
Lecture 4: Representation Learning and
Convolutional Networks

André Martins

Deep Structured Learning Course, Fall 2020

André Martins (IST) Lecture 4 IST, Fall 2020 1 / 103



Announcements

Deadline for project proposal is today!

• You need to turn in a 1-page proposal (NeurIPS format) explaining:
• The type of project: survey or practical
• The problem you propose to solve / the topic you will address
• For surveys: motivation and list of main papers you will cover
• For practical projects:

• Which method(s) you are going to use
• Which evaluation metric and which data you are going to use

Homework 1 due next Wednesday.

André Martins (IST) Lecture 4 IST, Fall 2020 2 / 103



Today’s Roadmap

Today’s lecture is about:

• Representation learning.

• Principal component analysis (PCA) and auto-encoders.

• Denoising auto-encoders.

• Distributed representations.

• Word embeddings and negative sampling.

• Multilingual and contextual word embeddings.

• Convolutional neural networks.

• Convolutions and max-pooling layers.

André Martins (IST) Lecture 4 IST, Fall 2020 3 / 103



Outline

1 Representation Learning

Hierarchical Compositionality

Distributed Representations

Auto-Encoders

Word Embeddings

2 Convolutional Neural Networks

3 Visualizing Representations

4 Conclusions

André Martins (IST) Lecture 4 IST, Fall 2020 4 / 103



Representations

One of the greatest features of neural networks is their ability to learn
representations φ(x)

Contrast this with linear models, where features φ(x) are manually
engineered

Representations are useful for several reasons:

• They can make our models more expressive and more accurate

• We may want to transfer representations from one task to another

We talked about the first point when discussing the multi-layer perceptron

In this lecture, we’ll focus on the second point.

André Martins (IST) Lecture 4 IST, Fall 2020 5 / 103



Representation Learning

This is becoming a extremely popular topic!

Number of submissions at the “International Conference on Learning
Representations” (ICLR):

André Martins (IST) Lecture 4 IST, Fall 2020 6 / 103



Outline

1 Representation Learning

Hierarchical Compositionality

Distributed Representations

Auto-Encoders

Word Embeddings

2 Convolutional Neural Networks

3 Visualizing Representations

4 Conclusions

André Martins (IST) Lecture 4 IST, Fall 2020 7 / 103



Key Idea

Deeper neural networks learn coarse-to-fine representation layers.

André Martins (IST) Lecture 4 IST, Fall 2020 8 / 103



Hierarchical Compositionality

Vision:

• pixels → edge → texton → motif → part → object → scene

Speech:

• audio sample → spectral band → formant → motif → phone → word

Text:

• character → word → phrase → sentence → story

(Slide inspired by Marc’Aurelio Ranzato and Yann LeCun)

André Martins (IST) Lecture 4 IST, Fall 2020 9 / 103



Hierarchical Compositionality

Feature visualization of convolutional net trained on ImageNet from Zeiler
and Fergus (2013):

André Martins (IST) Lecture 4 IST, Fall 2020 10 / 103



The Mammalian Visual Cortex is Hierarchical

(Slide inspired by Marc’Aurelio Ranzato and Yann LeCun)

André Martins (IST) Lecture 4 IST, Fall 2020 11 / 103



What’s in Each Layer

• Bottom level layers (closer to inputs) tend to learn low-level
representations (corners, edges)

• Upper level layers (farther away from inputs) learn more abstract
representations (shapes, forms, objects)

This holds for images, text, etc.

André Martins (IST) Lecture 4 IST, Fall 2020 12 / 103



Outline

1 Representation Learning

Hierarchical Compositionality

Distributed Representations

Auto-Encoders

Word Embeddings

2 Convolutional Neural Networks

3 Visualizing Representations

4 Conclusions

André Martins (IST) Lecture 4 IST, Fall 2020 13 / 103



Distributed Representations (Hinton, 1984)

This is a central concept in neural networks.

Key questions:

• How can a neural network be so effective representing objects when it
has only a few hidden units (i.e. much fewer units than possible
objects)?

• What is each hidden unit actually representing?

• How can a neural network generalize to objects that is has never seen
before?

André Martins (IST) Lecture 4 IST, Fall 2020 14 / 103



Local vs Distributed Representations

Consider two alternative representations:

• Local (one-hot) representations (one dimension per object)

• Distributed representations (one dimension per property)

(Slide inspired by Moontae Lee and Dhruv Batra)

André Martins (IST) Lecture 4 IST, Fall 2020 15 / 103



Distributed Representations

Key idea: no single neuron “encodes” everything; groups of neurons (e.g.
in the same hidden layer) work together!

André Martins (IST) Lecture 4 IST, Fall 2020 16 / 103



The Power of Distributed Representations

• Distributed representations are more compact (there can be O(expN)
objects combining N properties)

• They are also more powerful, as they can generalize to unseen objects
in a meaningful way:

(Slide inspired by Moontae Lee and Dhruv Batra)

André Martins (IST) Lecture 4 IST, Fall 2020 17 / 103



The Power of Distributed Representations

• For this to work, we need hidden units to capture diverse properties of
the objects (i.e. we don’t want all them to capture the same property)

• This is usually ensured by random initialization of the weights

• If we initialized all the units to the same weights, we would never
break the symmetry!

• Side note: a neural network computes the same function if we
permute the hidden units withing the same layer (order doesn’t
matter, only diversity)

Next: how can we learn useful representations of objects from raw inputs
only (i.e. no labels)?

André Martins (IST) Lecture 4 IST, Fall 2020 18 / 103



Example: Unsupervised Pre-Training

Training deep networks (with many hidden layers) can be challenging

This has been a major difficulty with neural networks for a long time

Erhan et al. (2010): initialize hidden layers using unsupervised learning:

• Force network to represent latent structure of input distribution

• Encourage hidden layers to encode that structure

• This can be done with an auto-encoder!

André Martins (IST) Lecture 4 IST, Fall 2020 19 / 103



Outline

1 Representation Learning

Hierarchical Compositionality

Distributed Representations

Auto-Encoders

Word Embeddings

2 Convolutional Neural Networks

3 Visualizing Representations

4 Conclusions

André Martins (IST) Lecture 4 IST, Fall 2020 20 / 103



Data Manifold

Key idea: learn the manifold where the input objects live

(Image credit: Hugo Larochelle)

Learn representations that encode well points in that manifold

André Martins (IST) Lecture 4 IST, Fall 2020 21 / 103



Auto-Encoders

An auto-encoder is a feed-forward neural network trained to reproduce its
input at the output layer

Encoder:

h(x) = g(Wx + b)

Decoder:

x̂ = W>h(x) + c

Loss function (for real-valued inputs):

L(x̂ ; x) =
1

2
‖x̂ − x‖2

André Martins (IST) Lecture 4 IST, Fall 2020 22 / 103



The Simplest Auto-Encoder

What happens if the activation function g is linear?

Principal Component Analysis (PCA)!

(From “An Introduction to Statistical Learning” by James, Witten, Hastie, Tibshirani)

André Martins (IST) Lecture 4 IST, Fall 2020 23 / 103



The Simplest Auto-Encoder

What happens if the activation function g is linear?

Principal Component Analysis (PCA)!

(From “An Introduction to Statistical Learning” by James, Witten, Hastie, Tibshirani)

André Martins (IST) Lecture 4 IST, Fall 2020 23 / 103



Proof

Let X ∈ RN×D be the data matrix (N examples, D features, N > D)

Assume W ∈ RK×D with K < D (let’s ignore the biases for simplicity and
assume X is centered)

We want to minimize ‖X − X̂‖2
F , where X̂ = XW>W is the

reconstruction matrix, which by construction has rank K

From Eckart-Young theorem, the minimizer is a truncated SVD of X>:

X̂> = UKΣKV>K ,

where ΣK is a diagonal matrix containing the top K singular values of
X>, and the columns of UK are the corresponding left singular vectors

The solution is W = U>K , which gives as desired:

X̂> = W>WX> = UKU>K UΣV> = UKΣKV>K .

André Martins (IST) Lecture 4 IST, Fall 2020 24 / 103



Auto-Encoders

PCA fits a linear manifold (affine space) to the data

By using non-linear activations, we obtain more sophisticated codes (i.e.
representations).

We need some sort of regularization to:

• encourage a smooth representation (small perturbations of the input
will lead to similar codes)

• avoid overfitting on the provided inputs

André Martins (IST) Lecture 4 IST, Fall 2020 25 / 103



Some Variants of Auto-Encoders

• Sparse auto-encoders: use many hidden units, but add a `1

regularization term to encourage sparse representations of the input

• Denoising auto-encoders: regularize by adding noise to the input;
the goal is to learn a smooth representation function that allows to
output the denoised input (inspired by image denoising)

• Stacked auto-encoders: stack several auto-encoders on top of each
other

• Variational auto-encoders: a generative probabilistic model that
minimizes a variational bound (this will be covered in another lecture!)

André Martins (IST) Lecture 4 IST, Fall 2020 26 / 103



Regularized Auto-Encoders

To regularize auto-encoders, we may add a regularization term to the loss

The goal is then to minimize L(x̂;x) + Ω(h,x)

For example:

• regularizing the code Ω(h,x) = λ‖h‖2

• regularizing the derivatives Ω(h,x) = λ
∑

i ‖∇xhi‖2

The encoder and decoder parameters may be shared or not.

André Martins (IST) Lecture 4 IST, Fall 2020 27 / 103



Sparse Auto-Encoders

Most auto-encoders learn low-dimensional codes, e.g., they reduce input
dimensionality (bottleneck shape K < D).

But one exception are sparse auto-encoders:

• Sparse auto-encoders incorporate a sparsity penalty Ω(h) on the code
layer, e.g., Ω(h) = λ‖h‖1

• Typically the number of hidden units is large, e.g., larger than the
input dimension

• The sparsity penalty encourages sparse codes, where most hidden
units are inactive.

André Martins (IST) Lecture 4 IST, Fall 2020 28 / 103



Stochastic Auto-Encoders

In this case, the encoder and decoder are not deterministic functions, but
involve some noise injection

We have a distribution pencoder(h | x) for the encoder and a distribution
pdecoder(x | h) for the decoder

The auto-encoder can be trained to minimize

− log pdecoder(x | h).

André Martins (IST) Lecture 4 IST, Fall 2020 29 / 103



Denoising Auto-Encoders

• Use a perturbed version of the input, x̃ = x+ n, where n is random
noise (e.g. Gaussian noise n ∼ N(0, σ2I ))

• Instead of minimizing 1
2‖x̂− x‖

2, minimize 1
2‖x̂− x̃‖

2

• This is a form of implicit regularization that ensures smoothness: it
forces the system to represent well not only the data points, but also
their perturbations

André Martins (IST) Lecture 4 IST, Fall 2020 30 / 103



Denoising Auto-Encoders

(From Goodfellow et al.’s book.)

André Martins (IST) Lecture 4 IST, Fall 2020 31 / 103



Denoising Auto-Encoders

André Martins (IST) Lecture 4 IST, Fall 2020 32 / 103



Why Do We Use Auto-Encoders?

Historically, training deep neural networks was hard

One of the initial successful uses of auto-encoders was for unsupervised
pre-training (Erhan et al., 2010).

André Martins (IST) Lecture 4 IST, Fall 2020 33 / 103



Unsupervised Pre-Training

A greedy, layer-wise procedure:

• train one layer at a time, from first to last, with unsupervised criterion
(e.g. an auto-encoder)

• fix the parameters of previous hidden layers

• previous layers viewed as feature extraction

Pre-training initializes the parameters in a region such that the near local
optima overfit less the data.

André Martins (IST) Lecture 4 IST, Fall 2020 34 / 103



Fine-Tuning

Once all layers are pre-trained:

• add output layer

• train the whole network using supervised learning

Supervised learning is performed as in a regular feed-forward network:

• forward propagation, backpropagation and update

• all parameters are “tuned” for the supervised task at hand

• representation is adjusted to be more discriminative

André Martins (IST) Lecture 4 IST, Fall 2020 35 / 103



Other Applications of Auto-Encoders

• Dimensionality reduction

• Information retrieval and semantic hashing (via binarizing the codes)

• Conversion of discrete inputs to low-dimensional continuous space

André Martins (IST) Lecture 4 IST, Fall 2020 36 / 103



Outline

1 Representation Learning

Hierarchical Compositionality

Distributed Representations

Auto-Encoders

Word Embeddings

2 Convolutional Neural Networks

3 Visualizing Representations

4 Conclusions

André Martins (IST) Lecture 4 IST, Fall 2020 37 / 103



Word Representations

We’ll focus now on recent methods for learning representations of words in
natural language

Also called word embeddings

This has been an extremely successful application of representation
learning

It’s still a very active area of research!

André Martins (IST) Lecture 4 IST, Fall 2020 38 / 103



Distributional Similarity

Key idea: represent a word by means of its neighbors

• “You shall know a word by the company it keeps” (J. R. Firth, 1957)

• One of the most successful ideas of modern statistical NLP!

For example:

• Adjectives are normally surrounded by nouns

• Words like book, newspaper, article, are commonly surrounded by
reading, read, writes, but not by flying, eating, sleeping

We have seen an instance of this principle when we discussed Brown
clustering.

André Martins (IST) Lecture 4 IST, Fall 2020 39 / 103



Recap: Brown clustering

An example of (non-neural) word representation learning

It obtains discrete word representations (binary vectors) via class-based
language models and unsupervised hierarchical clustering

It was extremely popular in NLP before the age of neural networks!

Today we’ll look at ways of learning continuous word representations.

André Martins (IST) Lecture 4 IST, Fall 2020 40 / 103



Examples of Brown clusters (from Twitter data)

Path Terms

001010110 never neva nvr gladly nevr #never neverr nver neverrr nevaa
001010111 ever eva evar evr everrr everr everrrr evah everrrrr everrrrrr
01000010 does duz doess does sayeth doez doesss d0es deos

Path Terms

0100 Monday
010100 Sunday
010101 Friday
0101100 Thursday
01011010 Saturday

(from http://www.cs.cmu.edu/~ark/TweetNLP/cluster_viewer.html)

André Martins (IST) Lecture 4 IST, Fall 2020 41 / 103

http://www.cs.cmu.edu/~ark/TweetNLP/cluster_viewer.html


Word Embeddings

How do we obtain lower dimensional vector representations of words?

Two possible methods:

• Factorization of a co-occurrence word/context matrix (latent
semantic analysis, etc.)

• Directly learn low-dimensional vectors by training a network to predict
the context of a given word

We’ll focus on the latter, incarnated in the word2vec toolkit (Mikolov
et al., 2013), which follows previous ideas of Bengio et al. (2003) and
Collobert et al. (2011).

André Martins (IST) Lecture 4 IST, Fall 2020 42 / 103



Neural Language Model (Bengio et al., 2003)

(Image credits: Quoc Le)

André Martins (IST) Lecture 4 IST, Fall 2020 43 / 103



Neural Language Model (Bengio et al., 2003)

• Each word is associated with a continuous vector (a word embedding)

• Given the context (previous K words), predict the next word

• This is done by concatenating the word embeddings in the context
window, then propagating them through a feedforward neural network

• The output layer is a gigantic softmax that assigns a probability value
to each word in the vocabulary

Variants of this model achieved better accuracy than smoothed K -th order
Markov models

As a by-product: word embeddings!

The embedding matrix is a lookup table that assigns a continuous vector
to every word in the vocabulary.

André Martins (IST) Lecture 4 IST, Fall 2020 44 / 103



Neural Language Model

In this class, we are not concerned with language modeling (the actual
task), but rather about the quality of the embeddings (the representations
we learn for that task).

André Martins (IST) Lecture 4 IST, Fall 2020 45 / 103



Some Insights

If we don’t care about language modeling as a task:

1 We don’t need to have a “left-to-right model” where we try to predict
the next word given the context

2 We don’t need to predict the probability of every word, we might just
make sure that the true word is more likely than a random word

These insights underlie the word2vec model of Mikolov et al. (2013).

André Martins (IST) Lecture 4 IST, Fall 2020 46 / 103



Word2Vec (Mikolov et al., 2013)

Considers a context window around each word in the sentence.

Word2vec comes with two variants:

• Skip-gram: predict surrounding context words in a window of length
m of every word

• Continuous bag-of-words (CBOW): predict the central word from
the context

We’ll focus on the skip-gram model (more widely used).

André Martins (IST) Lecture 4 IST, Fall 2020 47 / 103



Skip-Gram

Goal: maximize the log probability of any context word given the current
center word:

J(Θ) =
1

T

T∑
t=1

∑
−m≤j≤m, j 6=0

log pΘ(xt+j | xt)

There are two sets of parameters Θ = (u, v):

• Embeddings uo for each word o appearing as the center word

• Embeddings vc for each word c appearing in the context of another
word

Define a log-bilinear model: pΘ(xt+j = c | xt = o) ∝ exp(uo · vc)

Every word gets two vectors!

In the end, we use the u vectors as the word embeddings and discard the
v vectors

André Martins (IST) Lecture 4 IST, Fall 2020 48 / 103



The Large Vocabulary Problem

Recall that we have

pΘ(xt+j = c | xt = o) =
exp(uo · vc)∑′
c exp(uo · v ′c)

This objective requires a softmax over the entire vocabulary

Unfortunately, with large vocabularies this leads to very slow training :(

Workarounds:

• Stochastic sampling

• Noise contrastive estimation

• Negative sampling

More details in these notes: https://arxiv.org/pdf/1410.8251.pdf

We’ll focus on negative sampling.

André Martins (IST) Lecture 4 IST, Fall 2020 49 / 103

https://arxiv.org/pdf/1410.8251.pdf


Negative Sampling

Key idea:

• replace the gigantic softmax by binary logistic regressions for a true
pair (center word and word in its context window) and a couple of
random pairs (the center word with a random word):

Jt(Θ) = log σ(uo · vc) +
k∑

i=1

log σ(−uo · vji ), ji ∼ P(x)

• Several strategies for the sampling distribution P(x) (uniform,
unigram frequency, etc.)

Negative sampling is a simple form of unsupervised pre-training.

André Martins (IST) Lecture 4 IST, Fall 2020 50 / 103



Linear Relationships

• These representations are very good at encoding dimensions of
similarity!

• Word analogies can be solved quite well just by doing vector
subtraction in the embedding space

• Syntactically:

xapple − xapples ≈ xcar − xcars ≈ xfamily − xfamilies

• Semantically:

xshirt − xclothing ≈ xchair − xfurniture

xking − xman ≈ xqueen − xwoman

André Martins (IST) Lecture 4 IST, Fall 2020 51 / 103



Visualization

Typical word embedding dimensions are on the hundreds (e.g. 300)

How can we visualize these embeddings?

Simple way: project them in 2D with something like PCA!

Most used: t-distributed stochastic neighbor embedding (t-SNE, Maaten
and Hinton 2008)

https://lvdmaaten.github.io/tsne

André Martins (IST) Lecture 4 IST, Fall 2020 52 / 103

https://lvdmaaten.github.io/tsne


Word Analogies (Mikolov et al., 2013)

(Slide credit to Richard Socher)

André Martins (IST) Lecture 4 IST, Fall 2020 53 / 103



Other Methods for Obtaining Word Embeddings

GloVe: Global Vectors for Word Representation (Pennington et al., 2014)

• https://nlp.stanford.edu/projects/glove

• Training is performed on aggregated global word-word co-occurrence
statistics from a corpus

fastText (Bojanowski et al., 2016): embeds also character n-grams for
generating embeddings for out-of-vocabulary words

• https://fasttext.cc (from FAIR)

• open-source, free, lightweight library that allows users to learn text
representations and text classifiers

• contains multi-lingual word vectors for 157 different languages

André Martins (IST) Lecture 4 IST, Fall 2020 54 / 103

https://nlp.stanford.edu/projects/glove
https://fasttext.cc


GloVe Visualizations: Company → CEO

(Slide credit to Richard Socher)

André Martins (IST) Lecture 4 IST, Fall 2020 55 / 103



GloVe Visualizations: Superlatives

(Slide credit to Richard Socher)

André Martins (IST) Lecture 4 IST, Fall 2020 56 / 103



Word Embeddings: Some Open Problems

• Can we have word embeddings for multiple languages in the same
space?

• How to capture polysemy?

• These word embeddings are static, can we compute embeddings
on-the-fly depending on the context?

André Martins (IST) Lecture 4 IST, Fall 2020 57 / 103



Cross-Lingual Word Embeddings

(From Hermann and Blunsom (2014).)André Martins (IST) Lecture 4 IST, Fall 2020 58 / 103



Cross-Lingual Word Embeddings

Key idea:

• use a corpus of parallel sentences in two languages

• define a composition function to obtain a sentence representation
given word embeddings

• apply a loss function that encourages the sentence representions in
the two languages to be similar

• negative sampling works here too: true pair vs fake pair.

André Martins (IST) Lecture 4 IST, Fall 2020 59 / 103



Cross-Lingual Word Embeddings

Other approaches:

• Define a bilingual dictionary and apply canonical correlation analysis
(Faruqui and Dyer, 2014)

• Task-specific embeddings with convex optimization (Ferreira et al.,
2016)

• Learn the two embeddings separately, and then apply a linear
transformation to put them in a shared space (Artetxe et al., 2017)

• Adversarial training (Lample et al., 2018)

This is a very active area of research!

André Martins (IST) Lecture 4 IST, Fall 2020 60 / 103



Contextual Embeddings

Words can have different meanings, depending on which context they
appear in.

In 2018, a model called ELMo learned context-dependent embeddings and
achieved impressive results on 6 NLP downstream tasks (Peters et al.,
2018)

Key idea:

• Pre-train a BILSTM language model on a large dataset (we’ll see in a
later class what this is)

• Save all the encoder parameters at all layers, not only the embeddings

• Then, for your downstream task, tune a scalar parameter for each
layer, and pass the entire sentence through this encoder.

André Martins (IST) Lecture 4 IST, Fall 2020 61 / 103



BERT, GPT-2

Some time later, a Transformer-based model (BERT) achieved even better
performance:

Huge improvements in multiple NLP tasks!

(Trained on 64 TPU chips!!)

Other related models include GPT-2, XLNet, KERMIT, etc.

André Martins (IST) Lecture 4 IST, Fall 2020 62 / 103



Outline

1 Representation Learning

Hierarchical Compositionality

Distributed Representations

Auto-Encoders

Word Embeddings

2 Convolutional Neural Networks

3 Visualizing Representations

4 Conclusions

André Martins (IST) Lecture 4 IST, Fall 2020 63 / 103



Convolutional Neural Networks

Convolutional Neural Networks are neural networks with specialized
connectivity structure

Roadmap:

• Parameter Tying

• 2D Convolutional Nets for Object Recognition

• Pooling

• ImageNet, AlexNet, GoogLeNet

• 1D Convolutional Nets in NLP

André Martins (IST) Lecture 4 IST, Fall 2020 64 / 103



Neocognitron (Fukushima and Miyake, 1982)

(Credits: Fei-Fei Li, Johnson, Yeung)

• “Sandwich” architecture (alternating simple cells with modifiable
parameters and complex cells which perform pooling)

André Martins (IST) Lecture 4 IST, Fall 2020 65 / 103



Neocognitron (Fukushima and Miyake, 1982)

• Inspired by the multi-stage hierarchy model of the visual nervous
system (Hubel and Wiesel, 1965)

André Martins (IST) Lecture 4 IST, Fall 2020 66 / 103



ConvNet (LeNet-5) (LeCun et al., 1998)

André Martins (IST) Lecture 4 IST, Fall 2020 67 / 103



Convolutional Networks

... but what is a convolutional layer after all?

Let’s compare it with a fully connected layer (as in a standard feedforward
neural network).

André Martins (IST) Lecture 4 IST, Fall 2020 68 / 103



Fully Connected Layer

(Credits: Fei-Fei Li, Johnson, Yeung)

André Martins (IST) Lecture 4 IST, Fall 2020 69 / 103



Convolutional Layer

Don’t stretch: preserve the spacial structure!

(Credits: Fei-Fei Li, Johnson, Yeung)

André Martins (IST) Lecture 4 IST, Fall 2020 70 / 103



Convolutional Layer

(Credits: Fei-Fei Li, Johnson, Yeung)

André Martins (IST) Lecture 4 IST, Fall 2020 71 / 103



Convolutional Layer

Apply the same filter to all spatial locations (28x28 times):

(Credits: Fei-Fei Li, Johnson, Yeung)

André Martins (IST) Lecture 4 IST, Fall 2020 72 / 103



Convolutional Layer

• For example, if we have 6 5x5 filters, we get 6 separate activation
maps:

(Credits: Fei-Fei Li, Johnson, Yeung)

• We stack these up to get a “new image” of size 28x28x6!

André Martins (IST) Lecture 4 IST, Fall 2020 73 / 103



Image Size, Filter Size, Stride, Channels

Stride is the shift in pixels between two consecutive windows

So far we have considered a stride of 1

The number of channels is the number of filters we consider in each layer

Given an N × N × D image, F × F × D filters, K channels, and stride S ,
the resulting output will be of size M ×M × K , where

M = (N − F )/S + 1

For example:

• N = 32, D = 3, F = 5, K = 6, S = 1 results in an 28× 28× 6 output

• N = 32, D = 3, F = 5, K = 6, S = 3 results in an 10× 10× 6 output

In practice: common to pad the border with zeros

Common pad size is (F − 1)/2, which preserves size spatially.

André Martins (IST) Lecture 4 IST, Fall 2020 74 / 103



The Brain View

The number of channels corresponds to the number of neurons

The filter size is also called the receptive field of each neuron.

André Martins (IST) Lecture 4 IST, Fall 2020 75 / 103



Convolutions and Parameter Tying

Why do we call this “convolutional”?

The convolution of a signal and a filter is:

h[t] = (x ∗ w)[t] =
∞∑

a=−∞
x [a]w [t − a].

The basic idea of conv nets is the combination of sparse connectivity and
parameter tying.

André Martins (IST) Lecture 4 IST, Fall 2020 76 / 103



Convolutions and Parameter Tying

Leads to translation equivariance

Why do we want to tie (share) parameters?

• Reduce the number of parameters to be learned

• Deal with arbitrary long, variable-length, sequences

Can be done in 1D as well (common in textual data)!

André Martins (IST) Lecture 4 IST, Fall 2020 77 / 103



Convolutions and Pooling

The second component of conv nets is pooling

Common conv nets alternate convolutional layers and pooling layers.

André Martins (IST) Lecture 4 IST, Fall 2020 78 / 103



Pooling Layers

• Aggregate to achieve local invariance:

• Subsampling to reduce temporal/spacial scale and computation:

(Slide credit to Yoshua Bengio)

André Martins (IST) Lecture 4 IST, Fall 2020 79 / 103



Pooling Layer

• Makes the representations smaller and more manageable

• Operates over each activation map (each channel) independently

• Max-pooling:

(Credits: Fei-Fei Li, Johnson, Yeung)

André Martins (IST) Lecture 4 IST, Fall 2020 80 / 103



Multiple Convolutions: Feature Maps

• Different filter weights for each channel, but keeping spatial
invariance:

(Slide credit to Yoshua Bengio)

André Martins (IST) Lecture 4 IST, Fall 2020 81 / 103



2D Convolutional Nets (LeCun et al., 1989)

• Inspired by “Neocognitron” (Fukushima, 1980)

• 2D Convolutions: the same filter (e.g. 3x3) is applied to each
location of the image

• The filter weights are learned (as tied parameters)

• Multiple filters

• Alternates convolutional and pooling layers.

André Martins (IST) Lecture 4 IST, Fall 2020 82 / 103



ConvNet Successes: MNIST

Handwritten text/digits:

• MNIST (0.35% error (Ciresan et al., 2011b))

• Arabic and Chinese (Ciresan et al., 2011a)

André Martins (IST) Lecture 4 IST, Fall 2020 83 / 103



ConvNet Successes: CIFAR-10, Traffic Signs

Simpler recognition benchmarks:

• CIFAR-10 (9.3% error (Wan et al., 2013))

• Traffic signs: 0.56% error vs 1.16% for humans (Cireşan et al., 2011)

But less good at more complex datasets, e.g. Caltech-101/256 (few
training examples).

André Martins (IST) Lecture 4 IST, Fall 2020 84 / 103



ImageNet Dataset

• 14 million labeled images, 20k classes
• Images gathered from Internet
• Human labels via Amazon Turk

(Slide credit to Rob Fergus)

André Martins (IST) Lecture 4 IST, Fall 2020 85 / 103



AlexNet (Krizhevsky et al., 2012)

• 54M parameters; 8 layers (5 conv, 3 fully-connected)

• Trained on 1.4M ImageNet images

• Trained on 2 GPUs for a week (50x speed-up over CPU)

• Dropout regularization

• Test error: 16.4% (second best team was 26.2%)

André Martins (IST) Lecture 4 IST, Fall 2020 86 / 103



GoogLeNet (Szegedy et al., 2015)

• GoogLeNet inception module: very deep convolutional network, fewer
(5M) parameters

André Martins (IST) Lecture 4 IST, Fall 2020 87 / 103



Convolutional Nets in NLP

So far, we talked mostly about images.

Are conv nets also used in NLP? Not as much, but...

Quoting Yoav Goldberg in the Representation Learning Workshop in ACL
2018:

“NLP’s ImageNet moment has arrived.”

(Not referring to conv nets in particular, but to big neural architectures.)

André Martins (IST) Lecture 4 IST, Fall 2020 88 / 103



Convolutional Nets in NLP

• 1D convolutions

• Filters are applied to local windows around
each word

• For word embeddings x1, . . . , xL, the filter
response for word i is:

hi = g(W [xi−h ⊕ . . .⊕ xi ⊕ . . . xi+h] + b),

where ⊕ denotes vector concatenation and W
are shared parameters

• Can pad left and right with special symbols if
necessary.

Kalchbrenner et al. (2014)

André Martins (IST) Lecture 4 IST, Fall 2020 89 / 103



Variable Input Length

Most computation in conv nets can be done in parallel

GPUs can leverage this and achieve great speed-ups!

But unlike images which have fixed size, sentences have different lengths
(number of words), which makes batching a bit trickier!

André Martins (IST) Lecture 4 IST, Fall 2020 90 / 103



Mini-Batching, Padding, and Masking

Mini-batching is necessary to speed up training in GPUs

But how to cope with different input sizes (e.g. different sentence
lengths)?

Solution: Minimize waste by sorting by sentence length before forming
mini-batches, then padding:

(Image credit: Thang Luong, Kyunghyun Cho, Chris Manning)

Masking needs to be used to make sure the padded symbols are not
affecting the results.

André Martins (IST) Lecture 4 IST, Fall 2020 91 / 103



Beyond Convolutions

Other architectures have been proposed which offer alternatives to
convolutions

For example: transformer networks, which stack multi-head attention
layers

This is somewhat similar to “dynamic convolutions”

We’ll cover this in another lecture.

André Martins (IST) Lecture 4 IST, Fall 2020 92 / 103



Outline

1 Representation Learning

Hierarchical Compositionality

Distributed Representations

Auto-Encoders

Word Embeddings

2 Convolutional Neural Networks

3 Visualizing Representations

4 Conclusions

André Martins (IST) Lecture 4 IST, Fall 2020 93 / 103



What Representations Are We Learning?

Which neurons fire for recognizing a particular object?

What parts of the network are activated?

To understand this, we need a way of visualizing what’s happening inside
the network.

André Martins (IST) Lecture 4 IST, Fall 2020 94 / 103



Visualization

• Idea: Optimize input to maximize particular output

• Depends on the initialization

• Google DeepDream, maximizing “banana” output:

(from https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html)

• Can also specify a particular layer and tune the input to maximize the
layer’s activations—useful to see what kind of features each layer is
representing

• Specifying a higher layer produces more complex representations...

André Martins (IST) Lecture 4 IST, Fall 2020 95 / 103

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html


Google DeepDream

(from https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html)

André Martins (IST) Lecture 4 IST, Fall 2020 96 / 103

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html


Adversarial Attacks

• How can we perturb an input slightly to
fool a classifier?

• For example: 1-pixel attacks

• Glass-box model: assumes access to the
model

• Backpropagate to the inputs to find
pixels which maximize the gradient

• There’s also work for black-box
adversarial attacks (don’t have access
to the model, but can query it).

(Credits: Su, Vargas, Sakurai (2018))

André Martins (IST) Lecture 4 IST, Fall 2020 97 / 103



Even Worse: Perturb Object, Not Image

• Print the model of a
turtle in a 3D printer.

• Perturbing the texture
fools the model into
thinking it’s a rifle,
regardless of the pose of
the object!

(Credits: Athalye, Engstrom, Ilyas, Kwok (2018))

Neural networks are still very brittle!

André Martins (IST) Lecture 4 IST, Fall 2020 98 / 103



Outline

1 Representation Learning

Hierarchical Compositionality

Distributed Representations

Auto-Encoders

Word Embeddings

2 Convolutional Neural Networks

3 Visualizing Representations

4 Conclusions

André Martins (IST) Lecture 4 IST, Fall 2020 99 / 103



Conclusions

• Neural nets learn internal representations that can be transferred
across tasks

• Distributed representations are exponentially more compact and allow
generalizing to unseen objects

• Deeper neural nets exhibit hierarchical compositionality: upper level
layers learn more abstract/semantic representations than bottom level
layers

• Auto-encoders are an effective means for learning representations

• Word embeddings are continuous representations of words that are
extremely useful in NLP

• Convolutional nets are extremely useful to capture translational
invariances in images

André Martins (IST) Lecture 4 IST, Fall 2020 100 / 103



Thank you!

Questions?

André Martins (IST) Lecture 4 IST, Fall 2020 101 / 103



References I

Artetxe, M., Labaka, G., and Agirre, E. (2017). Learning bilingual word embeddings with (almost) no bilingual data. In
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
volume 1, pages 451–462.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A neural probabilistic language model. Journal of Machine
Learning Research, 3(Feb):1137–1155.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2016). Enriching word vectors with subword information. arXiv preprint
arXiv:1607.04606.

Cireşan, D., Meier, U., Masci, J., and Schmidhuber, J. (2011). A committee of neural networks for traffic sign classification. In
Neural Networks (IJCNN), The 2011 International Joint Conference on, pages 1918–1921. IEEE.

Ciresan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J. (2011a). Convolutional neural network committees for
handwritten character classification. In 2011 International Conference on Document Analysis and Recognition, pages
1135–1139. IEEE.

Ciresan, D. C., Meier, U., Masci, J., Maria Gambardella, L., and Schmidhuber, J. (2011b). Flexible, high performance
convolutional neural networks for image classification. In IJCAI Proceedings-International Joint Conference on Artificial
Intelligence, volume 22, page 1237.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. (2011). Natural language processing (almost)
from scratch. Journal of Machine Learning Research, 12(Aug):2493–2537.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio, S. (2010). Why does unsupervised pre-training
help deep learning? Journal of Machine Learning Research, 11(Feb):625–660.

Faruqui, M. and Dyer, C. (2014). Improving vector space word representations using multilingual correlation. In Proceedings of
the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 462–471.

Ferreira, D., Almeida, M. S. C., and Martins, A. F. T. (2016). Jointly Learning to Embed and Predict with Multiple Languages.
In Proc. of the Annual Meeting of the Association for Computational Linguistics.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected
by shift in position. Biological cybernetics, 36(4):193–202.

André Martins (IST) Lecture 4 IST, Fall 2020 102 / 103



References II
Fukushima, K. and Miyake, S. (1982). Neocognitron: A self-organizing neural network model for a mechanism of visual pattern

recognition. In Competition and cooperation in neural nets, pages 267–285. Springer.

Hermann, K. M. and Blunsom, P. (2014). Multilingual Models for Compositional Distributional Semantics. In Proc. of the
Annual Meeting of the Association for Computational Linguistics.

Hinton, G. E. (1984). Distributed representations.

Hubel, D. H. and Wiesel, T. N. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of
the cat. Journal of neurophysiology, 28(2):229–289.

Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). A convolutional neural network for modelling sentences. arXiv
preprint arXiv:1404.2188.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages 1097–1105.

Lample, G., Ott, M., Conneau, A., Denoyer, L., and Ranzato, M. (2018). Phrase-based & neural unsupervised machine
translation. arXiv preprint arXiv:1804.07755.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D. (1989). Backpropagation
applied to handwritten zip code recognition. Neural computation, 1(4):541–551.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324.

Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-sne. Journal of machine learning research, 9(Nov):2579–2605.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed representations of words and phrases and
their compositionality. In Advances in neural information processing systems, pages 3111–3119.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global Vectors for Word Representation. Proceedings of the
Empiricial Methods in Natural Language Processing (EMNLP 2014), 12:1532–1543.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L. (2018). Deep contextualized word
representations. arXiv preprint arXiv:1802.05365.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015). Going
deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9.

Wan, L., Zeiler, M., Zhang, S., Cun, Y. L., and Fergus, R. (2013). Regularization of neural networks using dropconnect. In
Proc. of the International Conference on Machine Learning, pages 1058–1066.

Zeiler, M. D. and Fergus, R. (2013). Stochastic pooling for regularization of deep convolutional neural networks. arXiv preprint
arXiv:1301.3557.

André Martins (IST) Lecture 4 IST, Fall 2020 103 / 103


	Representation Learning
	Hierarchical Compositionality
	Distributed Representations
	Auto-Encoders
	Word Embeddings

	Convolutional Neural Networks
	Visualizing Representations
	Conclusions
	References
	References

