
Lecture 5: Linear Sequential Models

André Martins

Deep Structured Learning Course, Fall 2020

André Martins (IST) Lecture 5 IST, Fall 2020 1 / 95

Announcements

Deadline for Homework 1 is today!

Homework 2 is out. Deadline is November 18. Start early!!!

Next week: guest lecture on Reinforcement Learning by Francisco Melo!

That lecture will be 30 min earlier (it will start at 13:30)!

André Martins (IST) Lecture 5 IST, Fall 2020 2 / 95

Today’s Roadmap

Today we’re starting to talk about structure, more specifically sequences:

• Generative sequence models: (hidden) Markov models

• Dynamic programming: the Viterbi and Forward-Backward algorithms

• Viterbi decoding and minimum risk decoding

• Unsupervised learning with the Baum-Welch (EM) algorithm

André Martins (IST) Lecture 5 IST, Fall 2020 3 / 95

Outline

1 Structured Prediction

2 Sequence Models

Markov Models

Hidden Markov Models

Conditional Random Fields

Structured Perceptron

Structured Support Vector Machines

André Martins (IST) Lecture 5 IST, Fall 2020 4 / 95

Structured Prediction

Structured prediction: a machine learning framework for predicting
structured, constrained, and interdependent outputs

NLP deals with structured and ambiguous textual data:

• machine translation, speech recognition, parsing, ...

Computer vision, computational biology, etc. deal with structured outputs
too:

• image segmentation, image parsing, ...

• protein folding, protein design, ...

• time series prediction, ...

André Martins (IST) Lecture 5 IST, Fall 2020 5 / 95

Sequence Labeling

Some of these tasks are sequential in nature...

André Martins (IST) Lecture 5 IST, Fall 2020 6 / 95

Example: POS Tagging

Map sentences to sequences of part-of-speech tags.

Time flies like an arrow .
noun verb prep det noun .

• Need to predict a morphological tag for each word of the sentence

• High correlation between adjacent words!

(Ratnaparkhi, 1999; Brants, 2000; Toutanova et al., 2003)

André Martins (IST) Lecture 5 IST, Fall 2020 7 / 95

Example: Named Entity Recognition

From sentences extract named entities.

Louis Elsevier was born in Leuven .
B-PER I-PER O O O B-LOC .

• Identify word segments that refer to entities (person, organization,
location)

• Typically done with sequence models and B-I-O tagging

(Zhang and Johnson, 2003; Ratinov and Roth, 2009)

André Martins (IST) Lecture 5 IST, Fall 2020 8 / 95

Notation

• Input set X (e.g., sentences)

• Output set Y (e.g. POS sequences)—large and structured!

• How many possible outputs for a sentence with length L, assuming K
possible tags?

O(KL)

• Weights W (with lots of parameter sharing), features φ(x)

• Linear compatibility function FW (x,y) = wy · φ(x)

• Training problem: learn W from data T = {〈xt ,yt〉}|T|t=1

• Decoding problem:

ŷ = arg max
y∈Y

FW (x,y)

This is what makes structured prediction special!

André Martins (IST) Lecture 5 IST, Fall 2020 9 / 95

Notation

• Input set X (e.g., sentences)

• Output set Y (e.g. POS sequences)—large and structured!

• How many possible outputs for a sentence with length L, assuming K
possible tags?

O(KL)

• Weights W (with lots of parameter sharing), features φ(x)

• Linear compatibility function FW (x,y) = wy · φ(x)

• Training problem: learn W from data T = {〈xt ,yt〉}|T|t=1

• Decoding problem:

ŷ = arg max
y∈Y

FW (x,y)

This is what makes structured prediction special!

André Martins (IST) Lecture 5 IST, Fall 2020 9 / 95

Notation

• Input set X (e.g., sentences)

• Output set Y (e.g. POS sequences)—large and structured!

• How many possible outputs for a sentence with length L, assuming K
possible tags? O(KL)

• Weights W (with lots of parameter sharing), features φ(x)

• Linear compatibility function FW (x,y) = wy · φ(x)

• Training problem: learn W from data T = {〈xt ,yt〉}|T|t=1

• Decoding problem:

ŷ = arg max
y∈Y

FW (x,y)

This is what makes structured prediction special!

André Martins (IST) Lecture 5 IST, Fall 2020 9 / 95

Notation

• Input set X (e.g., sentences)

• Output set Y (e.g. POS sequences)—large and structured!

• How many possible outputs for a sentence with length L, assuming K
possible tags? O(KL)

• Weights W (with lots of parameter sharing), features φ(x)

• Linear compatibility function FW (x,y) = wy · φ(x)

• Training problem: learn W from data T = {〈xt ,yt〉}|T|t=1

• Decoding problem:

ŷ = arg max
y∈Y

FW (x,y)

This is what makes structured prediction special!

André Martins (IST) Lecture 5 IST, Fall 2020 9 / 95

Notation

• Input set X (e.g., sentences)

• Output set Y (e.g. POS sequences)—large and structured!

• How many possible outputs for a sentence with length L, assuming K
possible tags? O(KL)

• Weights W (with lots of parameter sharing), features φ(x)

• Linear compatibility function FW (x,y) = wy · φ(x)

• Training problem: learn W from data T = {〈xt ,yt〉}|T|t=1

• Decoding problem:

ŷ = arg max
y∈Y

FW (x,y)

This is what makes structured prediction special!

André Martins (IST) Lecture 5 IST, Fall 2020 9 / 95

Notation

• Input set X (e.g., sentences)

• Output set Y (e.g. POS sequences)—large and structured!

• How many possible outputs for a sentence with length L, assuming K
possible tags? O(KL)

• Weights W (with lots of parameter sharing), features φ(x)

• Linear compatibility function FW (x,y) = wy · φ(x)

• Training problem: learn W from data T = {〈xt ,yt〉}|T|t=1

• Decoding problem:

ŷ = arg max
y∈Y

FW (x,y)

This is what makes structured prediction special!

André Martins (IST) Lecture 5 IST, Fall 2020 9 / 95

The Decoding Problem

Also called “the inference problem”:

ŷ = arg max
y∈Y

FW (x,y)

• In multi-class classification, we just enumerate the scores and pick the
argmax

• But in structure prediction, Y is too large—it is intractable to
enumerate!!

Key assumption: FW decomposes into (overlapping) parts

• For example: for sequences, scores may factor as a sum over label
n-grams

André Martins (IST) Lecture 5 IST, Fall 2020 10 / 95

Roadmap: Models for Structured Prediction

Binary/Multi-class Structured Prediction

Naive Bayes ?
Logistic Regression ?

Perceptron ?
SVMs ?

André Martins (IST) Lecture 5 IST, Fall 2020 11 / 95

Outline

1 Structured Prediction

2 Sequence Models

Markov Models

Hidden Markov Models

Conditional Random Fields

Structured Perceptron

Structured Support Vector Machines

André Martins (IST) Lecture 5 IST, Fall 2020 12 / 95

Outline

1 Structured Prediction

2 Sequence Models

Markov Models

Hidden Markov Models

Conditional Random Fields

Structured Perceptron

Structured Support Vector Machines

André Martins (IST) Lecture 5 IST, Fall 2020 13 / 95

Key Problem

How to define a probability distribution over a string (a sequence of
discrete symbols)?

• If the length of the string is unbounded, there are infinitely many
strings

• How to make sure the distribution normalizes to 1?

• So far, we only talked about distributions on finite random variables...

André Martins (IST) Lecture 5 IST, Fall 2020 14 / 95

Probability Distributions Over Strings

• Alphabet Σ (e.g. words in the vocabulary)

• Set of strings: Σ? := {ε} ∪ Σ ∪ Σ2 . . .

• Σ? is a countably infinite set

• We want to define a probability distribution over Σ?

• This distribution must normalize properly,
∑

x∈Σ? P(x) = 1

André Martins (IST) Lecture 5 IST, Fall 2020 15 / 95

Trivial Choices

• Probability 0 to sequences greater than L, uniform otherwise

• Given a sample of N sequences, assign a uniform distribution of 1/N
to each observed sequence, 0 if the sentence is not in the sample

What if we want every sequence to have some probability?

André Martins (IST) Lecture 5 IST, Fall 2020 16 / 95

Lower Extreme: Bag-of-Words Model

P(start,x1,x2, . . . ,xL, stop) =
L+1∏
i=1

P(xi)

• Also called “unigram” model

• Assumes every word is generated independently of other words

• Probability of a string is insensitive to word order

• How many parameters?

• Not structured prediction!

André Martins (IST) Lecture 5 IST, Fall 2020 17 / 95

Upper Extreme: Full History Model

P(start,x1,x2, . . . ,xL, stop) =
L+1∏
i=1

P(xi |x0, . . . ,xi−1)

• Assumes the generation of each word depends on the entire history
(all the previous words)

• Huge expressive power!

• But: too many parameters to estimate! (How many?)

• Cannot generalize well

André Martins (IST) Lecture 5 IST, Fall 2020 18 / 95

In-Between: First Order Markov Models

P(start,x1,x2, . . . ,xL, stop) =
L+1∏
i=1

P(xi |xi−1)

• Each word only depends on the previous word

• Which parameters need to be estimated?

• Transition probabilities P(xi |xi−1)...

• ... including initial and final probabilities P(x1|start) and
P(stop|xL)

• Total number of parameters: O(|Σ|2)

André Martins (IST) Lecture 5 IST, Fall 2020 19 / 95

In-Between: Kth Order Markov Models

P(start,x1,x2, . . . ,xL, stop) =
L+1∏
i=1

P(xi |xi−1, . . . ,xi−K)

• Each word depends on the K th previous words

• Transition probabilities P(xi |xi−1, . . . ,xi−K)

• Total number of parameters: O(|Σ|K+1)

• Widely used in language modeling

• Applications: machine translation, speech recognition, OCR...

André Martins (IST) Lecture 5 IST, Fall 2020 20 / 95

Markov Models: How to Estimate the Parameters

How to estimate these transition probabilities P(xi |xi−1, . . . ,xi−K) from
data?

• Maximum likelihood estimation

• Boils down to counting and normalizing

• What if we never observe a particular K -gram at training time? What
happens at test time?

André Martins (IST) Lecture 5 IST, Fall 2020 21 / 95

Problem: Data Sparsity

• As K grows, we suffer more from insufficient data: there are many
K -grams with zero counts, therefore the maximum likelihood estimate
will be P(xi |xi−1, . . . ,xi−K) = 0

• This is undesirable!

• Example: a language model which gives probability 0 to unseen words

• Just because an event has never been observed in training data does
not mean it cannot occur in test data

• So, if the count is zero, what should P(xi |xi−1, . . . ,xi−K) = 0 be?

• We need smoothing!

André Martins (IST) Lecture 5 IST, Fall 2020 22 / 95

Smoothing

Many smoothing techniques have been proposed:

• Additive smoothing (e.g. add-one, a.k.a. Laplace smoothing)

• Good-Turing estimate

• Jelinek-Mercer smoothing (interpolation)

• Katz smoothing (backoff)

• Witten-Bell smoothing

• Absolute discounting

• Kneser-Ney smoothing

• Modified Kneser-Ney smoothing (considered the best)

This is a black art...

André Martins (IST) Lecture 5 IST, Fall 2020 23 / 95

Markov models are extremely simple.

How well do they perform?

André Martins (IST) Lecture 5 IST, Fall 2020 24 / 95

Example

• Unigram model estimated on 2.8M words of political blog text.

this trying our putting and funny and among it herring it obama
but certainly foreign my c on byron again but from i i so and i
chuck yeah the as but but republicans if this stay oh so or it mccain
bush npr this with what and they right i while because obama

(Adapted from Noah Smith’s slides.)

André Martins (IST) Lecture 5 IST, Fall 2020 25 / 95

Example

• Bigram model estimated on 2.8M words of political blog text.

the lack of the senator mccain hadn t keep this story backwards
while showering praise of the kind of gop weakness it was mis-
taken for american economist anywhere in the white house press
hounded the absence of those he s as a wide variety of this election
day after the candidate b richardson was polled ri in hempstead
moderated by the convention that he had zero wall street journal
argues sounds like you may be the primary but even close the bill
told c e to take the obama on the public schools and romney fred
flinstone s see how a lick skillet road it s little sexist remarks

(Adapted from Noah Smith’s slides.)

André Martins (IST) Lecture 5 IST, Fall 2020 26 / 95

Example

• Trigram model estimated on 2.8M words of political blog text.

as i can pin them all none of them want to bet that any of
the might be conservatism unleashed into the privacy rule book
and when told about what paul fans organized another massive
fundraising initiative yesterday and i don t know what the rams
supposedly want ooh but she did but still victory dinner alone
among republicans there are probably best not all of the funda-
mentalist community asked for an independent maverick now for
crystallizing in one especially embarrassing

(Adapted from Noah Smith’s slides.)

André Martins (IST) Lecture 5 IST, Fall 2020 27 / 95

Example

• 5-gram model estimated on 2.8M words of political blog text.

he realizes fully how shallow and insincere conservative be-
havior has been he realizes that there is little way to change the
situation this recent arianna huffington item about mccain issuing
heartfelt denials of things that were actually true or for that matter
about the shia sunni split and which side iran was on would get
confused about this any more than someone with any knowledge
of us politics would get confused about whether neo confederates
were likely to be supporting the socialist workers party at the end
of the world and i m not especially discouraged now that newsweek
shows obama leading by three now

(Adapted from Noah Smith’s slides.)

André Martins (IST) Lecture 5 IST, Fall 2020 28 / 95

Outline

1 Structured Prediction

2 Sequence Models

Markov Models

Hidden Markov Models

Conditional Random Fields

Structured Perceptron

Structured Support Vector Machines

André Martins (IST) Lecture 5 IST, Fall 2020 29 / 95

Hidden Markov Models

• Assume each word xi is associated with a hidden state yi
• Two alphabets: word alphabet Σ and state alphabet Λ

• States are generated according to a (first-order) Markov model

• Word emissions are conditioned on each state

• Applications: POS tagging, named entity recognition, shallow
parsing, ...

André Martins (IST) Lecture 5 IST, Fall 2020 30 / 95

Hidden Markov Models

P(start,x1,y1,x2,y2, . . . ,xL,yL, stop) =
L+1∏
i=1

P(yi |yi−1)︸ ︷︷ ︸
transitions

×
L∏

i=1

P(xi |yi)︸ ︷︷ ︸
emissions

What are the parameters?

• Transition probabilities P(yi |yi−1)
• Emission probabilities P(xi |yi)
• Total number of parameters: O(|Σ||Λ|+ |Λ|2)

André Martins (IST) Lecture 5 IST, Fall 2020 31 / 95

Hidden Markov Models

P(start,x1,y1,x2,y2, . . . ,xL,yL, stop) =
L+1∏
i=1

P(yi |yi−1)︸ ︷︷ ︸
transitions

×
L∏

i=1

P(xi |yi)︸ ︷︷ ︸
emissions

What are the parameters?

• Transition probabilities P(yi |yi−1)
• Emission probabilities P(xi |yi)

• Total number of parameters: O(|Σ||Λ|+ |Λ|2)

André Martins (IST) Lecture 5 IST, Fall 2020 31 / 95

Hidden Markov Models

P(start,x1,y1,x2,y2, . . . ,xL,yL, stop) =
L+1∏
i=1

P(yi |yi−1)︸ ︷︷ ︸
transitions

×
L∏

i=1

P(xi |yi)︸ ︷︷ ︸
emissions

What are the parameters?

• Transition probabilities P(yi |yi−1)
• Emission probabilities P(xi |yi)
• Total number of parameters: O(|Σ||Λ|+ |Λ|2)

André Martins (IST) Lecture 5 IST, Fall 2020 31 / 95

Sampling from an HMM

Two equivalent ways of sampling:

1 Sample the sequence of hidden states using a Markov model
P(yi | yi−1); then for each state yi , sample a word from P(xi | yi)

2 Alternate between sampling the next state and the current word from
the current state

André Martins (IST) Lecture 5 IST, Fall 2020 32 / 95

Three Problems in HMMs

Let x = start,x1, . . . ,xL, stop denote a word sequence.

1 Given x, compute the most likely sequence of states
arg maxy1,...yL

P(y1, . . . ,yL|x)

2 Given x, compute the likelihood P(x) and the posterior state
probabilities P(yi |x)

3 Given training sequences of word and states (or just words), estimate
the emission and transition probabilities.

We’ll see that:

• Problems 1 and 2 can be solved with dynamic programming

• Problem 3 can be solved by counting and normalizing

André Martins (IST) Lecture 5 IST, Fall 2020 33 / 95

Three Problems in HMMs

Let x = start,x1, . . . ,xL, stop denote a word sequence.

1 Given x, compute the most likely sequence of states
arg maxy1,...yL

P(y1, . . . ,yL|x)

2 Given x, compute the likelihood P(x) and the posterior state
probabilities P(yi |x)

3 Given training sequences of word and states (or just words), estimate
the emission and transition probabilities.

We’ll see that:

• Problems 1 and 2 can be solved with dynamic programming

• Problem 3 can be solved by counting and normalizing

André Martins (IST) Lecture 5 IST, Fall 2020 33 / 95

Three Problems in HMMs

Let x = start,x1, . . . ,xL, stop denote a word sequence.

1 Given x, compute the most likely sequence of states
arg maxy1,...yL

P(y1, . . . ,yL|x)

2 Given x, compute the likelihood P(x) and the posterior state
probabilities P(yi |x)

3 Given training sequences of word and states (or just words), estimate
the emission and transition probabilities.

We’ll see that:

• Problems 1 and 2 can be solved with dynamic programming

• Problem 3 can be solved by counting and normalizing

André Martins (IST) Lecture 5 IST, Fall 2020 33 / 95

Dynamic Programming

A central concept applicable to many structured prediction problems

Key idea: use a table data structure to store partial quantities that will be
reused many times

Optimal substructure: best solution to a problem relies on best solutions
to its (similar-looking) subproblems

Overlapping subproblems: reuse a small number of quantities many times

Examples:

• Viterbi

• Levenshtein distance (a.k.a. edit distance)

• Dijkstra’s shortest path algorithm

• Bellman equation in optimal control theory

André Martins (IST) Lecture 5 IST, Fall 2020 34 / 95

Problem 1: Most Likely State Sequence

ŷ1, . . . ŷL = arg max
y1,...yL

P(y1, . . . ,yL|x)

= arg max
y1,...yL

P(start,x1,y1, . . . ,xL,yL, stop)

= arg max
y1,...yL

L+1∏
i=1

P(yi |yi−1)×
L∏

i=1

P(xi |yi)

• Combinatorial problem: need to search over |Λ|L possibilities.

André Martins (IST) Lecture 5 IST, Fall 2020 35 / 95

Viterbi Trellis

STOPSTART

noun

adj verb prep det noun

noun verb noun verb

Time flies like an arrow

• Each word’s state depends on the word and on the nearby labels

• Key fact: given adjacent labels, the others do not matter

André Martins (IST) Lecture 5 IST, Fall 2020 36 / 95

The Viterbi algorithm

• Key idea: recurrence

• Traverse the sequence left-to-right and compute the best way of
reaching the ith word given the possible decisions at the (i − 1)th
word

• Fill a table along the way, then backtrack to recover the best
sequence of states

V (i ,yi) = max
yi−1∈Λ

(
P(yi |yi−1)× P(xi |yi)× V (i − 1,yi−1)

)
ψ(i ,yi) = arg max

yi−1∈Λ

(
P(yi |yi−1)× P(xi |yi)× V (i − 1,yi−1)

)

André Martins (IST) Lecture 5 IST, Fall 2020 37 / 95

The Viterbi algorithm

input: sequence x1, . . . ,xL, emission/transition probabilities

Forward pass: incrementally fill the table
V (1,y1) = P(y1|start)× P(x1|y1) ∀y1 ∈ Λ
for i = 2 to L do

for yi ∈ Λ do
V (i ,yi) = maxyi−1 P(yi |yi−1)× P(xi |yi)× V (i − 1,yi−1)
ψ(i ,yi) = arg maxyi−1 P(yi |yi−1)× P(xi |yi)× V (i − 1,yi−1)

Backward pass: follow backpointers
ŷL = arg maxyL

P(stop|yL)× V (L,yL)
for i = L− 1 to 1 do
ŷi = ψ(i + 1, ŷi+1)

output: the best state sequence ŷ1, . . . , ŷL.

André Martins (IST) Lecture 5 IST, Fall 2020 38 / 95

Example – i = 1

STOPSTART

noun

adj verb prep det noun

noun verb noun verb

Time flies like an arrow

V (1, noun) = P(noun|start)× P(“Time”|noun)

= 0.4× 0.1 = 0.04

V (1, adj) = P(adj|start)× P(“Time”|adj)
= 0.2× 0.05 = 0.01

André Martins (IST) Lecture 5 IST, Fall 2020 39 / 95

Example – i = 2

STOPSTART

noun

adj verb prep det noun

noun verb noun verb

Time flies like an arrow

V (2, noun) = max{P(noun|noun)× P(“flies”|noun)× V (1,noun),

P(noun|adj)× P(“flies”|noun)× V (1, adj)}
= max{0.1× 0.1× 0.04, 0.8× 0.1× 0.01} = 0.0008

ψ(2, noun) = adj

V (2, verb) = max{P(verb|noun)× P(“flies”|verb)× V (1,noun),

P(verb|adj)× P(“flies”|verb)× V (1, adj)}
= max{0.4× 0.2× 0.04, 0.01× 0.2× 0.01} = 0.0032

ψ(2, verb) = noun

André Martins (IST) Lecture 5 IST, Fall 2020 40 / 95

Example – i = 3

STOPSTART

noun

adj verb prep det noun

noun verb noun verb

Time flies like an arrow

V (3, verb) = max{P(verb|noun)× P(“like”|verb)× V (2, noun),

P(verb|verb)× P(“like”|verb)× V (2, verb)}
= max{0.6× 0.1× 0.0008, 0.01× 0.1× 0.0032} = 4.8× 10−5

ψ(3, verb) = noun

V (3, prep) = max{P(prep|noun)× P(“like”|prep)× V (2, noun),

P(prep|verb)× P(“like”|prep)× V (2, verb)}
= max{0.2× 0.5× 0.0008, 0.2× 0.5× 0.0032} = 0.00032

ψ(3, prep) = verb

André Martins (IST) Lecture 5 IST, Fall 2020 41 / 95

Example – i = 4

STOPSTART

noun

adj verb prep det noun

noun verb noun verb

Time flies like an arrow

V (4, noun) = max{P(noun|verb)× P(“an”|noun)× V (3, verb),

P(noun|prep)× P(“an”|noun)× V (3, prep)}
= max{0.4× 0.001× 4.8× 10−5, 0.2× 0.001× 0.00032} = 6.4× 10−8

ψ(4, noun) = prep

V (4, det) = max{P(det|verb)× P(“an”|det)× V (3, verb),

P(det|prep)× P(“an”|det)× V (3, prep)}
= max{0.3× 0.5× 4.8× 10−5, 0.5× 0.5× 0.00032} = 8× 10−5

ψ(4, det) = prep

André Martins (IST) Lecture 5 IST, Fall 2020 42 / 95

Example – i = 5

STOPSTART

noun

adj verb prep det noun

noun verb noun verb

Time flies like an arrow

V (5, verb) = max{P(verb|noun)× P(“arrow”|verb)× V (4, noun),

P(verb|det)× P(“arrow”|verb)× V (4, det)}
= max{0.3× 0.01× 6.4× 10−8, 0.01× 0.01× 8× 10−5} = 8× 10−9

ψ(5, verb) = det

V (5, noun) = max{P(noun|noun)× P(“arrow”|noun)× V (4, noun),

P(noun|det)× P(“arrow”|noun)× V (4, det)}
= max{0.1× 0.1× 6.4× 10−8, 0.9× 0.1× 8× 10−5} = 7.2× 10−6

ψ(5, noun) = det

André Martins (IST) Lecture 5 IST, Fall 2020 43 / 95

Example – Backward Pass

STOPSTART

noun

adj verb prep det noun

noun verb noun verb

Time flies like an arrow

Probability = max{P(stop|verb)× V (5, verb),

P(stop|noun)× V (5,noun)}
= max{0.2× 8× 10−9, 0.5× 7.2× 10−6} = 3.6× 10−6

ŷ5 = noun

ŷ4 = ψ(5,noun) = det

ŷ3 = ψ(4, det) = prep

ŷ2 = ψ(3, prep) = verb

ŷ1 = ψ(2, verb) = noun

André Martins (IST) Lecture 5 IST, Fall 2020 44 / 95

Preventing Underflowing: Computation in the
Log-Domain

• You may have noticed that probabilities get smaller and smaller as we
go through the several time steps

• This may cause underflows and numerical instability

• Easy solution: instead of multiplying probabilities, sum
log-probabilities!

log(exp(a)× exp(b)) = a + b

• To add probabilities, implement a log-sum function:

log(exp(a) + exp(b)) = a + log(1 + exp(b − a))

André Martins (IST) Lecture 5 IST, Fall 2020 45 / 95

Summing Up: Viterbi

• An instance of a dynamic programming algorithm

• Computes the most likely sequence of tags

• In other words, the structured output that maximizes the total
score/probability

• This is called MAP (maximum a posteriori) decoding

• Later we’ll talk about marginal decoding as a way of computing the
structured output that minimizes the total risk

André Martins (IST) Lecture 5 IST, Fall 2020 46 / 95

Recap: Three Problems in HMMs

Let x = start,x1, . . . ,xL, stop denote a word sequence.

1 Given x, compute the most likely sequence of states
arg maxy1,...yL

P(y1, . . . ,yL|x)

2 Given x, compute the likelihood P(x) and the posterior state
probabilities P(yi |x)

3 Given training sequences of word and states (or just words), estimate
the emission and transition probabilities.

André Martins (IST) Lecture 5 IST, Fall 2020 47 / 95

Recap: Three Problems in HMMs

Let x = start,x1, . . . ,xL, stop denote a word sequence.

1 Given x, compute the most likely sequence of states
arg maxy1,...yL

P(y1, . . . ,yL|x)

2 Given x, compute the likelihood P(x) and the posterior state
probabilities P(yi |x)

3 Given training sequences of word and states (or just words), estimate
the emission and transition probabilities.

André Martins (IST) Lecture 5 IST, Fall 2020 47 / 95

Problem 2: Likelihood and State Posteriors

• Likelihood:

P(x) =
∑

y1,...yL

P(start,x1,y1, . . . ,xL,yL, stop)

=
∑

y1,...yL

L+1∏
i=1

P(yi |yi−1)×
L∏

i=1

P(xi |yi)

• Posterior state probabilities:

P(yi |x) =

∑
y1,...,yi−1,yi+1,...yL

P(start,x1,y1, . . . ,xL,yL, stop)

P(x)

=

∑
y1,...,yi−1,yi+1,...yL

∏L+1
j=1 P(yj |yj−1)×

∏L
j=1 P(xj |yj)

P(x)

• Both involve marginalizing out the hidden states

• Huge summations (O(|Λ|L) terms).

André Martins (IST) Lecture 5 IST, Fall 2020 48 / 95

The Forward-Backward Algorithm

P(x) =
∑

y1,...yL

L+1∏
i=1

P(yi |yi−1)×
L∏

i=1

P(xi |yi)

=
∑
yL

P(stop|yL)
∑
yL−1

P(yL|yL−1)P(xL|yL) . . .
∑
y1

P(y2|y1)P(x2|y2)
(
P(y1|start)P(x1|y1)

)

• Key idea: interleave summations with products!

• Forward variables:

α(i ,yi) =
∑

yi−1∈Λ

P(yi |yi−1)× P(xi |yi)× α(i − 1,yi−1)

• Forward algorithm: same as Viterbi, but replacing max with
∑

• Backward algorithm: same rationale, but right-to-left

André Martins (IST) Lecture 5 IST, Fall 2020 49 / 95

The Forward-Backward Algorithm

P(x) =
∑

y1,...yL

L+1∏
i=1

P(yi |yi−1)×
L∏

i=1

P(xi |yi)

=
∑
yL

P(stop|yL)
∑
yL−1

P(yL|yL−1)P(xL|yL) . . .
∑
y1

P(y2|y1)P(x2|y2)
(
P(y1|start)P(x1|y1)

)

• Key idea: interleave summations with products!

• Forward variables:

α(i ,yi) =
∑

yi−1∈Λ

P(yi |yi−1)× P(xi |yi)× α(i − 1,yi−1)

• Forward algorithm: same as Viterbi, but replacing max with
∑

• Backward algorithm: same rationale, but right-to-left

André Martins (IST) Lecture 5 IST, Fall 2020 49 / 95

The Forward-Backward Algorithm

P(x) =
∑

y1,...yL

L+1∏
i=1

P(yi |yi−1)×
L∏

i=1

P(xi |yi)

=
∑
yL

P(stop|yL)
∑
yL−1

P(yL|yL−1)P(xL|yL) . . .
∑
y1

P(y2|y1)P(x2|y2)
(
P(y1|start)P(x1|y1)

)

• Key idea: interleave summations with products!

• Forward variables:

α(i ,yi) =
∑

yi−1∈Λ

P(yi |yi−1)× P(xi |yi)× α(i − 1,yi−1)

• Forward algorithm: same as Viterbi, but replacing max with
∑

• Backward algorithm: same rationale, but right-to-left

André Martins (IST) Lecture 5 IST, Fall 2020 49 / 95

The Forward-Backward Algorithm

input: sequence x1, . . . ,xL, emission/transition probabilities

Forward pass: compute the forward probabilities
α(1,y1) = P(y1|start)× P(x1|y1) ∀y1 ∈ Λ
for i = 2 to L do

for yi ∈ Λ do
α(i ,yi) =

∑
yi−1

P(yi |yi−1)× P(xi |yi)× α(i − 1,yi−1)

Backward pass: compute the backward probabilities
β(L,yL) = P(stop|yL) ∀yL ∈ Λ
for i = L− 1 to 1 do

for yi ∈ Λ do
β(i ,yi) =

∑
yi+1

P(yi+1|yi)× P(xi+1|yi+1)× β(i + 1,yi+1)

output: Posterior unigram probabilities P(yi |x) ∝ α(i ,yi)× β(i ,yi)
Posterior bigram probabilities

P(yi ,yi−1|x) ∝ α(i − 1,yi−1)× P(yi |yi−1)× P(xi |yi)× β(i ,yi)

Likelihood P(x) =
∑

yi
α(i ,yi)β(i ,yi).

André Martins (IST) Lecture 5 IST, Fall 2020 50 / 95

Decoding: Dynamic Programming

• The Viterbi and forward-backward algorithms are two instances of
dynamic programming algorithms

• Many other problems in NLP (e.g. parsing with context-free
grammars) can also be solved with dynamic programming

• Examples: inside-outside, CKY, Eisner’s, belief propagation, ...

• We’ll see this later in another lecture.

André Martins (IST) Lecture 5 IST, Fall 2020 51 / 95

Minimum Risk Decoding

• Recall that the forward-backward algorithm allow us to compute the
posterior marginal probabilities:

P(yi | x) ∝ α(i ,yi)β(i ,yi)

• This is called marginal decoding (a.k.a. marginal inference)

• We can now compute, for each position i , the label ŷi that maximizes
this posterior probability

ŷi = arg max
yi

P(yi | x)

• This is called minimum risk decoding

• Does this give the same sequence as Viterbi decoding?

No.

André Martins (IST) Lecture 5 IST, Fall 2020 52 / 95

Minimum Risk Decoding

• Recall that the forward-backward algorithm allow us to compute the
posterior marginal probabilities:

P(yi | x) ∝ α(i ,yi)β(i ,yi)

• This is called marginal decoding (a.k.a. marginal inference)

• We can now compute, for each position i , the label ŷi that maximizes
this posterior probability

ŷi = arg max
yi

P(yi | x)

• This is called minimum risk decoding

• Does this give the same sequence as Viterbi decoding? No.

André Martins (IST) Lecture 5 IST, Fall 2020 52 / 95

Viterbi or Minimum Risk Decoding?

• They will not, in general, give the same label sequence.

• Sometimes one works better, sometimes the other.

• Posterior decoding can give a label sequence that itself gets zero
probability!

• We can motivate each by the cost they minimize.

André Martins (IST) Lecture 5 IST, Fall 2020 53 / 95

Cost

Imagine the following game:

• The HMM will be given a new sequence x, which we must label.

• Our predicted label sequence ŷ will be compared to the true one, y.

• Depending on how badly we do, we will pay a fine.

• We want to minimize the expected cost (a.k.a. the risk).

• Our best strategy will depend on how the cost is defined!

André Martins (IST) Lecture 5 IST, Fall 2020 54 / 95

All-or-Nothing Cost

• Suppose we pay 1e if we get the label sequence wrong, i.e., ŷ 6= y.

• Otherwise we pay nothing.

• What should we do?

• We should use the most probable whole sequence ŷ .

• i.e., we should do Viterbi decoding.

André Martins (IST) Lecture 5 IST, Fall 2020 55 / 95

Hamming Cost

• Alternately, suppose we pay 0.1e for every word that we label
incorrectly.

• This is more forgiving, and suggests that we focus on reasoning about
each word without worrying about the coherence of the whole
sequence.

• What should we do?

• We should use the most probable label ŷi for each word.

• i.e., we should do minimum risk decoding.

André Martins (IST) Lecture 5 IST, Fall 2020 56 / 95

Recap: Three Problems in HMMs

Let x = start,x1, . . . ,xL, stop denote a word sequence.

1 Given x, compute the most likely sequence of states
arg maxy1,...yL

P(y1, . . . ,yL|x)

2 Given x, compute the likelihood P(x) and the posterior state
probabilities P(yi |x)

3 Given training sequences of word and states (or just words), estimate
the emission and transition probabilities.

André Martins (IST) Lecture 5 IST, Fall 2020 57 / 95

Recap: Three Problems in HMMs

Let x = start,x1, . . . ,xL, stop denote a word sequence.

1 Given x, compute the most likely sequence of states
arg maxy1,...yL

P(y1, . . . ,yL|x)

2 Given x, compute the likelihood P(x) and the posterior state
probabilities P(yi |x)

3 Given training sequences of word and states (or just words), estimate
the emission and transition probabilities.

André Martins (IST) Lecture 5 IST, Fall 2020 57 / 95

Problem 3: Estimating the Model Parameters

How to estimate the emission probabilities P(xi |yi) and the
transition probabilities P(yi |yi−1)?

We will look at two cases:

1 Supervised learning: assumes we have labeled training data
{(x(1),y(1)), . . . , (x(N),y(N))}

2 Unsupervised learning: assumes all we have is unlabeled training
data {x(1), . . . ,x(N)}

André Martins (IST) Lecture 5 IST, Fall 2020 58 / 95

HMM Supervised Learning

Assumes we have labeled training data {(x(1),y(1)), . . . , (x(N),y(N))}
Simply use Maximum Likelihood Estimation for the complete data!

• Choose parameters that maximize
∏N

n=1 P(x(n),y(n))
• Closed form solution: just count events and normalize

• How many times two states yi−1 and yi occur consecutively =⇒
Estimate transition probabilities P(yi | yi−1)

• How many times a state yi and a symbol xi occur together =⇒
Estimate emission probabilities P(xi | yi)

• This is the “structured” version of Naive Bayes!

André Martins (IST) Lecture 5 IST, Fall 2020 59 / 95

HMM Unsupervised Learning

Assumes all we have is unlabeled training data {x(1), . . . ,x(N)}
This is a lot harder!

We never get to see any label y, so the best we can aim is to learn a good
HMM up to a permutation of the labels!

But which objective function should we try to optimize?

Common choice: Maximum Likelihood Estimation with imcomplete data!

• Involves maximizing the marginal likelihood∏N
n=1 P(x(n)) =

∏N
n=1

∑(n)
y P(x(n),y(n))

• However, this is usually prohibitive because it requires marginalizing
out y(n)

• “Standard” solution: Expectation-Maximization (EM) algorithm

André Martins (IST) Lecture 5 IST, Fall 2020 60 / 95

Expectation-Maximization (Baum-Welch)

Expectation-Maximization (EM) is a general inference technique,
applicable beyond HMMs

• It works for any graphical model mixing observed and latent variables

• Applicable to any generative model with latent variables (discrete or
continuous)!

• You might have seen it for mixtures of Gaussians and other clustering
algorithms (e.g. soft clustering)

• In the case of HMMs, this is also called the Baum-Welch algorithm.

André Martins (IST) Lecture 5 IST, Fall 2020 61 / 95

Expectation-Maximization (Baum-Welch)

Recall that if we observed the hidden variables y during training, the
parameters could be estimated easily by counting and normalizing

• How many times two states yi−1 and yi occur consecutively =⇒
Estimate transition probabilities P(yi | yi−1)

• How many times a state yi and a symbol xi occur together =⇒
Estimate emission probabilities P(xi | yi)

Unfortunately we don’t observe the y’s...

... but if we knew the model parameters, we could estimate the posterior
marginal probabilities P(yi | x) and P(yi−1,yi | x), which would give us
fractional counts

This is a chicken-and-egg problem!

André Martins (IST) Lecture 5 IST, Fall 2020 62 / 95

Expectation-Maximization (Baum-Welch)

EM initializes the model parameters randomly

Then it alternates between these two steps:

• E-step: apply the current model to each training sequence x to
obtain P(yi | x) and P(yi−1,yi | x)
• We can do this with the forward-backward algorithm!

• M-step: update the model
• We can do this by counting events (fractional counts) and normalizing!

This is guaranteed to improve the observed data likelihood at every
iteration (try to prove this at home!)

But MLE with incomplete data is a non-convex problem, so we can get to
a local minimum.

André Martins (IST) Lecture 5 IST, Fall 2020 63 / 95

Alternatives to EM

Also tackling MLE:

• Gradient descent: tackles MLE directly, also guaranteed to converge
to a local minimum, also reutilizes existing toolboxes

• SGD: similar, but does updates after observing each sequence

Method of moments:

• Instead of tackling MLE, try to match observed moments with
expected moments under the model

• Collect high-order moments (e.g. triplets of consecutive observed
symbols) and solve an equation to obtain the model parameters

• Can be done with spectral learning, which boils down to a SVD
matrix factorization

• Also doable with anchor learning, which boils down to non-negative
matrix factorization

André Martins (IST) Lecture 5 IST, Fall 2020 64 / 95

Semi-Supervised Learning of HMMs

Can also be done with EM, by combining sequences where labels are
observed with sequence where they are not observed.

Boils down to combining true counts with fractional (expected) counts.

André Martins (IST) Lecture 5 IST, Fall 2020 65 / 95

Summary of HMMs

• Representation? Directed sequence model.

• Assumptions? Markov assumption on states; words are
conditionally independent given the state.

• Decoding/Inference? Viterbi/forward-backward algorithms.

• Learning the parameters? Maximum likelihood (count and
normalize) for the supervised case, EM for the unsupervised case.

André Martins (IST) Lecture 5 IST, Fall 2020 66 / 95

Roadmap: Models for Structured Prediction

Binary/Multi-class Structured Prediction

Naive Bayes HMMs
Logistic Regression ?

Perceptron ?
SVMs ?

André Martins (IST) Lecture 5 IST, Fall 2020 67 / 95

Related: Class-Based Language Models

• Proposed by Brown et al. (1992)

• Similar to HMMs where the observed symbols are words and the
states are word classes
• Detail: we assume that each word belongs to one and only one

class
• i.e. the emission probabilities P(xi | yi) are hard-clustered around

classes; P(xi | yi) = 0 if word xi does not belong to class yi

• We also assume classes have a hierarchy (from coarse-grained to
fine-grained classes)

• Each class is represented with a bit-string, number of bits determines
how fine-grained it is

• Classes are learned with agglomerative clustering

• This is known as Brown clustering.

André Martins (IST) Lecture 5 IST, Fall 2020 68 / 95

Examples of Brown clusters (from Twitter data)

Path Terms

001010110 never neva nvr gladly nevr #never neverr nver neverrr nevaa
001010111 ever eva evar evr everrr everr everrrr evah everrrrr everrrrrr
01000010 does duz doess does sayeth doez doesss d0es deos

Path Terms

0100 Monday
010100 Sunday
010101 Friday
0101100 Thursday
01011010 Saturday

(from http://www.cs.cmu.edu/~ark/TweetNLP/cluster_viewer.html)

André Martins (IST) Lecture 5 IST, Fall 2020 69 / 95

http://www.cs.cmu.edu/~ark/TweetNLP/cluster_viewer.html

Brown clustering

Brown clustering is a way of representation learning

It obtains discrete word representations (binary vectors) via
unsupervised hierarchical clustering

It was extremely popular in NLP before the age of neural networks

We’ll look at other ways of learning word representations (continuous
ones) in the next class

André Martins (IST) Lecture 5 IST, Fall 2020 70 / 95

Outline

1 Structured Prediction

2 Sequence Models

Markov Models

Hidden Markov Models

Conditional Random Fields

Structured Perceptron

Structured Support Vector Machines

André Martins (IST) Lecture 5 IST, Fall 2020 71 / 95

Conditional Random Fields (Lafferty et al., 2001)

HMMs have two drawbacks in practical NLP problems:

1 Words being conditionally independent is too strong an assumption

2 Can’t have coarser features than words (e.g capitalization, suffixes,
etc.) which often help

CRFs overcome these drawbacks—they’re a structured variant of
logistic regression!

Also used in vision (Kumar and Hebert, 2003; Quattoni et al., 2004)

André Martins (IST) Lecture 5 IST, Fall 2020 72 / 95

Conditional Random Fields (Lafferty et al., 2001)

HMMs have two drawbacks in practical NLP problems:

1 Words being conditionally independent is too strong an assumption

2 Can’t have coarser features than words (e.g capitalization, suffixes,
etc.) which often help

CRFs overcome these drawbacks—they’re a structured variant of
logistic regression!

Also used in vision (Kumar and Hebert, 2003; Quattoni et al., 2004)

André Martins (IST) Lecture 5 IST, Fall 2020 72 / 95

Conditional Random Fields

Similar factorization as HMMs, but globally normalized!

PW (y|x) =
1

Z (W ,x)
exp

(∑
i wyi · φi (x)︸ ︷︷ ︸

nodes

+
∑

i wyi ,yi−1 · φi,i−1(x)︸ ︷︷ ︸
edges

)

∝
∏
i

ψi (yi)
∏
i

ψi,i−1(yi ,yi−1)

André Martins (IST) Lecture 5 IST, Fall 2020 73 / 95

Conditional Random Fields

Similar factorization as HMMs, but globally normalized!

PW (y|x) =
1

Z (W ,x)
exp

(∑
i wyi · φi (x)︸ ︷︷ ︸

nodes

+
∑

i wyi ,yi−1 · φi,i−1(x)︸ ︷︷ ︸
edges

)

∝
∏
i

ψi (yi)
∏
i

ψi,i−1(yi ,yi−1)

André Martins (IST) Lecture 5 IST, Fall 2020 73 / 95

Conditional Random Fields

Similar factorization as HMMs, but globally normalized!

PW (y|x) =
1

Z (W ,x)
exp

(∑
i wyi · φi (x)︸ ︷︷ ︸

nodes

+
∑

i wyi ,yi−1 · φi,i−1(x)︸ ︷︷ ︸
edges

)

∝
∏
i

ψi (yi)
∏
i

ψi,i−1(yi ,yi−1)

André Martins (IST) Lecture 5 IST, Fall 2020 73 / 95

Conditional Random Fields

Similar factorization as HMMs, but globally normalized!

PW (y|x) =
1

Z (W ,x)
exp

(∑
i wyi · φi (x)︸ ︷︷ ︸

nodes

+
∑

i wyi ,yi−1 · φi,i−1(x)︸ ︷︷ ︸
edges

)

∝
∏
i

ψi (yi)
∏
i

ψi,i−1(yi ,yi−1)

André Martins (IST) Lecture 5 IST, Fall 2020 73 / 95

Learning and Decoding in CRFs

• HMMs are a generative model: they model P(x,y)

• CRFs are a discriminative model: they model P(y|x)

• We can’t compute P(x) with a CRF...

• ... But we can compute the most likely sequence of states and the
posterior state probabilities

• Just use the standard Viterbi and forward-backward algorithms
(they work with unnormalized distributions too!)

André Martins (IST) Lecture 5 IST, Fall 2020 74 / 95

Learning and Decoding in CRFs

• HMMs are a generative model: they model P(x,y)

• CRFs are a discriminative model: they model P(y|x)

• We can’t compute P(x) with a CRF...

• ... But we can compute the most likely sequence of states and the
posterior state probabilities

• Just use the standard Viterbi and forward-backward algorithms
(they work with unnormalized distributions too!)

André Martins (IST) Lecture 5 IST, Fall 2020 74 / 95

Learning and Decoding in CRFs

• Learning the parameters w (with supervision) is done by maximizing
conditional log-likelihood:

max
W

λ

2
‖W ‖2 +

∑
t

logPW (y(t)|x(t))

• A convex optimization problem, typically solved with L-BFGS or
stochastic gradient descent

André Martins (IST) Lecture 5 IST, Fall 2020 75 / 95

Recap: Logistic Regression

• Define conditional probability

PW (y|x) =
exp(wy · φ(x))

Zx

• Set weights to maximize conditional log-likelihood of training data:

W = argmaxW
∑
t

logPW (yt |xt) = arg minW

∑
t

L(W ; (xt ,yt))

• Can find the gradient and run gradient descent (or any gradient-based
optimization algorithm)

∇W L(W ; (x,y)) =
∑
y′

PW (y′|x)ey′φ(x)>−eyφ(x)>

André Martins (IST) Lecture 5 IST, Fall 2020 76 / 95

Structural Decomposition

For conditional random fields, the features and their expectation
decompose according to the sequential structure:

W = [

[···wy···]︷ ︸︸ ︷
Wunig ,

[···wy,yprev ···]︷ ︸︸ ︷
Wbig]

φunig(x) =
∑
i

φi (x)

φbig(x) =
∑
i

φi,i−1(x)∑
y′

PW (y′|x)ey′φunig(x)> =
∑
i

∑
y′i

PW (y′i |x)ey′i φi (x)>

∑
y′

PW (y′|x)ey′i φbig(x)> =
∑
i

∑
y′i−1,y

′
i

PW (y′i ,y
′
i−1|x)ey′i ∧y′i−1

φi,i−1(x)>

All quantities can be obtained with the forward-backward algorithm!

André Martins (IST) Lecture 5 IST, Fall 2020 77 / 95

Conditional Random Fields

• Representation? Undirected sequence model.

• Assumptions? Markov assumption on states; no assumption of
the words whatsoever.

• Decoding/Inference? Viterbi/forward-backward algorithms.

• Learning the parameters? Maximum conditional likelihood
(convex optimization).

André Martins (IST) Lecture 5 IST, Fall 2020 78 / 95

Features for POS tagging (Ratnaparkhi, 1999)

Tag trigram yi−2 ∧ yi−1 ∧ yi
Tag bigram yi−1 ∧ yi
Word xi ∧ yi
Previous word xi−1 ∧ yi
Two words before xi−2 ∧ yi
Next word xi+1 ∧ yi
Two words after xi+2 ∧ yi
Word has upper case HasUpper(xi) ∧ yi
Word has digit HasDigit(xi) ∧ yi
Word has hyphen HasHyphen(xi) ∧ yi
Word prefixes (up to 4 characters) Prefix(xi) ∧ yi
Word suffixes (up to 4 characters) Suffix(xi) ∧ yi

• Accuracies are ∼ 97% in the Penn Treebank

André Martins (IST) Lecture 5 IST, Fall 2020 79 / 95

Features for NER (Ratinov and Roth, 2009)

Similar, plus some more features:

• Word shapes: “Leuven” → Aa+

• Flags for all-digits, all-upper, first-upper

• Same for previous/next word and two words before/after

• Bigram tag features also conjoined with words

• Gazetteer features (e.g. entities found in Wikipedia)

Standard evaluation metric is F1 measure (harmonic mean of precision and
recall)

• F1 ∼ 80% in the English CoNLL 2003 dataset

André Martins (IST) Lecture 5 IST, Fall 2020 80 / 95

Roadmap: Models for Structured Prediction

Binary/Multi-class Structured Prediction

Naive Bayes HMMs
Logistic Regression CRFs

Perceptron ?
SVMs ?

André Martins (IST) Lecture 5 IST, Fall 2020 81 / 95

Outline

1 Structured Prediction

2 Sequence Models

Markov Models

Hidden Markov Models

Conditional Random Fields

Structured Perceptron

Structured Support Vector Machines

André Martins (IST) Lecture 5 IST, Fall 2020 82 / 95

Structured Perceptron (Collins, 2002)

• The perceptron algorithm has their structured counterpart too

• The prediction ŷ according to the current model W is now the most
likely sequence of states (computed using the Viterbi algorithm)

• Everything else still applies (similar updates, similar mistake bound)

André Martins (IST) Lecture 5 IST, Fall 2020 83 / 95

Recap: Perceptron

input: labeled data D

initialize W = 0
repeat

get new training example (x,y) ∼ D

predict ŷ = arg maxy′∈Ywy′ · φ(x)
if ŷ 6= y then

update wy ← wy + φ(x)
update wŷ = wŷ − φ(x)

until maximum number of epochs
output: model weights W

André Martins (IST) Lecture 5 IST, Fall 2020 84 / 95

Structured Perceptron

input: labeled data D

initialize W = 0
repeat

get new training example (x,y) ∼ D

predict ŷ = arg maxy′∈Y
∑

i wy′i
·φi (x)+

∑
i wy′i ,y

′
i−1
·φi ,i−1(x)

for i = 1, . . . , L + 1 do
if i ≤ L and ŷi 6= yi then

update wyi ← wyi + φi (xi)
update wŷi

← wŷi
− φi (xi)

if ŷi 6= yi or ŷi−1 6= yi−1 then
update wyi ,yi−1 ← wyi ,yi−1 + φi ,i−1(xi)
update wŷi ,ŷi−1

← wŷi ,ŷi−1
− φi ,i−1(xi)

until maximum number of epochs
output: model weights W

André Martins (IST) Lecture 5 IST, Fall 2020 85 / 95

Structured Perceptron

• Representation? Undirected sequence model.

• Assumptions? Markov assumption on states; no assumption of
the words whatsoever.

• Decoding/Inference? Viterbi.

• Learning the parameters? Perceptron updates.

André Martins (IST) Lecture 5 IST, Fall 2020 86 / 95

Outline

1 Structured Prediction

2 Sequence Models

Markov Models

Hidden Markov Models

Conditional Random Fields

Structured Perceptron

Structured Support Vector Machines

André Martins (IST) Lecture 5 IST, Fall 2020 87 / 95

Structured Support Vector Machines (Taskar et al., 2003;

Altun et al., 2003; Tsochantaridis et al., 2004)

• SVMs have their structured counterpart too

• Similar idea to CRFs, but maximize margin

• No probabilistic interpretation anymore

• Can still be used to compute the most likely sequence of states (using
the Viterbi algorithm)

• The loss function is structured hinge loss: a convex surrogate to
Hamming loss (the fraction of incorrect states)

André Martins (IST) Lecture 5 IST, Fall 2020 88 / 95

Recap: SVMs

Hinge loss:

L((x,y);W) = max (0, 1 + max
y′ 6=y

wy′ · φ(x)−wy · φ(x))

=

(
max
y′∈Y

wy′ · φ(x) + [[y′ 6= y]]

)
−wy · φ(x)

A subgradient of the hinge is

∂W L((x,y);W) 3 eŷφ(x)> − eyφ(x)>

where
ŷ = arg max

y′∈Y
wy′ · φ(x) + [[y′ 6= y]]

André Martins (IST) Lecture 5 IST, Fall 2020 89 / 95

Structured Support Vector Machines

Key idea: replace the 0/1 cost [[y′ 6= y]] by a Hamming cost:

ρ(y′,y) =
∑
i

[[y′i 6= yi]]

In other words: the “margin” counts how many labels are incorrect

Cost-augmented decoding:

ŷ = arg max
y′∈Y

wy′ · φ(x) + ρ(y′,y)

= arg max
y′∈Y

∑
i

(
wy′i
· φi (x) + [[y′i ,yi]]

)
+
∑
i

wy′i ,y
′
i−1
· φi ,i−1(x)

The Hamming cost is decomposable! Hence cost-augmented decoding
can still be done with the Viterbi algorithm

A subgradient can then be computed as usual.

André Martins (IST) Lecture 5 IST, Fall 2020 90 / 95

Structured Support Vector Machines

• Representation? Undirected sequence model.

• Assumptions? Markov assumption on states; no assumption of
the words whatsoever.

• Decoding/Inference? Viterbi algorithm.

• Learning the parameters? Minimize structured hinge loss (convex,
non-smooth optimization).

André Martins (IST) Lecture 5 IST, Fall 2020 91 / 95

Roadmap: Models for Structured Prediction

Binary/Multi-class Structured Prediction

Naive Bayes HMMs
Logistic Regression CRFs

Perceptron Structured Perceptron
SVMs Structured SVMs

André Martins (IST) Lecture 5 IST, Fall 2020 92 / 95

Neural Sequence Models

So far, all models discussed are structured but linear

But we know that neural networks are more powerful than linear models...

Can we mix a neural network and a CRF?

Yes.

André Martins (IST) Lecture 5 IST, Fall 2020 93 / 95

Neural Sequence Models

So far, all models discussed are structured but linear

But we know that neural networks are more powerful than linear models...

Can we mix a neural network and a CRF? Yes.

André Martins (IST) Lecture 5 IST, Fall 2020 93 / 95

Neural Sequence Models

Just append a CRF output layer to your favorite neural network!

For example:

• a shared feedforward neural network to each element of the sequence
to compute unigram scores

• another shared feedforward to compute bigram scores (or just a label
bigram indicator)

• an output layer with a sequential structure using those unigram and
bigram scores

Use Forward-Backward to compute the gradient in the last layer; then
gradient backpropagation will make all the work for us

Other configurations are possible instead of a shared feedforward: e.g. a
CNN, a BILSTM, ... (will learn those later)

Works for a structured SVM output layer too.

André Martins (IST) Lecture 5 IST, Fall 2020 94 / 95

References I

Altun, Y., Tsochantaridis, I., and Hofmann, T. (2003). Hidden Markov support vector machines. In Proc. of International
Conference of Machine Learning.

Brants, T. (2000). Tnt: a statistical part-of-speech tagger. In Proceedings of the sixth conference on Applied natural language
processing, pages 224–231. Association for Computational Linguistics.

Brown, P. F., Desouza, P. V., Mercer, R. L., Pietra, V. J. D., and Lai, J. C. (1992). Class-based n-gram models of natural
language. Computational linguistics, 18(4):467–479.

Collins, M. (2002). Discriminative training methods for hidden Markov models: theory and experiments with perceptron
algorithms. In Proc. of Empirical Methods for Natural Language Processing.

Kumar, S. and Hebert, M. (2003). Discriminative random fields: A discriminative framework for contextual interaction in
classification. In Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, pages 1150–1157. IEEE.

Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional random fields: Probabilistic models for segmenting and labeling
sequence data. In Proc. of International Conference of Machine Learning.

Quattoni, A., Collins, M., and Darrell, T. (2004). Conditional random fields for object recognition. In Advances in neural
information processing systems, pages 1097–1104.

Ratinov, L. and Roth, D. (2009). Design challenges and misconceptions in named entity recognition. In Proceedings of the
Thirteenth Conference on Computational Natural Language Learning, pages 147–155. Association for Computational
Linguistics.

Ratnaparkhi, A. (1999). Learning to parse natural language with maximum entropy models. Machine Learning, 34(1):151–175.

Taskar, B., Guestrin, C., and Koller, D. (2003). Max-margin Markov networks. In Proc. of Neural Information Processing
Systems.

Toutanova, K., Klein, D., Manning, C. D., and Singer, Y. (2003). Feature-rich part-of-speech tagging with a cyclic dependency
network. In Proc. of the North American Chapter of the Association for Computational Linguistics, pages 173–180.

Tsochantaridis, I., Hofmann, T., Joachims, T., and Altun, Y. (2004). Support vector machine learning for interdependent and
structured output spaces. In Proc. of International Conference of Machine Learning.

Zhang, T. and Johnson, D. (2003). A robust risk minimization based named entity recognition system. In Proceedings of the
seventh conference on Natural language learning at HLT-NAACL 2003-Volume 4, pages 204–207. Association for
Computational Linguistics.

André Martins (IST) Lecture 5 IST, Fall 2020 95 / 95

	Structured Prediction
	Sequence Models
	Markov Models
	Hidden Markov Models
	Conditional Random Fields
	Structured Perceptron
	Structured Support Vector Machines

	References
	References

