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Announcements

• Homework 2 is due today!

• Project midterm report is due next week!

• Homework 3 is out, the deadline is December 9. Start early!
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Slide Credits

• Vlad Niculae (co-instructor of DSL last year)
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Graphical Models

In this unit, we will formalize & extend these graphical representations
encountered in previous lectures.

Directed

. . . Yi−1

Xi−1

Yi

Xi

Yi+1

Xi+1

. . .

Undirected

. . . Yi−1 Yi Yi+1 . . .
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Outline

1 Directed Models

Bayes networks

Conditional independence and D-separation

Causal graphs & the do operator

2 Undirected Models

Markov random fields

Factor graphs
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Bayes (belief) networks

• Common task: Characterize how some related events co-occur.
Specifically, in terms of probabilities!

• A car alarm is going off. Was there a break-in?

Break-in

Wind

Alarm

Barometer

P(B) B=yes B=no

.05 .95

• P(B | A) =?

Can we observe wind? P(B | A,W ) =?
Maybe we’re in the basement, but have a barometer.
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Bayes networks

Toolkit for encoding knowledge about interaction structures between rv’s.

Break-in Wind

Alarm Barometer

Directed acyclic graph (DAG). Nodes = variables. Arrows = statistical
dependencies.

In general: P(X1, . . . ,Xn) =
∏
i

P
(
Xi | parents(Xi )

)
For example: P(Break-in, Wind, Alarm, Barometer)

= P(Break-in)P(Wind)P(Alarm | Break-in, Wind)P(Barometer |Wind)
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Without any structure, P(Break-in, Wind, Alarm, Barometer)
would have to be stored & estimated like

Brk. Wind Alarm Bar. P

yes lo on lo 0.0243
yes lo on med 0.0002
yes lo on hi 0.0002
yes lo off lo 0.0002
yes lo off med 2.50e-06
yes lo off hi 2.50e-06
yes med on lo 0.0001
yes med on med 0.0146
yes med on hi 0.0001
yes med off lo 1.50e-06
yes med off med 0.0001
yes med off hi 1.50e-06
yes hi on lo 9.99e-05
yes hi on med 9.99e-05
yes hi on hi 0.0098
yes hi off lo 1.00e-07
yes hi off med 1.00e-07
yes hi off hi 9.80e-06

Brk. Wind Alarm Bar. P

no lo on lo 0.0047
no lo on med 4.75e-05
no lo on hi 4.75e-05
no lo off lo 0.4608
no lo off med 0.0047
no lo off hi 0.0047
no med on lo 0.0001
no med on med 0.0140
no med on hi 0.0001
no med off lo 0.0027
no med off med 0.2653
no med off hi 0.0027
no hi on lo 0.0005
no hi on med 0.0005
no hi on hi 0.0466
no hi off lo 0.0014
no hi off med 0.0014
no hi off hi 0.1397

P(Break-in=yes, Alarm=on) = 0.0496

P(Break-in=no, Alarm=on) = 0.0665
P(Break-in=yes | Alarm=on) =

P(Break-in=yes, Alarm=on)∑
b P(Break-in=b, Alarm=on)

= .427
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Knowing the model structure (statistical dependencies), complicated
models become manageable.

Br W

A Ba

P(Br, W, A, Ba)

= P(Br)P(W)P(A | Br, W)P(Ba |W)

• Can estimate parts in isolation
e.g. P(Wind) from weather history.

• Can sample by following the graph
from roots to leaves.

P(Br) yes no

.05 .95

P(W) lo mid hi

.5 .3 .2

P(A | Br ,W ) on off

Br=yes W=lo .99 .01
Br=yes W=med .99 .01
Br=yes W=hi .999 .001
Br=no W=lo .01 .99
Br=no W=med .05 .95
Br=no W=hi .25 .75

P(Ba |W ) lo mid hi

W=lo .98 .01 .01
W=mid .01 .98 .01

W=hi .01 .01 .98
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Bayes Nets:

reduce number of parameters & aid estimation

let us reason about independencies in a model

are a building-block for modeling causality



Bayes Nets:

are not neural network diagrams

encode structure, not parametrization

are non-unique for a distribution

encode independence requirements, not necessarily all



BN are not neural net diagrams

Recall the RNN language model:

• In statistical terms, what are we modeling?

P(X1, . . . ,Xn) = P(X1)P(X2 | X1)P(X3 | X1,X2) . . .

• Bayes Net: X1 X2 X3 X4 . . .

• Not useful! Everything conditionally-depends on everything. (more later)
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André Martins (IST) Lecture 7: Probabilistic Graphical Models IST, Fall 2020 13 / 66



BN are not neural net diagrams

Recall the RNN language model:

• In statistical terms, what are we modeling?

P(X1, . . . ,Xn) = P(X1)P(X2 | X1)P(X3 | X1,X2) . . .

• Bayes Net: X1 X2 X3 X4 . . .

• Not useful! Everything conditionally-depends on everything. (more later)
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Neural net diagrams
(and computation graphs)
show how to compute something

X1 X2 X3 X4

Bayes networks
show how a distribution factorizes
(what is assumed independent)
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BN encode structure, not parametrization

A BN tells us: how the distribution decomposes
A BN can’t tell us: what the probabilities are!

Example: X ∈ X = all English sentences, Y ∈ {sports, music, . . . }.

BN for a generative model: XY

We must posit what are P(Y ) and P(X | Y ). Many possible options!

P(Y ): uniform: P(Y = sports) = P(Y = music) = 1
|Y| , or estimated from data.

P(X | Y ) (remember: values of X are sentences)

Naive Bayes P(X | Y ) =
∏L

j=1 P(Xj | Y )

Per-class Markov language model P(X | Y ) =
∏L

j=1 P(Xj | Xj−1,Y )

Per-class recurrent NN language model P(X | Y ) = LSTM(x1, . . . , xL;wy )

P(X | Y ) need not be parametrized as a table.

rv’s need not be discrete! mixture of Gaussians: P(X | Y = y) ∼ N(µy ,Σy ).
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Equivalent factorizations

There are many possible factorizations! P(X ,Y ) =

YX

P(X )P(Y | X )

YX

P(Y )P(X | Y )

YX

P(X )P(Y )

The first two are valid Bayes nets for any P(X ,Y )!

In fact, recall generative vs discriminative classifiers!

• Generative (e.g. näıve Bayes): YX

To classify, we would compute P(Y | X ) via Bayes’ rule.

• Discriminative (e.g. logistic regression) YX

in LR, we don’t model P(X ), we assume X is always observed (gray).

Some arrow direction choices are harder to estimate.

Some make more sense (why?): WindBarmtr. vs. WindBarmtr.
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Some arrow direction choices are harder to estimate.

Some make more sense (why?): WindBarmtr. vs. WindBarmtr.
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Minimal independence assumptions

Recall, we say X ⊥⊥ Y iff. P(X ,Y ) = P(X )P(Y )
Let X = grade in DSL, Y = month you were born.

Bayes net (1): YX

Example parametrization:

P(X) A+ A B ...

.01 .02 .04

P(Y) Jan Feb Mar ...

.10 .12 .09

BN (1) imposes X ⊥⊥ Y
in any parametrization.

Bayes net (2): YX

Does it mean X 6⊥⊥ Y necessarily?
NO!

P(Y) Jan Feb Mar ...

.10 .12 .09

P(X | Y ) 20 19 18 ...

Y=Jan .01 .02 .04
Y=Feb .01 .02 .04
Y=Mar .01 .02 .04

...

A BN expresses which independences must exist, but there can be
additional ones.
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Outline

1 Directed Models

Bayes networks

Conditional independence and D-separation

Causal graphs & the do operator

2 Undirected Models

Markov random fields

Factor graphs
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Conditional independence in Bayes nets

Identifying independences in a distribution is generally hard.

Bayes nets let us reason about it via graph algorithms!

Definition (conditional independence)

A is independent of B given a set of variables C = {C1, . . . ,Cn}, denoted

A ⊥⊥ B | C ,

iff P(A,B | C1, . . . ,Cn) = P(A | C1, . . . ,Cn)P(B | C1, . . . ,Cn).
Note. Equivalently, P(A | B,C1, . . . ,Cn) = P(A | C1, . . . ,Cn).
Intuitively: if we observe C , does observing B too bring us more info about A?

Break-in Alarm
André

wakes up

You want to assess if I’m awake. Does it matter if there really was a
break-in?
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Three fundamental relationships in BN

The Fork

A

C

B

The Chain

A C B

The Collider

A

C

B

A ⊥⊥ B | C
Given C , A and B are independent.

Example: Alarm ← Wind → Barometer

A ⊥⊥ B | C
After observing C ,

further observing A would not tell us about B.
Example: Burglary → Alarm → André wakes up

Surprisingly, A ⊥⊥ B
but not A ⊥⊥ B | C !

Example: Burglary → Alarm ← Wind
Burglaries occur regardless how windy it is.

If alarm rings, hearing wind makes burglary less likely!
Burglary is “explained away” by wind.
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Surprisingly, A ⊥⊥ B
but not A ⊥⊥ B | C !

Example: Burglary → Alarm ← Wind
Burglaries occur regardless how windy it is.

If alarm rings, hearing wind makes burglary less likely!
Burglary is “explained away” by wind.

André Martins (IST) Lecture 7: Probabilistic Graphical Models IST, Fall 2020 20 / 66



Detecting independence: d-separation

Definition: A and B are d-separated given set C if for any path P from
A to B at least one holds:

1 P includes a fork with observed parent:

X ← Z → Y (with Z ∈ C )

2 P includes a chain with observed middle:

X → Z → Y or X ← Z ← Y (with Z ∈ C )

3 P includes a collider with unobserved descendants:

X → Z ← Y (with neither Z nor any of its descendants ∈ C )

Theorem: A and B d-separated given C =⇒ A ⊥⊥ B | C .
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Examples

Break-in Wind

Alarm Barometer

Wind ⊥⊥ Barometer?

No
Break-in ⊥⊥Wind? Yes

Break-in ⊥⊥ Barometer? Yes
Break-in ⊥⊥ Barometer | Alarm?

No

Break-in ⊥⊥ Barometer | Alarm,Wind? Yes

. . . Yi−1

Xi−1

Yi

Xi

Yi+1

Xi+1

. . .

Yi+1 ⊥⊥ Yi−1? No
Yi+1 ⊥⊥ Yi−1 | Yi? Yes

Yi+1 ⊥⊥ Xi? No
Yi+1 ⊥⊥ Xi | Yi? Yes
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André Martins (IST) Lecture 7: Probabilistic Graphical Models IST, Fall 2020 22 / 66



Examples

Break-in Wind

Alarm Barometer

Wind ⊥⊥ Barometer? No
Break-in ⊥⊥Wind? Yes

Break-in ⊥⊥ Barometer? Yes
Break-in ⊥⊥ Barometer | Alarm?

No
Break-in ⊥⊥ Barometer | Alarm,Wind? Yes

. . . Yi−1

Xi−1

Yi

Xi

Yi+1

Xi+1

. . .

Yi+1 ⊥⊥ Yi−1? No
Yi+1 ⊥⊥ Yi−1 | Yi? Yes

Yi+1 ⊥⊥ Xi? No
Yi+1 ⊥⊥ Xi | Yi? Yes
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André Martins (IST) Lecture 7: Probabilistic Graphical Models IST, Fall 2020 22 / 66



Examples

Break-in Wind

Alarm Barometer

Wind ⊥⊥ Barometer? No
Break-in ⊥⊥Wind? Yes

Break-in ⊥⊥ Barometer? Yes
Break-in ⊥⊥ Barometer | Alarm? No

Break-in ⊥⊥ Barometer | Alarm,Wind? Yes

. . . Yi−1

Xi−1

Yi

Xi

Yi+1

Xi+1

. . . Yi+1 ⊥⊥ Yi−1? No
Yi+1 ⊥⊥ Yi−1 | Yi? Yes

Yi+1 ⊥⊥ Xi? No
Yi+1 ⊥⊥ Xi | Yi? Yes
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Generative stories and plate notation

In papers, you’ll see statistical models defined through generative stories:

µ ∼ Uniform([−1, 1])

σ ∼ Uniform([1, 2])

X | µ, σ ∼ Normal(µ, σ)

µ σ

X

Plate notation is a way to denote repetition of templates:

µ ∼ Uniform([−1, 1])

σ ∼ Uniform([1, 2])

Xn | µ, σ ∼ Normal(µ, σ) i = 1, . . . ,N

µ σ

Xn

N
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Outline

1 Directed Models

Bayes networks

Conditional independence and D-separation

Causal graphs & the do operator

2 Undirected Models

Markov random fields

Factor graphs
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Correlation does not imply causation;
but then, what does?
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Seeing versus doing

Bayes nets only model independence assumptions.

The correlation between the a barometer reading B and wind strength W
can be represented either way:

WB vs. WB

Seeing that the barometer reading is high, we can forecast wind.

P(W | B) lo mid hi

B = lo .98 .01 .01
B = mid .01 .98 .01
B = hi .01 .01 .98

But setting the barometer needle to high manually won’t cause wind!

We write: P
(
W | do(B = hi)

)
=?
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Seeing versus doing

Setting the barometer needle to high manually won’t cause wind!

Two reasons why doing 6= seeing:

• the direction does not express a causal relationship

• we missed some confounding factor

If we created wind with a ceiling fan, does it alter the barometer?

No! Pressure is a confounding factor.

W B

P
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André Martins (IST) Lecture 7: Probabilistic Graphical Models IST, Fall 2020 27 / 66



Causal models

Definition (Pearl 2000)

A causal model is a DAG G with vertices X1, . . . ,XN representing events.
Almost like a BN. However, paths are causal.

• A causes B only if A is an ancestor of B in G.

• A→ B means A is a direct cause of B.

A good model is essential.

Wrong causal assumptions ⇒ wrong conclusions.

(We won’t cover how to assess if the model is right. This is a bit
chicken-and-egg, but domain knowledge helps, and we are allowed to
reason about unobserved causes.)
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Seeing versus doing, more rigorously
Seeing (observational): P(W | B = hi)

Measure the world for a while (or call IPMA)

Date Pressure Wind Barometer

1977-01-01 hi hi hi
1977-01-02 hi mid hi
1977-01-02 mid mid mid
. . .
2019-11-03 hi hi hi

gives:
P(W | B) lo mid hi

B = hi .01 .01 .98

W B

P

Doing (interventional): P(W | do(B = hi))

Set the needle to high, breaking inbound arrows;
re-generate new data in this new DAG
(or estimate what that would give.)

P(W | do(B = hi)) = P(W ) W B

P

do
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Randomized controlled trials

Try to actually implement the do operator in real life.

Treatment Disease

Genetics

?

do

Patient Treatment Genetics Disease

#42 real ? cured
#68 placebo ? not cured
. . .

No need to be able to measure genetics
as long as we can sample A LOT OF test subjects with no/little bias.
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Do-calculus

RCTs are powerful, but often unethical, always expensive.

Do-calculus: use the causal DAG assumptions
to draw causal conclusions from observational data.

• Apply transformations to P(X | do(Y )) until the “do” goes away.
(Not always possible!)

• Quantities without “do” can be estimated observationally.

• Transformation: 3 rules.
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Pearl’s 3 rules

Notation:

X ,Y ,Z ,W disjoint sets of events (sets of nodes); may be empty
GX̄ the graph with all edges into X removed.
G

¯
X the graph with all edges out of X removed.

Z (X ) subset of nodes in Z which are not ancestors of X .
y ; do(x) shorthand for Y = y ; respectively do(X = x).

1 Ignoring observations:

P(y | do(x), z ,w) = P(y | do(x),w) if (Y ⊥⊥ Z | X ,W )GX̄

2 Action/observation exchange: the back-door criterion

P(y | do(x), do(z),w) = P(y | do(x), z ,w) if (Y ⊥⊥ Z | X ,W )GX̄,
¯
Z

3 Ignoring actions

P(y | do(x), do(z),w) = P(y | do(x),w) if (Y ⊥⊥ Z | X ,W )GX̄, ¯Z(W )
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Examples 1,2: Pressure and barometer

P B do

Rule 3: P(P = hi | do(B = hi)) = P(P = hi) since (P ⊥⊥ B)GB̄

P Bdo

Rule 2: P(B = hi | do(P = lo)) = P(B = hi | P = lo) since (B ⊥⊥ P)G
¯
P

Good check: we get the intuitively correct results.
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Example 3: Measurable confounder

T : treatment, D: disease. The confounder is W : wealth.

T D

W

do

Condition on wealth (which thus needs to be measurable)

P(D = cured | do(T = y)) = P(D = cured | do(T = y),W = y)P(W = y | do(T = y))

+ P(D = cured | do(T = y),W = n)P(W = n | do(T = y))

= P(D = cured | do(T = y),W = y)P(W = y)

+ P(D = cured | do(T = y),W = n)P(W = n) (R3)

= P(D = cured | T = y,W = y)P(W = y)

+ P(D = cured | T = y,W = n)P(W = n) (R2)

André Martins (IST) Lecture 7: Probabilistic Graphical Models IST, Fall 2020 34 / 66



Example 3: an impossible one

T : treatment, D: disease.

The confounder is G : genetics (impractical to measure and estimate)

T D

G

do

Without more info or more assumptions, we’re stuck!
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Example 4: a surprisingly possible one

T : treatment, D: disease, B: blood cell count.

The confounder is G : genetics (still hidden)

T B D

G

do

“The front-door criterion:” conditioning on B lets us remove dos!

(I won’t show you how, derivation is a bit longer. Try it at home.)

P(D = cured | do(T = y) =∑
b

P(B = b | T = y)
∑
t

P(D = cured | T = t,B = b)P(T = t)
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Directed models: summary

• Bayes nets: specify & estimate fine-grained distributions
over interdependent events.

• Under a specified model, algorithm to decide
conditional independence: d-separation

• Bestowing a DAG with causal assumptions
lets us reason about interventions.

Further reading: (Pearl, 1988; Koller and Friedman, 2009; Pearl, 2000, 2012; Dawid, 2010)

Slides on causal inference and learning causal structure (links):

• Sanna Tyrväinen, Introduction to Causal Calculus

• Ricardo Silva, Causality

• Dominik Janzing & Bernhard Schölkopf, Causality

Highly recommended online course: https://www.bradyneal.com/causal-inference-course
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Graphical Models

In this unit, we will formalize & extend these graphical representations
encountered in previous lectures.

Directed

. . . Yi−1

Xi−1

Yi

Xi

Yi+1

Xi+1

. . .

Undirected

. . . Yi−1 Yi Yi+1 . . .
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Outline

1 Directed Models

Bayes networks

Conditional independence and D-separation

Causal graphs & the do operator

2 Undirected Models

Markov random fields

Factor graphs
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André Martins (IST) Lecture 7: Probabilistic Graphical Models IST, Fall 2020 40 / 66



Modeling friendships

• Four students: An, Bo, Chris, Dee are voting on a Yes/No ballot.
• Friendship pairs: An–Bo, Bo–Chris, Chris–Dee, Dee–An.
• Friends are 100x more likely to vote the same way.

A

DB

C

• An’s vote is a random variable A with values a ∈ {Y ,N}, and so on.

P(a, b, c, d) ∝ f (a, b) · f (b, c) · f (c, d) · f (d , a)

For any X ,Y ∈ {A,B,C ,D}, f is the compatibility function:

f (x , y) =

{
100 if x = y = Yes or x = y = No
1 otherwise.

• Can we represent this exact factorization in a Bayes net?

No!
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Markov random fields

A

DB

C

Definition

Let G be an undirected graph with nodes corresponding to random
variables X1, . . . ,XN . Let C (G) denote the set of cliques (fully connected
subgraphs) of G. A MRF is a distribution of the form

P(x1, . . . , xn) =
1

Z

∏
c∈C

fc(xc)

where for each clique c, fc is a non-negative compatibility function.
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Any BN can be encoded in a MRF

1 First, add edge A− C for any collider structure A→ B ← C ;

2 Convert all arcs A→ B or A← B into undirected edges A− B.

A B

A B

A B

André Martins (IST) Lecture 7: Probabilistic Graphical Models IST, Fall 2020 43 / 66



Any BN can be encoded in a MRF

1 First, add edge A− C for any collider structure A→ B ← C ;

2 Convert all arcs A→ B or A← B into undirected edges A− B.

A B

A B

A B P(a | b)

Y Y .9
N Y .1

Y N .1
N N .9

B P(b)

Y .75
N .25

A B

A B f (a, b)

Y Y .9 · .75
N Y .1 · .75
Y N .1 · .25
N N .9 · .75
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André Martins (IST) Lecture 7: Probabilistic Graphical Models IST, Fall 2020 43 / 66



Any BN can be encoded in a MRF

1 First, add edge A− C for any collider structure A→ B ← C ;

2 Convert all arcs A→ B or A← B into undirected edges A− B.

A B

A B

A

C

B

A

C

B

A B

A

C

B

A

C

B
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Loose conversion

Similarly, we can convert a MRF to a BN (we won’t cover it.)

However, independences may be lost in either direction.

From

A

DB

C

A ⊥⊥ C | B,D
B ⊥⊥ D | A,C

A

C

B

A ⊥⊥ B

To

A

DB

C

A ⊥⊥ C | B,D
B ⊥⊥ D | A,C

A

C

B

A ⊥⊥ B
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Bayes vs Markov

Bayes network

• Factors are conditionals
(normalized)

• Easy to sample

• Can be made causal

• Can easily find P(x1, . . . , xn).

A

DB

C

P(a, b, c, d) = P(a)P(b | a)P(c | b)P(d | a, c)

Markov networks

• Factors are cliques
(unnormalized)

• No directional ambiguity

• Often more compact

• More symmetric notation

A

DB

C

P(a, b, c, d) = 1/Z f1(a, b)f2(b, c)f3(c, d)f4(d , a)
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What are the factors in a MRF?

A

C

B

Single clique: {A,B,C}, so P(a, b, c) = 1
Z f (a, b, c).

No way to represent P(a, b, c) = 1/Z f1(a, b)f2(b, c)f3(c , a).

Pairwise MRF: Like a MRF, but factors are edges rather than cliques.

But what if we want to mix them?

A

C

B

D

E

P(a, b, c , d , e) = 1/Z f1(a, b)f2(b, c)f3(c , a)f4(b, d , e)
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Outline

1 Directed Models

Bayes networks

Conditional independence and D-separation

Causal graphs & the do operator

2 Undirected Models

Markov random fields

Factor graphs
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Factor graphs

Explicitly represent factors in the graph to remove ambiguity.

P(a, b, c , d , e) = 1/Z f1(a, b)f2(b, c)f3(c , a)f4(b, d , e)

A

C

B

D

E

f1

f2f3

f4

Definition (Factor graph)

A FG is a bipartite graph G with vertices in V ∪ F, where X1, . . . ,Xn ∈ V

are random variables and α ∈ F are factors, inducing a distribution

P(x1, . . . , xn) =
1

Z

∏
α∈F

fα(xα)

where fα ≥ 0, and Xα is the set of variables with an edge to factor α.
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Factor graphs

• Any MRF can be mapped exactly to a FG (clique → factor).

• Any Pairwise MRF can be mapped exactly to a FG (edge → factor).

• FGs are more general / more fine-grained.
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Algorithms

• Inference: Given a FG with compatibility functions, answer queries
• Maximization: Find most likely assignment x1, . . . , xN

(possibly given evidence xi : i ∈ E).

argmaxx1,...,xM P(x1, . . . , xN | xE)

• Marginalization: Find the marginal probability of some partial
assignment over xj : j ∈M (possibly given evidence xi : i ∈ E)

P(xM | xE)

• NP-hard / #P-hard in general, but doable for tree-shaped graphs
with dynamic programming.

• Learning: Given a dataset, estimate the compatibility tables (or, in
general a model that produces them.)

Since BN → MRF → FG, it suffices to study inference algorithms for FG.1

1But not learning, since we cannot map back to BN losslessly!
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Multiplying factors

A core operation: combining factors by multipliying them.

A B C

f1 f2

A B C

g

A B f1(a, b)

0 0 3
0 1 1
1 0 2
1 1 8

B C f2(a, b)

0 0 5
0 1 4
1 0 1
1 1 1

→

A B C g(a, b, c)

0 0 0 3 · 5 = 15
0 0 1 3 · 4 = 12
0 1 0 1 · 1 = 1
0 1 1 1 · 1 = 1
1 0 0 2 · 5 = 10
1 0 1 2 · 4 = 8
1 1 0 8 · 1 = 8
1 1 1 8 · 1 = 8

Distribution is preserved:

f1(a, b) · f2(b, c) · f3(. . . ) · . . . = g(a, b, c) · f3(. . . ) · . . .
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Maximizing over a variable

A B C

f

B C

g

A B C f (a, b, c)

0 0 0 15
0 0 1 12
0 1 0 1
0 1 1 1
1 0 0 10
1 0 1 8
1 1 0 8
1 1 1 8

— maximizing over A→

B C g(b, c)

0 0 15
0 1 12
1 0 8
1 1 8

max
a

f (a, b, c) · f4(. . . ) · . . .︸ ︷︷ ︸
A−free

= g(b, c) · f4(. . . ) · . . .
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Marginalizing over a variable

A B C

f

B C

g

A B C f (a, b, c)

0 0 0 15
0 0 1 12
0 1 0 1
0 1 1 1
1 0 0 10
1 0 1 8
1 1 0 8
1 1 1 8

— summing over A→

B C g(b, c)

0 0 25
0 1 20
1 0 9
1 1 9

∑
a

f (a, b, c) · f4(. . . ) · . . .︸ ︷︷ ︸
A−free

= g(b, c) · f4(. . . ) · . . .

André Martins (IST) Lecture 7: Probabilistic Graphical Models IST, Fall 2020 53 / 66



Variable elimination

A B C D

fAB fBC fCD

gCgBgA
hBChAB

Query: maxa,b,c,d P(a, b, c, d) =?

A B fAB(a, b)

0 0 10
0 1 2
1 0 3
1 1 9

B C fBC (b, c)

0 0 1
0 1 3
1 0 1
1 1 2

C D fCD(c, d)

0 0 4
0 1 2
1 0 1
1 1 3

A gA(a)

0 90B=0

1 54B=1

B gB(b)

0 9C=1

1 6C=1

C gC (c)

0 4D=0

1 3D=1

A B hAB(a, b)

0 0 10 · 9 = 90C=1

0 1 2 · 6 = 12C=1

1 0 3 · 9 = 27C=1

1 1 9 · 6 = 54C=1

B C hBC (b, c)

0 0 1 · 4 = 4D=0

0 1 3 · 3 = 9D=1

1 0 1 · 4 = 4D=0

1 1 2 · 3 = 6D=1

1 Pick order: D, C, B, A

2 Maximize over D (fCD → gC )

3 Multiply fBC with gC giving
hBC

4 Maximize over C (hBC → gB)

5 Multiply fAB with gB giving
hAB

6 Maximize over B (hAB → gA)

7 Maximize over A (gA → ∅)
8 Just like Viterbi!

The max is 90/Z.

Backtrace to get
argmax : (0, 0, 1, 1).
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André Martins (IST) Lecture 7: Probabilistic Graphical Models IST, Fall 2020 54 / 66



Variable elimination

A B C D

fAB fBC fCD

gCgB

gA

hBChAB

Query: maxa,b,c,d P(a, b, c, d) =?

A B fAB(a, b)

0 0 10
0 1 2
1 0 3
1 1 9

B C fBC (b, c)

0 0 1
0 1 3
1 0 1
1 1 2

C D fCD(c, d)

0 0 4
0 1 2
1 0 1
1 1 3

A gA(a)

0 90B=0

1 54B=1

B gB(b)

0 9C=1

1 6C=1

C gC (c)

0 4D=0

1 3D=1

A B hAB(a, b)

0 0 10 · 9 = 90C=1

0 1 2 · 6 = 12C=1

1 0 3 · 9 = 27C=1

1 1 9 · 6 = 54C=1

B C hBC (b, c)

0 0 1 · 4 = 4D=0

0 1 3 · 3 = 9D=1

1 0 1 · 4 = 4D=0

1 1 2 · 3 = 6D=1

1 Pick order: D, C, B, A

2 Maximize over D (fCD → gC )

3 Multiply fBC with gC giving
hBC

4 Maximize over C (hBC → gB)

5 Multiply fAB with gB giving
hAB

6 Maximize over B (hAB → gA)

7 Maximize over A (gA → ∅)
8 Just like Viterbi!

The max is 90/Z.

Backtrace to get
argmax : (0, 0, 1, 1).
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Variable elimination: sum

A B C D

fAB fBC fCD

gCgBgA
hBChAB

Query: Z =
∑

a,b,c,d f (a, b, c, d) =?

A B fAB(a, b)

0 0 10
0 1 2
1 0 3
1 1 9

B C fBC (b, c)

0 0 1
0 1 3
1 0 1
1 1 2

C D fCD(c, d)

0 0 4
0 1 2
1 0 1
1 1 3

A gA(a)

0 208
1 180

B gB(b)

0 18
1 14

C gC (c)

0 6
1 4

A B hAB(a, b)

0 0 10 · 18 = 180
0 1 2 · 14 = 28
1 0 3 · 18 = 54
1 1 9 · 14 = 126

B C hBC (b, c)

0 0 1 · 6 = 6
0 1 3 · 4 = 12
1 0 1 · 6 = 6
1 1 2 · 4 = 8

1 Pick order: D, C, B, A

2 Sum over D (fCD → gC )

3 Multiply fBC with gC giving hBC

4 Sum over C (hBC → gB)

5 Multiply fAB with gB giving hAB

6 Sum over B (hAB → gA)

7 Sum over A (gA → ∅)
8 Just like the Forward

algorithm! Z = 388.
so P(0, 0, 1, 1) = 90/Z ≈ .23
For free: P(A = 0) = 208/388 ≈ .54.
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Variable elimination: more complicated example

A B C D

fAB fBC fCD

gC vD
hCDhBC

hABC

gAC

Query: P(a, c | D = 1) =?

A B fAB(a, b)

0 0 10
0 1 2
1 0 3
1 1 9

B C fBC (b, c)

0 0 1
0 1 3
1 0 1
1 1 2

C D fCD(c, d)

0 0 4
0 1 2
1 0 1
1 1 3

A C gAC (a, c)

0 0 24
0 1 102
1 0 24
1 1 72

C gC (c)

0 2
1 3

D vD(d)

0 0
1 1

A B C hABC (a, b, c)

0 0 0 20
0 0 1 90
0 1 0 4
0 1 1 12
1 0 0 6
1 0 1 18
1 1 0 18
1 1 1 54

B C hBC (b, c)

0 0 2
0 1 9
1 0 2
1 1 6

1 Introduce evidence!

2 Pick order: D, C, B, A

3 Multiply all D factors

4 Sum over D (hCD → gC )

5 Multiply all C factors

6 Multiply all B factors

7 Sum over B.

C D hCD(c, d)

0 0 0
0 1 2
1 0 0
1 1 3
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André Martins (IST) Lecture 7: Probabilistic Graphical Models IST, Fall 2020 56 / 66



Variable elimination: more complicated example

A B C D

fAB fBC fCD

gC

vD
hCD

hBC
hABC

gAC

Query: P(a, c | D = 1) =?

A B fAB(a, b)

0 0 10
0 1 2
1 0 3
1 1 9

B C fBC (b, c)

0 0 1
0 1 3
1 0 1
1 1 2

C D fCD(c, d)

0 0 4
0 1 2
1 0 1
1 1 3

A C gAC (a, c)

0 0 24
0 1 102
1 0 24
1 1 72

C gC (c)

0 2
1 3

D vD(d)

0 0
1 1

A B C hABC (a, b, c)

0 0 0 20
0 0 1 90
0 1 0 4
0 1 1 12
1 0 0 6
1 0 1 18
1 1 0 18
1 1 1 54

B C hBC (b, c)

0 0 2
0 1 9
1 0 2
1 1 6

1 Introduce evidence!

2 Pick order: D, C, B, A

3 Multiply all D factors

4 Sum over D (hCD → gC )

5 Multiply all C factors

6 Multiply all B factors

7 Sum over B.

C D hCD(c, d)

0 0 0
0 1 2
1 0 0
1 1 3
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Variable elimination

• Answer any query involving max, marginalization, evidence!
• Complexity depends on elimination order: O(nkM)

• where n=n. variables, k=dimension, M=size of largest intermediate
factor.

• Example: In chain, intuitive order has M = 2.
eliminating from middle of chain gives M = 3.

• Extreme example is a star graph. Best case M = 2, worst M = N!

AB1

B2

B3

. . .

Bj

• In chains and trees: optimal order is easy. Not in general.

• When given a new query, need to restart algorithm from scratch!
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Variable elimination as message passing

A B C D

P(b)

P(c)

• Optimal order: A, D, C (or D, C, A)

• At each step, we eliminate a variable Y by multiplying (at most2) two
factors and summing over Y :

gY→X (x) =
∑

y fXY (x , y)gY (y)

• These intermediate operations (“messages”) are shared for all queries,

so let’s compute all messages up front!

2because it’s a tree
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Motivating Example: Counting Soldiers

(Adapted from MacKay 2003 and Gormley & Eisner ACL’14 tutorial.)
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André Martins (IST) Lecture 7: Probabilistic Graphical Models IST, Fall 2020 59 / 66



Message passing in a tree FG

• Messages from variable X to factor α: aggregate variable beliefs from
any other factors. (For leaves, this message is 1).

νX→α(x) =
∏

β∈N(X )−α

µβ→X (x)

• Messages from factor α to variable X : marginalizes over all
assignments y1, . . . , yk for Y1, . . . ,Yk neighboring α

µα→X (x) =
∑

y1,...,yk
{Y1,...,Yk}=N(α)−X

fα(x , y1, . . . , yk)
∏

Yi∈N(α)−X

νYi→α(yi )

• A message is sent once all messages it depends on have been received.

• For chain: forward-backward! For tree: leaves-to-root and back.

• If new evidence is added, many messages don’t change.

• Replace sum with max for maximization.
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From messages to beliefs

• Once we collected all the messages, we can compute local beliefs.

• Variable beliefs:
pX (x) ∝

∏
α∈N(X )

µα→X (x)

• Factor beliefs:

pα(x1, . . . xk) ∝ fα(x1, . . . , xk)
∏

Xi∈N(α)

νXi→α(xi )

• If no cycles, once all messages are passed, beliefs are true marginals:

pX (x) = P(x), pα(x1, . . . , xk) = P(x1, . . . , xk).

• What to do if there are cycles?
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Counting Soldiers with Loops
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Inference in loopy graphs

• Exact solution: Junction Tree algorithm:
• convert the graph into a tree, by merging cliques!

• Complexity: like variable elimination. Finding the best tree is NP-hard.
(corresponds to finding an ordering for variable elimination.)

• Better than VE because we get all marginals at once.

• Approximate solution: Loopy Belief Propagation:
• initialize all messages;
• pass messages in some order until convergence.
• (may not terminate, result not guaranteed correct, but works ok.)

• Many recent algorithms (early 2010s).
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CRFs for any factor graph

Above, we took the factor scores for granted. We can learn to model them:

Use some model (neural or feature-based) to produce unary scores:

fA(y) = exp sA,y = (for example) expwA,y · φA(x)

and pairwise scores:

fAB(y , y ′) = exp sAB,y ,y ′ = (for example) expwA,B,y ,y ′ · φA,B(x)

(In general, factor scores fα(yα) = exp sα,yα)

The probability of an entire labeling y is then

P(y | x) =

∏
α fα(yα)

Z
meaning logP(y | x) =

∑
α

sα,yα − logZ

Gradient updates wrt a factor’s scores:

∂ logP(y | x)

∂sα,yα
= [[yα = y true

α ]]− P(yα | x)

The updates use the factor beliefs P(yα | x) = pα(yα) for each factor!
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Use some model (neural or feature-based) to produce unary scores:

fA(y) = exp sA,y = (for example) expwA,y · φA(x)

and pairwise scores:

fAB(y , y ′) = exp sAB,y ,y ′ = (for example) expwA,B,y ,y ′ · φA,B(x)

(In general, factor scores fα(yα) = exp sα,yα)

The probability of an entire labeling y is then

P(y | x) =

∏
α fα(yα)

Z
meaning logP(y | x) =

∑
α

sα,yα − logZ

Gradient updates wrt a factor’s scores:

∂ logP(y | x)

∂sα,yα
= [[yα = y true

α ]]− P(yα | x)

The updates use the factor beliefs P(yα | x) = pα(yα) for each factor!

André Martins (IST) Lecture 7: Probabilistic Graphical Models IST, Fall 2020 64 / 66



CRFs for any factor graph

Above, we took the factor scores for granted. We can learn to model them:

Use some model (neural or feature-based) to produce unary scores:

fA(y) = exp sA,y = (for example) expwA,y · φA(x)

and pairwise scores:

fAB(y , y ′) = exp sAB,y ,y ′ = (for example) expwA,B,y ,y ′ · φA,B(x)

(In general, factor scores fα(yα) = exp sα,yα)

The probability of an entire labeling y is then

P(y | x) =

∏
α fα(yα)

Z
meaning logP(y | x) =

∑
α

sα,yα − logZ

Gradient updates wrt a factor’s scores:

∂ logP(y | x)

∂sα,yα
= [[yα = y true

α ]]− P(yα | x)

The updates use the factor beliefs P(yα | x) = pα(yα) for each factor!
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Undirected models: summary

• MRFs and pairwise MRFs, both special cases of FGs.

• Powerful, expressive, widely used for discriminative modelling.
• Exact inference when not loopy.

• We’ve seen some ideas of what to do when loopy
• We did not cover more advanced approaches, relating message passing

and dual decomposition: (Martins et al., 2015; Kolmogorov, 2006;
Komodakis et al., 2007; Globerson and Jaakkola, 2007)

• For learning: a generalization of linear-chain CRFs

André Martins (IST) Lecture 7: Probabilistic Graphical Models IST, Fall 2020 65 / 66



References I

Dawid, A. P. (2010). Beware of the DAG! In Causality: objectives and assessment, pages 59–86.

Globerson, A. and Jaakkola, T. (2007). Fixing Max-Product: Convergent message passing algorithms for MAP LP-relaxations.
In Proc. of NeurIPS.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques. The MIT Press.

Kolmogorov, V. (2006). Convergent Tree-Reweighted Message Passing for energy minimization. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(10):1568–1583.

Komodakis, N., Paragios, N., and Tziritas, G. (2007). MRF optimization via dual decomposition: Message-Passing revisited. In
Proc. of ICCV.

MacKay, D. (2003). Information Theory, Inference, and Learning Algorithms, volume 7. Cambridge University Press.

Martins, A. F., Figueiredo, M. A., Aguiar, P. M., Smith, N. A., and Xing, E. P. (2015). AD3: Alternating directions dual
decomposition for MAP inference in graphical models. JMLR, 16(1):495–545.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann.

Pearl, J. (2000). Causality: models, reasoning and inference, volume 29. Springer.

Pearl, J. (2012). The do-calculus revisited. arXiv preprint arXiv:1210.4852.
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