model :P

Transition probabilities: P(yi = b|yi−1 = a) = #[a,b]
#a just like the MM!

P(B|start) =.393 P(B|B) =.009 P(B|I) =.003 P(B|O) =.102
P(I|start) =.0 P(I|B) =.369 P(I|I) =.178 P(I|O) =.0
P(O|start) =.607 P(O|B) =.610 P(O|I) =.779 P(O|O) =.815

P(end|start) =.0 P(end|B) =.013 P(end|I) =.040 P(end|O) =.084

Emission probabilities: P(xi = w|yi = a) = # tag(w)=a
#a just like NB!

B I O
P(South|y) = .0051 .0002 ε
P(Africa|y) = .0003 .0056 ε

P(Mountains|y) = ε .0002 ε
P(of|y) = ε .0127 .0212

· · ·
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What can we dowith an HMM?

start B I O
P(B|y) = .393 .009 .003 .102
P(I|y) = .0 .369 .178 .0
P(O|y) = .607 .610 .779 .815

P(end|y) = .0 .013 .040 .084

B I O
P(South|y) = .0051 .0002 ε
P(Africa|y) = .0003 .0056 ε

P(Mountains|y) = ε .0002 ε
P(of|y) = ε .0127 .0212

· · ·

• Given a labeled sequence (x,y), assess its likelihood under the model.
x = [Mountains, of, Africa]; y = [start, B, O, B, end]

P(x,y) = P(B|start) P(O|B) P(B|O) P(end|B)

· P(Mountains|B) P(of|O) P(Africa|B) = 8 · 10−17

• Sample labelled sequences.
start y1

x1

y2

x2

y3

x3

y4

• Auto-complete equivalent: predict the most likely xk+1 given xk, yk.
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· P(Mountains|B) P(of|O) P(Africa|B) = 8 · 10−17

• Sample labelled sequences.
start O

of

B

x2

y3

x3

y4

• Auto-complete equivalent: predict the most likely xk+1 given xk, yk.
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Big HMM questions

1 What is the most likely
label sequence y, given x?

2 What is the probability of x?
3 What is the probability of each
assignment yi, given x?

4 What is the probability of each
transition y → y′, given x?

5 What sequence yminimizes the
Hamming cost?
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Big HMM questions: Finding themost likely y

start B I O
P(B|y) = .393 .009 .003 .102
P(I|y) = .0 .369 .178 .0
P(O|y) = .607 .610 .779 .815

P(end|y) = .0 .013 .040 .084

B I O
P(South|y) = .0051 .0002 ε
P(Africa|y) = .0003 .0056 ε

P(Mountains|y) = ε .0002 ε
P(of|y) = ε .0127 .0212

· · ·

• Can we predict the most likely label sequence y for a given x?
arg maxy P(y|x)

= arg maxy
P(x,y)
P(x) = arg maxy P(x,y)

One algo: enumeration (correct, but prohibitive):

for y ∈ ΣL

compute P(x,y)
Return the highest found.
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Big HMM questions: Finding themost likely y

Fast idea: Greedy prediction!

start y1

Mountains

y2

of

y3

Africa

end

• y1 = arg maxy∈Σ P(y|start) P(x1|y)

• y2 = arg maxy∈Σ P(y|y1) P(x2|y)

• y3 = arg maxy∈Σ P(y|y2) P(x3|y) P(end|y)

Is this algorithm correct? (Does it return arg maxy P(x,y)?)
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Big HMM questions: Finding themost likely y

Greedy prediction!

start y1

New

y2

U.S.

y3

policy

end

• The true arg maxy P(x,y) = [O, B, O]

• We just got lucky the first time! What went wrong?
• We commit to a wrong label in the beginning, and can’t go back.
• We should keep somememory of the past, to be able to undo.
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Big HMM questions: Finding themost likely y
. . . yi−1

xi−1

yi

xi

. . .

P(x1, ..., xi, y1, ..., yi) =
∏i

k=1 P(xk|yk) P(yk|yk−1)

• At step i, let’s assign a score to each possible choice for yi. It will
depend on the optimal labels y1, . . . , yi−1.

scorei(y) = max
y1,...,yi−1

P(x1, y1, . . . , xi−1, yi−1, xi, yi = y)

But wait!

= max
y1,...,yi−1

(
P(xi|y) P(y|yi−1) P(x1, y1, . . . , xi−1, yi−1)

)
= P(xi|y) max

y′

(
P(y|y′) max

y1,...,yi−2
P(x1, y1, . . . , xi−1, yi−1 = y′)

)
= P(xi|y) max

y′

(
P(y|y′) scorei−1(y′)

)
• We can compute the scores recursively!
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Big HMM questions: Finding themost likely y

start y1

New

y2

U.S.

y3

policy

end i=1 i=2 i=3
B

score1(B) 5e-7 2e-16

I

score1(I) 7e-11 2e-14

O

score1(O) 6e-12 5e-11

scorei(y) = P(xi|y) max
y′

P(y|y′) scorei(y′)
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Big HMM questions: Finding themost likely y

start y1

New

y2

U.S.

y3

policy

end i=1 i=2 i=3
B .002 5e-7 2e-16
I .0 7e-11 2e-14
O .0003 6e-12 5e-11

scorei(y) = P(xi|y) max
y′

P(y|y′) scorei(y′)

• At the end we observe:
max
y
P(end|y) scoreL(y) = max

y
P(end|y) max

y1,...,yL−1
P(x1, y1, . . . , xL, yL = y)

= max
y

P(x,y)

• In this case,

max


P(end|B) score3(B) = .013 · 2e-16
P(end|I) score3(I) = .04 · 2e-14
P(end|O) score3(O) = .084 · 5e-11

= 4e-12

• What is the y that gives this value?

Backtrace remembering eachmax!
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The Viterbi algorithm
input: sequence x1, . . . , xL, emission and transition probabilities

Forward: compute scores recursively
score1(y) = P(y|start) · P(x1|y) ∀y ∈ Σ
for i = 2 to L do
for y ∈ Σ do

scorei(y) = P(xi|y) ·maxy′
(

P(y|y′) · scorei−1(y′)
)

backptri(y) = arg maxy′
(

P(y|y′) · scorei−1(y′)
)

Backward: follow backpointers
p = maxy′

(
P(end|y′) · scoreL(y′)

)
ŷL = arg maxy′

(
P(end|y′) · scoreL(y′)

)
for i = L− 1 down to 1 do
ŷi = backptri+1(ŷi+1)

output: the most likely sequence ŷ = [ŷ1, . . . , ŷL]
and the joint likelihood p = P(x, ŷ)
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Viterbi with log-probabilities

• Notice how probabilities get tiny (1e-14) even for short sequences.
• Multiplying small numbers is not numerically robust. Fortunately,

u < v ⇐⇒ log u < log v and log ab = log a + log b

• We can equivalently find ŷ as:

arg max
y

P(x,y) = arg max
y

log P(x,y)

= arg max
y

log
( L+1∏
i=1

P(yi|yi−1) ·
L∏
i=1

P(xi|yi)
)

= arg max
y

( L+1∑
i=1

log P(yi|yi−1) +
L∑
i=1

log P(xi|yi)
)

• Mathematically equivalent, but what good is mathematics when
computers can’t represent your numbers?
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Viterbi with log-probabilities (USE THIS ONE)
input: sequence x1, . . . , xL, emission and transition log-probabilities

Forward: compute scores recursively
s̃core1(y) = log P(y|start) + log P(x1|y) ∀y ∈ Σ
for i = 2 to L do
for y ∈ Σ do

s̃corei(y) = log P(xi|y) + maxy′
(

log P(y|y′) + s̃corei−1(y′)
)

backptri(y) = arg maxy′
(

log P(y|y′) + s̃corei−1(y′)
)

Backward: follow backpointers
l = maxy′

(
log P(end|y′) + s̃coreL(y′)

)
ŷL = arg maxy′

(
log P(end|y′) + s̃coreL(y′)

)
for i = L− 1 down to 1 do
ŷi = backptri+1(ŷi+1)

output: the most likely sequence ŷ = [ŷ1, . . . , ŷL]
and the joint log-likelihood l = log P(x, ŷ)

note: s̃corei(y) = log scorei(y)

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 35 / 89



Summing Up: Viterbi

• Computes the most likely sequence of tags: arg maxy P(y|x)

• This is called MAP (maximum a posteriori) decoding
• An instance of a dynamic programming algorithm: makes use of
recurrence to reuse partial solutions.
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Big HMM questions

1 What is the most likely
label sequence y, given x?

2 What is the probability of x?
3 What is the probability of each
assignment yi, given x?

4 What is the probability of each
transition y → y′, given x?

5 What sequence yminimizes the
Hamming cost?
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Big HMM questions: Marginal probability of x

start y1

New

y2

U.S.

y3

policy

end

• Treat y as unknown (missing). Marginal probability of x:
P(x) =

∑
y P(x,y)

• Why?
• Compare likelihood of observations x(1),x(2),

e.g. language model, outlier detection...
• Maximize this to learn HMMwithout supervision.
• Assess P(y|x) = P(x,y)

P(x) .
• One algo: enumeration (correct, but prohibitive):
p← 0
for y ∈ ΣL

p← p + P(x,y)

Return p
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Big HMM questions: Marginal probability of x

. . . yL−1

xL−1

yL

xL

end

• Treat y as unknown. Marginal probability of x: P(x) =
∑

y P(x,y)

• Remember “what’s the probability that the 3rd label is B?”

P(x) =
∑
y

P(end|y)
∑

y1,...,yL−1

P(x1, . . . , xL, y1, . . . , yL−1, yL = y)︸ ︷︷ ︸
αL(y)

=
∑
y

P(end|y) P(xL|y)
∑
y′
P(y|y′)

∑
y1,...,yL−2

P(x1, . . . , xL−1, y1, . . . , yL−1 = y′)︸ ︷︷ ︸
αL−1(y′)

• Recurrence: αi(y) = P(xi|y)
∑

y′ P(y|y′)αi−1(y′)
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Notice a similarity?

Viterbi recurrence:

scorei(y) = P(xi|y) max
y′

P(y|y′) scorei−1(y′)

Marginalization recurrence:

αi(y) = P(xi|y)
∑
y′

P(y|y′)αi−1(y′)



Big HMM questions: Marginal probability of x

start y1

New

y2

U.S.

y3

policy

end i=1 i=2 i=3
B

α1(B) 8e-6 2e-16

I

α1(I) 7e-11 2e-14

O

α1(O) 7e-12 5e-11

αi(y) = P(xi|y)
∑
yi′

P(y|yi′)αi(yi′)

• At i = 1, the previous label can only be start:
α1(B) = P(New|B) P(B|start)

= .006 · .393

α1(I) = P(New|I) P(I|start)

= .001 · .0

α1(O) = P(New|O) P(O|start)

= .0006 · .607

• At i = 2:

α2(B) = P(U.S.|B)
∑
y′

P(B|y′)α1(y′)

= P(U.S.|B)sum


P(B|B)α1(B) = .009 · .002 = .00002
P(B|I)α1(I) = .003 · .0 = .0
P(B|O)α1(O) = .102 · .0003 = .00003

= .016 · .00005
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P(B|B)α1(B) = .009 · .002 = .00002
P(B|I)α1(I) = .003 · .0 = .0
P(B|O)α1(O) = .102 · .0003 = .00003

= .016 · .00005
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αi(y) = P(xi|y)
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• At the end we can consider:
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∑
y

P(end|y)αL(y)

• In this case,
sum


P(end|B)α3(B) = .013 · 2e-16
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The Forward algorithm

input: sequence x1, . . . , xL, emission and transition probabilities

Forward: compute α recursively
α1(y) = P(y|start) · P(x1|y) ∀y ∈ Σ
for i = 2 to L do
for y ∈ Σ do
αi(y) = P(xi|y) ·

∑
y′

(
P(y|y′) · αi−1(y′)

)
p =

∑
y′

(
P(end|y′) · αL(y′)

)
output: the marginal likelihood p = P(x)
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Big HMM questions: Probability of an assignment

. . . yi−1

xi−1

yi

xi

yi+1

xi+1

. . .

P(yi = y|x) =
P(yi = y,x)∑
y′ P(yi = y′,x)

=?

The answer must be influenced by

• y1, . . . , yi−1 (in turn depending only on x1, . . . , xi−1)
• yi+1, . . . , yL (in turn depending only on xi+1, . . . , xL)

P(yi = y,x) =
∑

y1,...,yi−1,yi+1,...,yL

P(y1, . . . , yi−1, yi = y, yi+1, . . . , yL,x)

=
∑

y1,...,yi−1,yi+1,...,yL

P(y1, . . . , yi−1, yi = y, x1, . . . , xi) · P(yi+1, . . . , yL, xi+1, . . . , xL|yi = y)

=
∑

y1,...,yi−1

P(y1, . . . , yi−1, yi = y, x1, . . . , xi)︸ ︷︷ ︸
αi(y)

·
∑

yi+1,...,yL

P(yi+1, . . . , yL, xi+1, . . . , xL|yi = y)

︸ ︷︷ ︸
?

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 43 / 89



Big HMM questions: Probability of an assignment

. . . yi−1

xi−1

yi

xi

yi+1

xi+1

. . .

P(yi = y|x) =
P(yi = y,x)∑
y′ P(yi = y′,x)

=?

The answer must be influenced by

• y1, . . . , yi−1 (in turn depending only on x1, . . . , xi−1)
• yi+1, . . . , yL (in turn depending only on xi+1, . . . , xL)

P(yi = y,x) =
∑

y1,...,yi−1,yi+1,...,yL

P(y1, . . . , yi−1, yi = y, yi+1, . . . , yL,x)

=
∑

y1,...,yi−1,yi+1,...,yL

P(y1, . . . , yi−1, yi = y, x1, . . . , xi) · P(yi+1, . . . , yL, xi+1, . . . , xL|yi = y)

=
∑

y1,...,yi−1

P(y1, . . . , yi−1, yi = y, x1, . . . , xi)︸ ︷︷ ︸
αi(y)

·
∑

yi+1,...,yL

P(yi+1, . . . , yL, xi+1, . . . , xL|yi = y)

︸ ︷︷ ︸
?

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 43 / 89



Big HMM questions: Probability of an assignment

. . . yi−1

xi−1

yi

xi

yi+1

xi+1

. . .

P(yi = y|x) =
P(yi = y,x)∑
y′ P(yi = y′,x)

=?

The answer must be influenced by

• y1, . . . , yi−1 (in turn depending only on x1, . . . , xi−1)
• yi+1, . . . , yL (in turn depending only on xi+1, . . . , xL)

P(yi = y,x) =
∑

y1,...,yi−1,yi+1,...,yL

P(y1, . . . , yi−1, yi = y, yi+1, . . . , yL,x)

=
∑

y1,...,yi−1,yi+1,...,yL

P(y1, . . . , yi−1, yi = y, x1, . . . , xi) · P(yi+1, . . . , yL, xi+1, . . . , xL|yi = y)

=
∑

y1,...,yi−1

P(y1, . . . , yi−1, yi = y, x1, . . . , xi)︸ ︷︷ ︸
αi(y)

·
∑

yi+1,...,yL

P(yi+1, . . . , yL, xi+1, . . . , xL|yi = y)

︸ ︷︷ ︸
?

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 43 / 89



Big HMM questions: Probability of an assignment

. . . yi−1

xi−1

yi

xi

yi+1

xi+1

. . .

P(yi = y|x) =
P(yi = y,x)∑
y′ P(yi = y′,x)

=?

The answer must be influenced by

• y1, . . . , yi−1 (in turn depending only on x1, . . . , xi−1)
• yi+1, . . . , yL (in turn depending only on xi+1, . . . , xL)

P(yi = y,x) =
∑

y1,...,yi−1,yi+1,...,yL

P(y1, . . . , yi−1, yi = y, yi+1, . . . , yL,x)

=
∑

y1,...,yi−1,yi+1,...,yL

P(y1, . . . , yi−1, yi = y, x1, . . . , xi) · P(yi+1, . . . , yL, xi+1, . . . , xL|yi = y)

=
∑

y1,...,yi−1

P(y1, . . . , yi−1, yi = y, x1, . . . , xi)︸ ︷︷ ︸
αi(y)

·
∑

yi+1,...,yL

P(yi+1, . . . , yL, xi+1, . . . , xL|yi = y)

︸ ︷︷ ︸
?

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 43 / 89



Big HMM questions: Probability of an assignment

. . . yi−1

xi−1

yi

xi

yi+1

xi+1

. . .

P(yi = y|x) =
P(yi = y,x)∑
y′ P(yi = y′,x)

=?

The answer must be influenced by

• y1, . . . , yi−1 (in turn depending only on x1, . . . , xi−1)
• yi+1, . . . , yL (in turn depending only on xi+1, . . . , xL)

P(yi = y,x) =
∑

y1,...,yi−1,yi+1,...,yL

P(y1, . . . , yi−1, yi = y, yi+1, . . . , yL,x)

=
∑

y1,...,yi−1,yi+1,...,yL

P(y1, . . . , yi−1, yi = y, x1, . . . , xi) · P(yi+1, . . . , yL, xi+1, . . . , xL|yi = y)

=
∑

y1,...,yi−1

P(y1, . . . , yi−1, yi = y, x1, . . . , xi)︸ ︷︷ ︸
αi(y)

·
∑

yi+1,...,yL

P(yi+1, . . . , yL, xi+1, . . . , xL|yi = y)

︸ ︷︷ ︸
βi(y)

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 43 / 89



Forward in reverse?!

start y1

x1

y2

x2

. . .

• β looks a lot like running forward in the other direction...

P(x) =
∑
y

P(y|start) P(x1|y)
∑

y2,...,yL

P(x2, . . . , xL, y2, . . . , yL|y1 = y)︸ ︷︷ ︸
β1(y)

=
∑
y

P(y|start) P(x1|y)
∑
y′

P(y′|y) P(x2|y′)
∑

y3,...,yL

P(x3, . . . , xL, y3, . . . , yL|y2 = y′)︸ ︷︷ ︸
β2(y′)

• Recurrence: β i(y) =
∑

y′ P(y′|y) P(xi+1|y′)β i+1(y′)
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Big HMM questions: Probability of a transition
. . . yi−1

xi−1

yi

xi

yi+1

xi+1

yi+2

xi+2

. . .

P(yi = y, yi+1 = y′|x) =
P(yi = y, yi+1 = y′x)

P(x)
=?

P(yi = y,x) =
∑

y1,...,yi−1

P(y1, . . . , yi−1, yi = y, x1, . . . , xi)︸ ︷︷ ︸
αi(y)

·
∑

yi+1,...,yL

P(yi+1, . . . , yL, xi+1, . . . , xL|yi = y)

︸ ︷︷ ︸
βi(y)

P(yi = y, yi+1 = y′x) =
∑

y1,...,yi−1

P(y1, . . . , yi−1, yi = y, x1, . . . , xi)︸ ︷︷ ︸
αi(y)

·P(y′|y) · P(xi+1|y′)

·
∑

yi+2,...,yL

P(yi+2, . . . , yL, xi+2, . . . , xL|yi+1 = y′)

︸ ︷︷ ︸
βi+1(y′)

Independent of position (i, i + 1):

P([y, y′],x) =

L−1∑
i=1

P(yi = y, yi+1 = y′,x) = P(y′|y)
L−1∑
i=1

αi(y) P(xi+1|y′)β i+1(y
′)
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P([y, y′],x) =
L−1∑
i=1

P(yi = y, yi+1 = y′,x) = P(y′|y)
L−1∑
i=1

αi(y) P(xi+1|y′)β i+1(y
′)

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 45 / 89



The Forward-Backward algorithm
input: sequence x1, . . . ,xL, emission and transition probabilities

Forward: compute α recursively
α1(y) = P(y|start) · P(x1|y) ∀y ∈ Σ
for i = 2 to L do
for y ∈ Σ do
αi(y) = P(xi|y)

∑
y′

(
P(y|y′) · αi−1(y′)

)
Forward: compute β recursively
βL(y) = P(end|y) ∀y ∈ Σ
for i = L− 1 down to 1 do
for y ∈ Σ do
β i(y) =

∑
y′

(
P(y′|y) · P(xi+1|y′) · β i+1(y′)

)
output: Themarginal likelihood P(x) =

∑
y′ αi(y

′)β i(y′) for any i;
Posterior unigrammarginal probas P(yi = y|x) = αi(y) β i(y)

P(x) ;

Posterior transition marginal probas P([y, y′]|x) = P(y′|y)
P(x)

L−1∑
i=1
αi(y) P(xi+1|y′)β i+1(y′).

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 46 / 89



Viterbi recurrence:

scorei(y) = P(xi|y) max
y′

P(y|y′) scorei−1(y′)

Forward recurrence:

αi(y) = P(xi|y)
∑
y′

P(y|y′)αi−1(y′)

Backward recurrence:

β i(y) =
∑
y′

P(y′|y) P(xi+1|y′)β i+1(y′)



In log-domain:

Viterbi recurrence:

s̃corei(y) = log P(xi|y) + max
y′

(
log P(y|y′) + s̃corei−1(y′)

)
Forward recurrence:

α̃i(y) = log P(xi|y) + log
∑
y′

exp
(

log P(y|y′) + α̃i−1(y′)
)

Backward recurrence:

β̃ i(y) = log
∑
y′

exp
(

log P(y′|y) + log P(xi+1|y′) + β̃ i+1(y
′)
)

note: α̃i(y) = logαi(y), etc.



Log-sum-exp

−4 −2 0 2 4

0

1

2

3

4

5 max(0, t)
logsumexp(0, t)
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The Forward-Backward algorithm in log-domain
input: sequencex1, . . . ,xL, emission and transition log-probabilities

Forward: compute α̃ recursively
α̃1(y) = log P(y|start) + log P(x1|y) ∀y ∈ Σ
for i = 2 to L do
for y ∈ Σ do
α̃i(y) = log P(xi|y) + log

∑
y′ exp

(
log P(y|y′) + α̃i−1(y′)

)
Backward: compute β̃ recursively
β̃L(y) = log P(end|y) ∀y ∈ Σ
for i = L− 1 down to 1 do
for y ∈ Σ do
β̃ i(y) = log

∑
y′ exp

(
log P(y′|y) + log P(xi+1|y′) + β̃ i+1(y

′)
)

output: The log-marginal log P(x) = log
∑

y′ exp
(
α̃i(y′) + β̃ i(y

′)
)
for any i;

Posterior marginal log-probas: unigram
log P(yi = y|x) = α̃i(y) + β̃ i(y)− log P(x);
and transition:
log P([y, y′]|x) = log P(y′|y)+log

∑L−1
i=1 exp

(
α̃i(y)+log P(xi+1|y′)+β̃ i+1(y

′)
)
−log P(x).

note: α̃i(y) = logαi(y), β̃i(y) = log βi(y)
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Big HMM questions

1 What is the most likely
label sequence y, given x?

2 What is the probability of x?
3 What is the probability of each
assignment yi, given x?

4 What is the probability of each
transition y → y′, given x?

5 What sequence yminimizes the
Hamming cost?
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Minimizing costs, a.k.a., risks

• Our HMM defines a distribution over labelings P(y|x).
• The HMMwill be given a new sequence x to label, producing ŷ.
• We then observe the true y?, and incur a cost

cost(ŷ,y?).

• How do we predict so as to minimize the expected cost

ŷ = arg min
y

EP(y|x)

[
cost(y,y?)

]
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Minimizing costs, a.k.a., risks

• Consider the sequence zero-one cost:

cost01(y, ŷ) =

{
1, y 6= ŷ

0, y = ŷ

• The cost wemay expect to pay is

EP(y|x)

[
cost01(y,y

?)
]

=
∑
y 6=y?

P(y|x)

= 1− P(y?|x)

• We should return the sequence it assigns most probability to:

ŷ = arg min
y

(
1− P(y|x)

)
= arg max

y
P(y|x)

• Viterbi computes this sequence!
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Minimizing costs, a.k.a., risks

• Now consider the Hamming (word-wise) cost:

costH(y, ŷ) =
∑
i

cost01(yi, ŷi)

• The expected cost we pay is

EP(y|x)

[
costH(y,y?)

]
=
∑
i

∑
y

cost01(y, ŷi) P(yi = y|x)

=
∑
i

(
1− P(yi = y?i |x)

)
• Posterior decoding: Get α, β (Forward-Backward); pick ŷ such that

ŷi = arg max
y

P(yi = y|x) = arg max
y

(
α̃i(y) + β̃ i(y)

)
• Exercise: This can be extended for any cost of the form

cost(y, ŷ) =
∑L

i=1 cu(yi, ŷi) +
∑L−1

i=1 ct(yi, yi+1, ŷi, ŷi+1)
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Big HMM questions

1 What is the most likely
label sequence y, given x?

2 What is the probability of x?
3 What is the probability of each
assignment yi, given x?

4 What is the probability of each
transition y → y′, given x?

5 What sequence yminimizes the
Hamming cost?
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Two important algorithms for sequential models

All of these big questions are solved by these two similar algorithms.

Viterbi
(find the max
sequence)

McGrath le� out of IrelandWorld Cup squad

O

I

B

Forward-
Backward

(find the average
sequence)

McGrath le� out of IrelandWorld Cup squad

O

I

B
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Dealing with other types of data

• So far y was a sequence of labels, and x a sequence ofwords,
so emission probabilities P(xi|yi) are just tables.
• Everything works with other choices for P(xi|yi). Examples:

• xi are sentences. Example: sentence-level review sentiment.
x y
x1: I bought this knife set last year. y1: neutral
x2: I was pleasantly surprised with it. y2: positive
x3: They’re still sharp. y3: positive
Naïve Bayes assumption for emissions: P(xi|yi) =

∏
w∈xi P(w|yi)

• xi ∈ Rd are continuous vectors. Example: speech-to-phoneme

Gaussian emissions:
P(xi|yi) = N(µyi , Syi)

• Or, turn to feature-based discriminative models (later.)
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Outline

1 Structured Prediction

2 Generative Sequence Models

Markov Models

Hidden Markov Models

Unsupervised learning

3 Discriminative Sequence Models

Structured Perceptron

Conditional Random Fields

Structured SVM
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Unsupervised learning

How to estimate the emission probabilities P(xi|yi) and the transition
probabilities P(yi|yi−1)?

1 Supervised learning: assumes we have labeled training data
{(x(1),y(1)), . . . , (x(N),y(N))} – we’ve seen this!

2 Unsupervised learning: assumes all we have is unlabeled training
data {x(1), . . . ,x(N)}
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HMMUnsupervised Learning

Assumes all we have is unlabeled training data {x(1), . . . ,x(N)}
Maximum Likelihood Estimation with incomplete data!

maximize
N∏
n=1

P(x(n)) =
N∏
n=1

∑
y

P(x(n),y(n))

Algorithm: Expectation-Maximization (EM).
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Expectation-Maximization (Baum-Welch)

If we knew y, could fit HMM by counting and normalizing

If we knew the model parameters, we could estimate the posterior marginal
probabilities (so� counts) P(yi | x) and P(yi−1,yi | x)

This is a chicken-and-egg problem!
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Expectation-Maximization (Baum-Welch)

Initialize HMM at random.

Alternate:

• E-step: Get a so�-labelling of x from current model,
keep track of so� counts P(yi | x) and P(yi−1,yi | x)
• Forward-Backward for each data point.

• M-step: Do a “supervised” update of the HMM
• Count & normalize the so�-labels!

Guarantees improvement, but the problem has multiple optima.
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Summary of HMMs

• Assumptions? Markov assumption on states; words are
conditionally independent given the state.
• Decoding algorithms: Viterbi/forward-backward.
• Learning? Maximum likelihood (count and normalize) for the
supervised case, EM for the unsupervised case.
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So far: Structured predictionmodels

Binary/Multi-class Structured Prediction

Naive Bayes HMMs
Perceptron ?

Logistic Regression ?
SVMs ?
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Outline

1 Structured Prediction

2 Generative Sequence Models

Markov Models

Hidden Markov Models

Unsupervised learning

3 Discriminative Sequence Models

Structured Perceptron

Conditional Random Fields

Structured SVM
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Recall: Generative vs discriminative

Generativemodels
• Model the joint P(x,y) by choosing P(y), P(x|y)

• E.g., Naïve Bayes
• Easy to fit: just count, one pass over the data.

• Make predictions: arg maxy P(y|x) = arg maxy P(x,y)
• Use Bayes’ rule to get P(y|x)

Discriminativemodels
• Directly try to assign a score to each class

• linear, feature-driven: sy = w · φ(x,y),
• or a neural network: sy = f(y;x)

• Make predictions: arg maxy sy
• Harder to train, needs iterative optimization

• Perceptron: Try to make sytrue > sy
• Logistic regression: Define P(y|x) ∝ exp(sy), maximize P(ytrue|x).
• SVM: Try to make sytrue > 1+ sy

In HMM, with Viterbi
resp. Forward-Backward

Does the same trick work?
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Perceptron

Recall the simple & powerful Perceptron algorithm.

• Process one pair (x,ytrue) at each round
• Take x; predict a sequence ŷ.
• If prediction is correct, proceed. If not, adjust.

input: labeled dataD
initializew
repeat
get new training example (x,ytrue)
predict ŷ = arg maxy∈Y f(y;x)
if ŷ 6= ytrue then
updatew ← w +∇wf(ytrue;x)−∇wf(ŷ;x)

untilmax. epochs
output:model weightsw

Why couldn’t y be an entire sequence here?
Mathematically, all is cool. Algorithmically...
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Perceptron

Everything would be fine if we had a way to calculate

arg max
y∈Y

f(y;x)

This would work, but prohibitive:.
for y = [start, y1, . . . , yL, end] ∈ Y do
compute f(y;x) # e.g.w · φ(x,y), or nnet forward pass

return the highest scoring y

This looks similar to the problem Viterbi solved in HMMs!

arg max
y∈Y

log P(y,x)

Whatmagic made Viterbi work there? – can we replicate it?
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The HMMmagic formula: decomposition into parts

Viterbi was able to e�iciently compute

arg max
y∈Y

log P(y,x)

because of the decomposition into parts:

log P(y,x) =
L∑
i=1

log P(xi|yi)︸ ︷︷ ︸
emission log-proba

+
L+1∑
i=1

log P(yi|yi−1)︸ ︷︷ ︸
transition log-proba

We should try to design our scorer f such that

f(y;x) =
L∑
i=1

f (u)
i (yi;x)︸ ︷︷ ︸
unary score

+
L∑
i=2

f (t)
i (yi, yi−1;x)︸ ︷︷ ︸
transition score

. . . yi−1

xi−1

yi

xi

yi+1

xi+1

. . . . . . yi−1 yi yi+1 . . .
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unary score

+
L∑
i=2

f (t)
i (yi, yi−1;x)︸ ︷︷ ︸
transition score

Given x, unary scores form a |Σ| × L array s(u)
y,i

and transition scores form a |Σ| × |Σ| × L array s(t)
y′,y,i

Transitions from start and to end?

Can be added to s(u)
y,1 , s

(u)
y,L

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 70 / 89



The HMMmagic formula: decomposition into parts

Viterbi was able to e�iciently compute

arg max
y∈Y

log P(y,x)

because of the decomposition into parts:

log P(y,x) =
L∑
i=1

log P(xi|yi)︸ ︷︷ ︸
emission log-proba

+
L+1∑
i=1

log P(yi|yi−1)︸ ︷︷ ︸
transition log-proba

We should try to design our scorer f such that

f(y;x) =
L∑
i=1

f (u)
i (yi;x)︸ ︷︷ ︸
unary score

+
L∑
i=2

f (t)
i (yi, yi−1;x)︸ ︷︷ ︸
transition score

Given x, unary scores form a |Σ| × L array s(u)
y,i

and transition scores form a |Σ| × |Σ| × L array s(t)
y′,y,i

Transitions from start and to end? Can be added to s(u)
y,1 , s

(u)
y,L

Vlad Niculae & André Martins (IST) Lecture 5: Linear Sequential Models IST, Fall 2019 70 / 89



Score-based Viterbi

input: Unary scores s(u) (|Σ| × L array)
Transition scores s(t) (|Σ| × |Σ| × (L− 1) array)

Forward: compute scores recursively
s̃core1(y) = s(u)

y,1 ∀y ∈ Σ
for i = 2 to L do
for y ∈ Σ do

s̃corei(y) = s(u)
y,i + maxy′

(
s(t)
y′,y,i + s̃corei−1(y′)

)
backptri(y) = arg maxy′

(
s(t)
y′,y,i + s̃corei−1(y′)

)
Backward: follow backpointers
f? = maxy′ s̃coreL(y′)
ŷL = arg maxy′ s̃coreL(y′)
for i = L− 1 down to 1 do
ŷi = backptri+1(ŷi+1)

output: The highest-scoring ŷ = [ŷ1, . . . , ŷL] and its total score f?.
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Decomposable scorers

f(y;x) =
L∑
i=1

s(u)
yi,i

+
L∑
i=2

s(t)
yi−1,yi,i

• More expressive than an HMM: can look at entire x. Useful cases:
• We can simulate an HMM: W (t) ∈ R|Σ|×|Σ|, W (u) ∈ R|Σ|×|V|;

• s(t)
y′,y,i = w(t)

y′,y (ignore x and i)
• s(u)

y,i = w(u)
y,xi

• Transitions as above; linear / neural model for unary scores
• A word-level classifier augmented with transition scores.

• Linear scores: s(u)
y,i = w(u) · φ(u)((x, i), y) Unary features:

• y = B, xi capitalized
• y = B, xi−1 indefinite article (a/an)

• Neural unary scores (example)
1 Encode each word into a vectorhi = g(x, i).
2 apply “output layer”: s(u)

y,i =
(
W (out)hi + b(out))y
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Decomposable feature-based scorers

f(y;x) =
L∑
i=1

s(u)
yi,i +

L∑
i=2

s(t)
yi−1,yi,i

• Lots of NLP literature uses feature representations for everything.

s(u)
y,i = w(u) · φ(u)((x, i), y)

s(t)
y′,y,i = w(t) · φ(t)((x, i), (y′, y))

or, compactly, f(y,x) = w · φ(x,y)

where φ(y,x) = cat
[∑

i φ
(u)((x, i), yi),

∑
i φ

(t)((x, i), yi, yi+1)
]

w = cat
[
w(u), w(t)

]
• Unary features: just like in multi-class. Transition features:

• y = B, y′ = O (equivalent to learning transition scores)
• y = B, y′ = O, i = 3
• y = B, y′ = O, xi capitalized, xi−1 = "from"
• y = B, y′ = O, xlast = "?"
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Structured Perceptron

input: labeled dataD
initializew
repeat
get new training example (x,ytrue)
compute unary and transition scores, s(u), s(t).
predict ŷ = arg maxy∈Y f(y;x) using Viterbi.
if ŷ 6= ytrue then
updatew ← w +∇wf(ytrue;x)−∇wf(ŷ;x)

untilmax. epochs
output:model weightsw

• If linear f(y;x) = w · φ(x,y), then∇wf(y;x) = φ(x,y).

• If neural,∇wf(y;x) =
∑L

i=1∇ws
(u)
yi,i +

∑L
i=2∇ws

(t)
yi−1,yi,i from autodi�.
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Outline

1 Structured Prediction

2 Generative Sequence Models

Markov Models

Hidden Markov Models

Unsupervised learning

3 Discriminative Sequence Models

Structured Perceptron

Conditional Random Fields

Structured SVM
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Logistic Regression

What if we want a discriminative probabilistic model?

i.e., one that gives P(y|x) and not just a prediction ŷ?

For multi-class, we had logistic regression.

P(y|x) =
exp sy∑′
y exp s′y
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Logistic Regression

P(y|x) =
exp sy∑′
y exp sy′

To learn, wemaximize

log P(ytrue|x) = sytrue − log
∑
y

exp sy

with gradient descent, noting that
∇ log P(ytrue|x) = ∇sytrue − Ey∇sy.

In particular, for linear models,
∇w log P(ytrue|x) = φ(x,ytrue)− Eφ(x,y)

For neural nets, grad wrt. score vector
∇s log P(ytrue|x) = eytrue − Eey

= eytrue − softmax(s)

For sequence models, Forward-Backward computes what we need!
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Conditional Random Fields

Discriminative (non-generative) structured models.

log P(y|x) = f(y;x)− log
∑
y′

exp f(y′;x)

Given a decomposable sequence scorer,

f(y;x) =
L∑
i=1

s(u)
yi,i

+
L∑
i=2

s(t)
yi−1,yi,i

Forward-Backward computes

• Normalizer / log-partition function log
∑

y′ exp f(y′;x) = log Z.
• Unary and transition posterior marginals:

log P(yi = y|x), log P(yi = y, yi+1 = y′|x).
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Score-based Forward-Backward
input: Unary scores s(u) (|Σ| × L array)
Transition scores s(t) (|Σ| × |Σ| × (L− 1) array)

Forward: compute α̃ recursively
α̃1(y) = s(u)

y,1 ∀y ∈ Σ
for i = 2 to L do
for y ∈ Σ do
α̃i(y) = s(u)

y,i + log
∑

y′ exp
(
s(t)
y′,y,i + α̃i−1(y′)

)
Backward: compute β̃ recursively
β̃L(y) = 0
for i = L− 1 down to 1 do
for y ∈ Σ do
β̃ i(y) = log

∑
y′ exp

(
s(t)
y,y′,i + s(u)

y′,i+1 + β̃ i+1(y
′)
)

output: The log-partition function log Z = log
∑

y′ exp
(
α̃i(y′) + β̃ i(y

′)
)
for any i;

Posterior unigram and transition marginal log-probas:
log P(yi = y|x) = α̃i(y) + β̃ i(y)− log Z;
log P(yi = y, yi+1 = y′|x) = α̃i(y) + β̃ i+1(y

′) + s(u)
y′,i+1 + s(t)

y,y′,i+1 − log Z.
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Training a linear model CRF

Wewant to maximize

log P(ytrue|x) = w · φ(x,ytrue)− log
∑
y

expw · φ(x,y)

where
φ(y,x) = cat

[∑
i φ

(u)((x, i), yi),
∑

i φ
(t)((x, i), yi, yi+1)

]
w = cat

[
w(u), w(t)

]
.

Similar to logistic regression, we get

∇w(u) log P(ytrue|x) =
∑

i

(
φ(u)((x, i), ytruei )−Eyφ

(u)((x, i), yi)
)

=
∑

i

(
φ(u)((x, i), ytruei )−

∑
y φ

(u)((x, i), y) P(yi = y|x)
)

and, for transitions,

∇w(t) log P(ytrue|x) =
∑

i

(
φ(t)((x, i), ytruei−1 , y

true
i )

−
∑

y,y′ φ
(t)((x, i), y, y′) P(yi−1 = y, yi = y′|x)

)
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Training a neural CRF
Wewant to maximize

log P(ytrue|x) = f(x,y)− log
∑
y

exp f(x,y)

where

f(x,y) =
L∑
i=1

s(u)
yi,i +

L∑
i=2

s(t)
yi−1,yi,i.

Note that

∂f(x,y)

∂s(u)
y,i

=

{
1, yi = y
0, otherwise

= [[yi = y]],
∂f(x,y)

∂s(t)
y,y′,i

= [[yi−1 = y, yi = y′]]

Therefore,

∂ log P(ytrue|x)

∂s(u)
y,i

= [[ytruei = y]]− P(yi = y|x)

∂ log P(ytrue|x)

∂s(t)
y,y′,i

= [[ytruei−1 = y, ytruei = y′]]− P(yi−1 = y, yi = y′|x)
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Visually:

∇s(u) log P(ytrue|x) =

0 1 2 3 4 5 6 7

O

I

B

0 1 2 3 4 5 6 7

O

−I

B
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Outline

1 Structured Prediction

2 Generative Sequence Models

Markov Models

Hidden Markov Models

Unsupervised learning

3 Discriminative Sequence Models

Structured Perceptron

Conditional Random Fields

Structured SVM
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SVM and the hinge loss

SVMs are non-probabilistic max-margin classifiers.

The so�-margin perspective: minimizing a “hinge loss”:

L(w; (x,ytrue)) = max
y
w · φ(x,y) + [[y 6= ytrue]]−w · φ(x,ytrue)

Intuition: the score of the correct class must be greater than the score of
wrong classes by at least 1.
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Structured SVM

L(w; (x,ytrue)) = max
y

f(x,y) + cost(y,ytrue)− f(x,ytrue)

where cost(y,ytrue) =
∑L

i=1[[yi 6= ytruei ]] is the Hamming cost.

Cost-augmented decoding:

Finding arg maxy f(x,y) + cost(y,ytrue) can be done by Viterbi with
adjusted unary scores

s̃(u)
y,i =

{
s(u)
y,i yi = ytruei

s(u)
y,i + 1 yi 6= ytruei

Intuition: We give a boost to the wrong labels, and we want the global
prediction to still be correct.

Similar algorithm to Structured Perceptron.
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Structured SVM

input: labeled dataD, learning rate η
initializew
repeat
get new training example (x,ytrue)
compute unary and transition scores, s(u), s(t)

predict ŷ = arg max
y∈Y

f(y;x) + cost(y,ytrue) (cost-augmented Viterbi)

if ŷ 6= y then
updatew ← w + η

(
∇wf(ytrue;x)−∇wf(ŷ;x)

)
untilmax. epochs
output:model weightsw

• If linear f(y;x) = w · φ(x,y), then∇wf(y;x) = φ(x,y).

• If neural,∇wf(y;x) =
∑L

i=1∇ws
(u)
yi,i +

∑L
i=2∇ws

(t)
yi−1,yi,i from autodi�.
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Visually:

Unlike CRF, subgradient updates for Perceptron/SSVM look like:

∂
(u)
s L 3

0 1 2 3 4 5 6 7

O

I

B

0 1 2 3 4 5 6 7

O

−I

B
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Structured predictionmodels

Binary/Multi-class Structured Prediction

Naive Bayes HMMs
Perceptron Structured Perceptron

Logistic Regression CRF
SVMs Structured SVM
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Discriminative vs HMM

• HMM is less expressive, but fast to train.
• Discriminative models are powerful, but require iterative training.
• HMM and CRF have probabilistic interpretations.
(Useful when posterior analyses are desirable)
• Structured SVM is a good classifier,
can be extended to other cost functions.
• Perceptron and Structured SVM updates are sparse;
(may be faster for very largeΣ.)
• For structures more complicated than sequences, wemay not have a
Forward-Backward equivalent, but wemay be able to approximate
arg maxy f(y;x).
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