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Announcements

• The deadline for turning in Homework 4 is December 13 (next week).

• The deadline for the final report is due January 6.

• The class presentations will be in January 10, 13, 17.
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Today’s Roadmap

Most of the course was about supervised learning. Today we’ll talk about
deep generative models for unsupervised learning.

• Deep auto-regressive models

• Boltzmann machines

• Deep belief networks

• Evidence lower bound (ELBO) and variational inference

• Wake-sleep algorithm

• Variational auto-encoders

• Generative adversarial networks

• Energy networks
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Which of these people is real?

(http://www.whichfaceisreal.com)

André Martins & Vlad Niculae (IST) Lecture 11 IST, Fall 2019 4 / 98

http://www.whichfaceisreal.com


Which of these people is real?

(http://www.whichfaceisreal.com)

André Martins & Vlad Niculae (IST) Lecture 11 IST, Fall 2019 4 / 98

http://www.whichfaceisreal.com


Which of these people is real?

(http://www.whichfaceisreal.com)
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Generative Modeling

Modeling complex high-dimensional data is an open problem

Deep generative models are currently making progress on this.

Goal: model P(x) (unsupervised learning) or P(x,y) (supervised learning)

Often, deep generative models also use latent variables h, in which case
they may model P(x,h) or P(x,h,y).
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Examples of Deep Generative Models

• Auto-Regressive Networks

• Restricted Boltzmann Machines

• Deep Belief Networks

• Deep Boltzmann Machines

• Gaussian-Bernoulli RBMs

• Convolutional Boltzmann Machines

• Sigmoid Belief Nets

• Variational Auto-Encoders

• Generative Adversarial Networks

• Convolutional Generative Networks

• Generative Stochastic Networks
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André Martins & Vlad Niculae (IST) Lecture 11 IST, Fall 2019 6 / 98



Outline

1 Deep Auto-Regressive Models

2 Boltzmann Machines

3 Variational Auto-Encoders

Variational Inference and ELBO

Gradients and Reparameterization Trick

4 Generative Adversarial Networks

5 Conclusions
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Deep Auto-Regressive Models

Deep auto-regressive models have no latent variables.

Instead, they use the chain rule of probabilities to decompose:

P(x) = P(x1)× P(x2 | x1)× . . .× P(xD | x1, . . . , xD−1)

Also called fully-visible Bayes networks.

We saw examples already: RNNs, Pixel RNNs, Pixel CNNs, ...
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Neural Auto-Regressive Density Estimator (NADE)

Proposed by Larochelle and Murray (2011).

Similar to fully visible Bayes networks, but with some parameter sharing.
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Neural Auto-Regressive Density Estimator (NADE)

(Larochelle and Murray, 2011)
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Examples: PixelCNNs and PixelRNNs

• Input-to-state and state-to-state mappings for PixelCNN and two
PixelRNN models (Oord et al., 2016):
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RNNs for Generating Images

(Oord et al., 2016)
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Summary

Despite their simplicity, deep auto-regressive models can be very powerful.

However, for some problems they may require too many
parameters/complex functions due to the assumption all variables are
observed.

Models with latent variables are an appealing alternative, since they can
represent “clusters” and explain the data on a simpler representation space.
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Energy Based Models

Idea: define a probability distribution (mixing observed and latent
variables) via an energy function E (x,h;θ):

P(x,h) =
exp(−E (x,h;θ))

Z (θ)

Maximizing probability corresponds to minimize the energy.

Challenges:

• Compute the partition function Z (θ)

• Compute the evidence P(x)

• Compute the posterior P(h | x)

• Sample?
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Boltzmann

“The maximum entropy S of a gas relates to the number of mi-
crostates W via S = k logW (k = 1.38065× 10−23J/K).”
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Boltzmann Machine (Ackley et al., 1985)

• Energy-based model to learn arbitrary
probability distributions over binary vectors

• Defined over a binary random vector
x = (v ,h) ∈ {0, 1}N×M :

P(v ,h) =
exp(−E (v ,h))

Z

• Some variables are observed (v), others are latent (h)

• Energy function:

E (v ,h) = −v>Rv − v>Wh − h>Sh − b>v − c>h
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Boltzmann Machine

The Boltzmann machine is a universal approximator of probability mass
functions over discrete variables (Le Roux and Bengio, 2008)

Emulates the idea in Hebbian learning that “neurons that fire together
wire together.”

However, in general:

• Sampling is hard

• Inference is hard

• Learning is hard.
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How to Learn a Boltzmann Machine?

Learning is usually based on maximum likelihood.

All Boltzmann machines have an intractable partition function Z , so for
learning the gradient must be approximated:

• contrastive divergence

• pseudo-likelihood

• noise-contrastive estimation

• annealed importance sampling

We won’t cover this today (but check Goodfellow et al. (2016, Chapter
18)).

In a nutshell: learning a fully general Boltzmann machine is usually very
challenging, so we typically resort to some particular cases.
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Some Particular Cases

• Restricted Boltzmann machine

• Deep belief networks

• Deep Boltzmann machines

• . . .
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Restricted Boltzmann Machines

Key idea: assumes that visible and hidden units are arranged as a
bipartite graph.
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Restricted Boltzmann Machines

Also called harmonium (Smolensky, 1986)

RBMs are undirected probabilistic graphical models containing

• a layer of observable variables

• a single layer of latent variables.

In other words: a bipartite graph, without intra-layer connections

The energy function becomes:

E (v ,h) = −v>Wh − b>v − c>h

What is this buying us?
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Restricted Boltzmann Machines

Unfortunately, the partition function Z is still intractable :(

... however, the conditional distributions P(h | v) and P(v | h) are now
tractable! (next slide)

• easy to compute!

• easy to sample!

• can do MCMC with Gibbs sampling.
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Restricted Boltzmann Machines

Why are the conditionals tractable?

• Because without intra-layer connections, h1, . . . , hN are conditionally
independent given v , hence P(h | v) factors:

P(hj = 1 | v) = σ(cj + W:,j
>v), ∀j = 1, . . . ,M.

• Similarly for P(v | h).

RBMs are relatively straightforward to train (by approximating Z ).

See Goodfellow et al. (2016, Chapter 18) for more details.

RBMs may be stacked (one on top of the other) to form deeper models.
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Some RBM’s Friends

(Image from Goodfellow et al. (2016))

(a) Restricted Boltzmann machine (RBM)

(b) Deep belief network (DBN): hybrid directed/undirected GM with
multiple latent layers

(c) Deep Boltzmann machine (DBM): undirected GM with several layers
of latent variables.
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Deep Belief Networks (Hinton et al., 2006)

• Began the deep learning
renaissance!

• Before DBNs: deep models were
considered too difficult to
optimize

• Today, DBNs mostly fell out of
favor

• Idea: several layers of latent
variables, again no intra-layer
connections
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Deep Belief Networks (Hinton et al., 2006)

• The connections between the top two layers are undirected:

P(h(`),h(`−1)) ∝ exp(−h(`−1)>W(`)h(`)−(b(`−1))>h(`−1)−b(`)>h(`))

• The connections between all other layers are directed:

P(hki = 1 | h(k+1)) = σ(b
(k)
i + W

(k+1)
:,i

>
h(k+1))

P(vi = 1 | h(1)) = σ(b
(0)
i + W

(1)
:,i

>
h(1))
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Deep Belief Networks

Inference in a deep belief network is intractable:

• “explaining away” effect within each directed layer

• interaction between the two hidden layers with undirected connections

Evaluating or maximizing the standard evidence lower bound on the
log-likelihood is also intractable

How to train a DBN?
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André Martins & Vlad Niculae (IST) Lecture 11 IST, Fall 2019 28 / 98



Layerwise Training

• Begin by training a RBM for the first layer; then train a second RBM
to model the distribution defined by sampling the hidden units of the
first RBM, etc.

Most interest in DBNs arose from their ability to improve classification:

• take DBN’s weights and define a MLP (discriminative fine-tuning)
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Examples of Deep Generative Models

• Auto-Regressive Networks X

• Restricted Boltzmann Machines X

• Deep Belief Networks X

• Deep Boltzmann Machines X

• Gaussian-Bernoulli RBMs

• Convolutional Boltzmann Machines

• Sigmoid Belief Nets

• Variational Auto-Encoders

• Generative Adversarial Networks

• Convolutional Generative Networks

• Generative Stochastic Networks
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Next: Differentiable Generator Networks

Several recent models are based on the idea of using a differentiable
generator network.

This is a differentiable function G (h;θ) that transforms latent variables h
into sample reconstructions x (or distributions Pθ(x | h)).

This idea underlies models such as:

• Variational auto-encoders

• Generative adversarial networks.

We’ll cover those next.
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Outline

1 Deep Auto-Regressive Models

2 Boltzmann Machines

3 Variational Auto-Encoders

Variational Inference and ELBO

Gradients and Reparameterization Trick

4 Generative Adversarial Networks

5 Conclusions

André Martins & Vlad Niculae (IST) Lecture 11 IST, Fall 2019 32 / 98



Variational Auto-Encoders

Many latent variable models have:

• intractable evidence P(x)

• intractable posterior P(h | x).

Variational inference (e.g. mean field algorithms) is a technique used to
approximate these quantities.

• Widely used in Bayesian inference, topic models, etc.

Auto-encoders are effective to learn data representations or codes (i.e.
mapping x −→ h −→ x)

Key idea: combine auto-encoders with variational inference.
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Recap: HMMs

HMMs are defined by:

• a sequence of latent states h = h1, . . . , hL
• a sequence of observations x = x1, . . . , xL
• emissions Pθ(xi | hi )
• transitions Pθ(hi+1 | hi ).

Is computing the evidence P(x) tractable?

Yes. Forward and backward
both return this.

Is computing the posteriors P(hi | x) tractable?

Yes. Forward-backward
returns this.

Can we expect this to happen for every model?

No.

André Martins & Vlad Niculae (IST) Lecture 11 IST, Fall 2019 34 / 98



Recap: HMMs

HMMs are defined by:

• a sequence of latent states h = h1, . . . , hL
• a sequence of observations x = x1, . . . , xL
• emissions Pθ(xi | hi )
• transitions Pθ(hi+1 | hi ).

Is computing the evidence P(x) tractable? Yes. Forward and backward
both return this.

Is computing the posteriors P(hi | x) tractable?

Yes. Forward-backward
returns this.

Can we expect this to happen for every model?

No.
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Intractable Evidence and Posterior

In HMMs, the evidence Pθ(x) and posterior Pθ(h | x) are tractable, via
the forward-backward algorithm.

• This makes it possible to define an EM algorithm to estimate the
model parameters θ

Unfortunately, for many other models both are intractable:

• Topic models like LDA (latent Dirichlet allocation)

• Mixtures of RNNs

• For probabilistic reconstruction models defined by neural networks,
e.g. a Gaussian prior Pθ(h) followed by a feedforward layer to define
Pθ(x | h).

What to do in these cases?
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Our Assumptions

Henceforth, we assume that:

• The prior Pθ(h) is tractable (e.g. zero-mean, unit-variance Gaussian)

• The conditional Pθ(x | h) is tractable (e.g. a feed-forward neural
network or an RNN).

But:

• Evidence Pθ(x) (i.e. marginalizing out h) is intractable

• Computing the posterior P(h | x) in intractable.

We’ll use variational inference to approximate the evidence and the
posterior.

André Martins & Vlad Niculae (IST) Lecture 11 IST, Fall 2019 36 / 98



Outline

1 Deep Auto-Regressive Models

2 Boltzmann Machines

3 Variational Auto-Encoders

Variational Inference and ELBO

Gradients and Reparameterization Trick

4 Generative Adversarial Networks

5 Conclusions
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Basic Recap

Before proceeding, we need to recap what is:

• Shannon’s entropy

• Kullback-Leibler divergence.
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Recap: Shannon’s Entropy

Let P be a distribution over x ∈ X.

H(P) = −
∑
x

P(x) logP(x).

Always non-negative, and zero iff x is deterministic (i.e. P(x) is a delta
distribution).

Intuitively: how many bits on average do we need to encode an object
x ∼ P(x) with an optimal code?
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Recap: Kullback-Leibler Divergence

Let P and Q be two distributions over x ∈ X.

KL(P‖Q) =
∑
x

P(x) log
P(x)

Q(x)

= −
∑
x

P(x) logQ(x)− H(P)

Always non-negative, and zero iff P(x) = Q(x).

Not symmetric!

Intuitively: how many extra bits on average do we need to encode an
object x ∼ P(x) if our code is optimal for Q(x)?
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Evidence Lower Bound (ELBO)

This is a central concept in variational inference.
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Evidence Lower Bound (ELBO)

Let Pθ(h | x) be the true posterior, and Pθ(x) be the true evidence.

For any distribution Q(h), we have:

0 ≥ −KL(Q(h)‖Pθ(h | x))

= EQ(h)[logPθ(h | x)]− EQ(h)[logQ(h)]

= EQ(h)[logPθ(x,h)]− EQ(h)[logQ(h)]︸ ︷︷ ︸
ELBO(Q)

− logPθ(x).

Therefore, we have the following lower bound on the evidence:

logPθ(x) = ELBO(Q) + KL(Q(h)‖Pθ(h | x))

≥ ELBO(Q).
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Variational Inference

Evidence lower bound:

logPθ(x) = ELBO(Q) + KL(Q(h)‖Pθ(h | x))

≥ ELBO(Q).

Equality is achieved when Q(h) = Pθ(h | x), but the latter is intractable.

Key idea: define a tractable family and look for the Q(h) in this family
that maximize ELBO.

Since Pθ(x) fixed, maximize ELBO(Q) ⇔ minimize KL(Q(h)‖Pθ(h | x)).

Rooted in old ideas from “calculus of variations” (Newton, Bernoulli,
Euler, Lagrange, ...)
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Evidence Lower Bound

ELBO can be written in multiple ways:

ELBO(Q) = EQ(h)[logPθ(x,h)]− EQ(h)[logQ(h)]

= EQ(h)[logPθ(x | h)]− EQ(h)[log
Q(h)

Pθ(h)
]

= EQ(h)[logPθ(x | h)]− KL(Q(h)‖Pθ(h)).

Which values of h is Q(h) encouraged to place its mass on?

• The first term is an expected likelihood: encourages placing mass
on latent variables h that explain the observed data x.

• The second term is the negative divergence between Q(h) and
the prior: encourages staying close to the prior.

Thus, ELBO mirrors the usual balance between likelihood and prior.
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Mean Field Approximation

Which tractable family to use for Q(h)?

Mean field approximation: assume Q(h) is a factorial distribution,

Q(h) =
∏
i

Q(hi ).

More sophisticated: structured mean field (imposes a graphical model
structure on Q that captures interactions among the latent variables and is
still tractable)

Lots of literature on this topic; see Wainwright and Jordan (2008) for
details.
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Example: Bayesian Inference

We saw before that the EM algorithm seeks maximum-likelihood estimates
in models with latent variables (e.g., HMMs, mixtures of Gaussians)

In Bayesian inference, model parameters are treated as latent variables

• This leads to a coupling between global latent variables
(corresponding to the model parameters µ) and local latent variables
z (e.g. states in HMMs, clusters in mixtures of Gaussians), making
inference intractable

• Mean field inference uses a variational approximation
Q(z ,µ) = Q(z)Q(µ) and then minimizes ELBO, leading to
alternating optimization algorithms similar to EM

Doing these updates at a per-instance level leads to stochastic variational
inference, which scales to large datasets.
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Stochastic Variational Inference

(From Blei et al. (2017).)
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Amortized Variational Inference

What we described so far requires optimizing the variational distribution
Q(h) for every example x in the training set.

• This can be expensive: requires several gradient/coordinate ascent
iterations per example.

An alternative is to use amortized variational inference!

Key idea: instead of optimizing Q(h) for every example, use an encoder
with shared parameters φ and define Qφ(h | x).

For each example:

• make a forward pass on the encoder to obtain Qφ(h | x)

• backpropagate through the encoder to update φ.
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Example: Multivariate Bernoulli with Continuous
Latent Variables (Kingma and Welling, 2013)

• Prior is a multivariate isotropic Gaussian Pθ(h) = N(h; 0, I)

• Conditional is a multivariate Bernoulli

Pθ(x | h) =
D∏
i=1

σ(fi (h;θ))xi (1− σ(fi (h;θ)))1−xi ,

where f (h;θ) is computed by a MLP with parameters θ when h is
given as input

• The true posterior Pθ(h | x) is intractable

• Approximate the posterior with a variational distribution
Qφ(h | x) = N(h;µ(x;φ),σ2(x;φ))
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Variational Auto-Encoders (Kingma and Welling, 2013)

This leads to variational auto-encoders:

... we’ll come back to this!
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Related: Helmholtz Machines and Wake-Sleep

This model is related to Helmholtz machines and the Wake-Sleep
algorithm, which we next describe.
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Helmholtz Machines

Trained to create a generative model of the data

Key idea: by learning a compact representation of the data, the
underlying structure of the generative model should reasonably
approximate the hidden structure of the data set.

Two components:

• A inference network to represent Qφ(h | x) (also called recognition
network)

• A generation network to represent Pθ(x | h) (also called
reconstruction network)

ELBO is also called the (negative) variational Helmholtz free energy.
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Wake-Sleep Algorithm (Hinton et al., 1995)

Works in two phases:

• a wake phase: observe external data and update generation model to
increase likelihood

• a sleep phase: keep eyes shut, and use the model to generate new
data, updating the inference model

Inspired by biological theories of how mammals dream during sleep.
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Wake-Sleep Algorithm (Hinton et al., 1995)

• Wake phase: use the inference model φ to draw samples
h(1), . . . ,h(N) according to Qφ(h | x) and use them to update the
generator model θ by maximizing:

EQφ(h|x)[∇θ logPθ(x,h)] ≈ 1

N

N∑
i=1

∇θ logPθ(x,h(i))

• Sleep phase: use the generator model θ to sample
h(1), . . . ,h(N) ∼ Pθ(h) and x(i) ∼ Pθ(x | h(i)). Then update the
inference model φ to maximize logQφ(h(i) | x(i)):

EPθ(x,h)[∇φ logQφ(h | x)] ≈ 1

N

N∑
i=1

∇φ logQφ(h(i) | x(i))
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Wake-Sleep and Variational Auto-Encoder

• Wake phase updates Pθ(x | h)

• Sleep phase updates Qφ(h | x)
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Limitations of the Wake-Sleep Algorithm

Advantages:

• simple to implement

• the wake-sleep gradient for the inference network parameters φ is
much easier to estimate than the actual variational bound gradient

Disadvantages:

• wake-sleep is not optimizing any well-defined objective function

• wake and sleep phases are optimizing separate parts of the model.

Next: a strategy to maximize the ELBO objective end-to-end.
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Parameter Gradients

Recall that:

ELBO(φ;θ) = EQφ(h|x)[logPθ(x,h)− logQφ(h | x)].

We need to compute gradients with respect to θ and φ.

Gradient of the generation network θ:

∇θELBO(φ;θ) = EQφ(h|x)[∇θ logPθ(x,h)]

• Follows from linearity of the expectation.

• This is simple and can be well approximated with Monte Carlo
samples.
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Parameter Gradients

Recall that:

ELBO(φ;θ) = EQφ(h|x)[logPθ(x,h)− logQφ(h | x)].

Gradient of the inference network:

∇φELBO(φ;θ)

= EQφ(h|x)[(logPθ(x,h)− logQφ(h | x))︸ ︷︷ ︸
“reward” Rθ,φ(h)

×∇φ logQφ(h | x)].

• This is hard—Monte Carlo estimators have high variance due to the
left part!

• As in REINFORCE (Williams, 1992), we can mitigate this by using a
baseline to reduce variance.
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Derivation of the Inference Network Gradient

∇φELBO(φ;θ)

= ∇φEQφ(h|x)[logPθ(x,h)− logQφ(h | x)]

= ∇φ
∑
h

Qφ(h | x) logPθ(x,h)−∇φ
∑
h

Qφ(h | x) logQφ(h | x)

=
∑
h

logPθ(x,h)∇φQφ(h | x)−
∑
h

(1 + logQφ(h | x))∇φQφ(h | x)

=
∑
h

(logPθ(x,h)− logQφ(h | x))∇φQφ(h | x)

= EQφ(h|x)[(logPθ(x,h)− logQφ(h | x))×∇φ logQφ(h | x)],

where we used the facts:∑
h

∇φQφ(h | x) = ∇φ
∑
h

Qφ(h | x) = ∇φ1 = 0.

∇φQφ(h | x) = Qφ(h | x)∇φ logQφ(h | x).
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To sum up, the bottleneck is the gradient of the inference network φ,
whose Monte Carlo approximation has large variance.

Is there a better strategy?
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To sum up, the bottleneck is the gradient of the inference network φ,
whose Monte Carlo approximation has large variance.

Is there a better strategy? Yes—the reparameterization trick.
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Reparameterization Trick (Kingma and Welling, 2013)

How to draw samples h ∼ Qφ(h | x)?

Trick:

• Define an auxiliary random variable ε with independent marginal P(ε)

• Sample ε ∼ P(ε), and express the random variable h as a
deterministic variable h = gφ(ε,x).

Then, we have:

EQφ(h|x)[f (h)] ≈ 1

N

N∑
i=1

f (gφ(x, ε(i)))

and gradients with respect to φ can be estimated with regular
backpropagation over gφ.
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Reparameterization Trick

This construction is possible in many cases for continuous latent variables:

• exponential

• Gaussian

• location-scale family

• log-normal, etc.

For discrete latent variables, it is still possible via the Gumbel-softmax
trick (we won’t cover this today).
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Example: Gaussian

1 Sample ε ∼ N(ε; 0, I)

2 Use inference network gφ with input x to output mean µ(x) and
variance σ2(x)

3 Set h = µ(x) + εσ(x).
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Reparameterization Trick
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Variational Auto-Encoders (Kingma and Welling, 2013)

• Decoder computes Pθ(h) and Pθ(x | h)

• Encoder computes Qφ(h | x) = N(h;µφ(x),σ2
φ(x))

• Loss function: ELBO.
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André Martins & Vlad Niculae (IST) Lecture 11 IST, Fall 2019 66 / 98
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Summing Up: VAEs at Training Time
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Summing Up: VAEs at Test Time

André Martins & Vlad Niculae (IST) Lecture 11 IST, Fall 2019 68 / 98



What is the Latent Variable Representing?

• One very nice property of the variational autoencoder is that
simultaneously training a parametric encoder in combination with the
generator network forces the model to learn a predictable coordinate
system that the encoder can capture.

• This makes it an excellent manifold learning algorithm.

• Example: the algorithm discovered two independent factors of
variation present in images of faces: angle of rotation and emotional
expression.
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What is the Latent Variable Representing?

From Kingma and Welling (2013).
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What is the Latent Variable Representing?

From Kingma and Welling (2013).
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Issues with VAEs

Posterior collapse: if the generative part is strong, the model learns to
ignore the latent variables:

Pθ(x | h) ≈ P(x)

Qφ(h | x) ≈ Pθ(h).

Can be mitigated with a few tricks:

• Decrease/anneal the weight of the KL(Qφ(h | x)‖Pθ(h)) in the
ELBO objective

• Use auxiliary losses

• Combine stochastic and amortized inference.

In general, reporting both reconstruction loss and the KL term is needed
to be able to tell if the model makes use of the latent variables.
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DRAW: Deep Recurrent Attentive Writer
(Gregor et al., 2015)

DRAW uses a recurrent encoder and recurrent decoder combined with an
attention mechanism.

The generation process for the DRAW model consists of sequentially
visiting different small image patches and drawing the values of the pixels
at those points.
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DRAW: Deep Recurrent Attentive Writer
(Gregor et al., 2015)
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Examples of Deep Generative Models

• Auto-Regressive Networks X

• Restricted Boltzmann Machines X

• Deep Belief Networks X

• Deep Boltzmann Machines X

• Gaussian-Bernoulli RBMs

• Convolutional Boltzmann Machines

• Sigmoid Belief Nets

• Variational Auto-Encoders X

• Generative Adversarial Networks

• Convolutional Generative Networks

• Generative Stochastic Networks
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Why Maximum Likelihood?

All models we discussed so far attempt to maximize the likelihood
(evidence) P(x)

In fact, since this is intractable, they maximize a lower bound (ELBO)

But if we want to build a generator, is this really the best criterion?

• Maximum likelihood tends to produce fuzzy outputs (blurry images)
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Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014)

Key idea:

• keep the generation network G = {Pθ(h),Pθ(x | h)}
• drop the inference network and use instead a discriminator network
D : X→ {0, 1}

Formulate the learning problem as a game between two players:

• the generator’s job is to generate data that looks real

• the discriminator’s job is to distinguish between real data and fake
data generated by the generator

This is like a Turing test!
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Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014)
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Minimax Game

We arrive at a saddle point problem:

min
G

max
D

V (D,G ) = Ex∼Pdata(x)[logD(x)] + Eh∼Pθ(h)[log(1− D(G (h)))].

The optimal discriminator (intractable to compute) is:

D?(x) =
Pdata(x)

Pdata(x) + Pθ(x)
, Pθ(x) =

∫
Pθ(x | h)Pθ(h).

Given D?(x), the optimal G ?(x) is the one minimizing the
Jensen-Shannon divergence between Pdata(x) and Pθ(x):

JS(Pdata(x),Pθ(x)) =
1

2
KL
(
Pdata(x)‖P̄(x)

)
+

1

2
KL
(
Pθ(x)‖P̄(x)

)
,

where P̄(x) = Pdata(x)+Pθ(x)
2 .
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Training GANs

How to train a GAN?

Use stochastic gradient descent! Alternate between:

• Stochastic gradients updates of the generator parameters θ

• Stochastic gradients updates of the discriminator D.

Several variants and schedules have been proposed.

Caveat: no convergence guarantees; optimization in GANs is often difficult.
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Images Generated by GANs

(https://tryolabs.com/blog/2016/12/06/major-advancements-deep-learning-2016/)
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Mode Collapse

min
G

max
D

V (D,G ) 6= max
D

min
G

V (D,G ).

• G in inner loop: place all mass on most likely point

(From Metz et al. (2016))

What prevents the generator from picking the same example all the time?

The top row finds all the modes, the bottom finds just one mode.
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Mode Collapse

GANs often seem to collapse to far fewer modes than the model can
represent

This causes low output diversity.

How to mitigate mode collapse?

One strategy: minibatch features (Salimans et al., 2016)

• Let the discriminator make a decision by comparing an example to a
whole minibatch of fake/real examples

• Discriminator can now consider diversity.
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Wasserstein GANs (WGANs)

Instead of optimizing the Jensen-Shannon divergence, optimize instead:

min
G

max
D

V (D,G ) = Ex∼Pdata(x)[D(x)]− Eh∼Pθ(h)[D(G (h))].

This is related to the Wasserstein distance (also called Earth mover’s
distance).

A technical condition is that ∇D is bounded; in practice this is ensured
with gradient clipping.

This improves stability and mitigates the mode collapse problem.
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Pros and Cons of GANs

Advantages:

• They currently generate the sharpest images

• They are easy to train (since no statistical inference is required), and
only back-propogation is needed to obtain gradients

Disadvantages:

• GANs are difficult to optimize due to unstable training dynamics.

• No statistical inference can be done with them.
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Still Improving...
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Some Extensions of GANs

• Augmenting GANs with an inference network (Dumoulin et al., 2016;
Donahue et al., 2016)

• Domain adversarial training for domain adaptation (Ganin et al.,
2016)

• Conditional GANs and semi-supervised GANs (Salimans et al., 2016)

• CycleGAN (Zhu et al., 2017): “translate” images from a source
domain X to a target domain Y without paired examples. Use two
generators G : Y→ X and G : Y→ X and introduce a cycle
consistency loss to push F (G (y)) ≈ y and G (F (x)) ≈ x.
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Image-to-Image Translation w/ CycleGAN
(Zhu et al., 2017)

(https://junyanz.github.io/CycleGAN)
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Failure Cases

(https://junyanz.github.io/CycleGAN)
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Evaluation

There is not any single compelling way to evaluate a generative model.

• Models with good likelihood can produce bad samples

• Models with good samples can have bad likelihood

• There is not a good way to quantify how good samples are

• For GANs, it is also hard to even estimate the likelihood

• See “A note on the evaluation of generative models,” Theis et al.
(2015), for a good overview.
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Discrete Outputs

To train a GAN, G must be differentiable

But G cannot be differentiable if the output is discrete.

Possible workarounds:

• REINFORCE (Williams, 1992)

• Concrete/Gumbel-softmax distribution (Maddison et al., 2016; Jang
et al., 2016)

• Learn distribution over continuous embeddings, decode to discrete

How does this compare with VAEs?

• VAEs have trouble with discrete latent variables (cannot differentiate
through the inference network)

• GANs have trouble with discrete output variables (cannot differentiate
through the generator network).
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Connections to Reinforcement Learning

We can regard the discriminator loss as a reward signal for the generator.

• GANs interpreted as actor-critic (Pfau and Vinyals, 2016)

• GANs as inverse reinforcement learning (Finn et al., 2016)
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Conclusions

• Generative models are useful to model high-dimensional data

• Latent-variable generative models are appealing since they are more
compact (“minimum description length” principle)

• Often, computing evidence and posterior distributions is intractable
(e.g. Boltzmann machines)

• A common surrogate for maximum likelihood is the evidence lower
bound (ELBO)

• Variational auto-encoders optimize the ELBO with amortized VI

• Their main drawback is posterior collapse

• Generative adversarial networks (GANs) are formulated as a game
between a generator and a discriminator

• They manage to generate sharp outputs, but suffer from mode
collapse and do not return a likelihood score

• Open problem (both VAEs/GANs): how to deal with discrete data?
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Thank you!

Questions?
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