
Lecture 8: Machine Translation and
Sequence-to-Sequence Models

André Martins

Deep Structured Learning Course, Fall 2020

André Martins (IST) Lecture 8 IST, Fall 2020 1 / 115

Announcements

• The deadline for the project midterm report is today!

• The final report is due January 8. The class presentations will be in
January 15 and 22.

• The deadline for turning in Homework 3 is December 9.

• Next class: guest lecture by Marcos Treviso.

André Martins (IST) Lecture 8 IST, Fall 2020 2 / 115

Today’s Roadmap

Last lecture we talked about sequence tagging and sequence generation.
Today we’ll talk about sequence-to-sequence models.

• Machine translation

• Sequence vector representation

• Encoder-decoder architecture

• Sequence matrix representation

• Attention mechanism

• Encoder-decoder with attention

• Convolutional sequence-to-sequence models

• Self-attention and transformer networks

• Pre-trained models and transfer learning

André Martins (IST) Lecture 8 IST, Fall 2020 3 / 115

Sequence-to-Sequence

Sequence-to-sequence models map a source sequence (of arbitrary length)
into a target sequence (also of arbitrary length)

Note: This is different from sequence tagging, where we assume the two
sequences are of the same size

André Martins (IST) Lecture 8 IST, Fall 2020 4 / 115

Example: Machine Translation

Goal: translate a source sentence x in one language into a target
sentence y in another language.

Example (Portuguese to English):

x : “A ilha de Utopia tem 200 milhas de diâmetro na parte central.”

↓

y : “The island of Utopia is two hundred miles across in the middle part.”

André Martins (IST) Lecture 8 IST, Fall 2020 5 / 115

Outline

1 Statistical Machine Translation

2 Neural Machine Translation

Encoder-Decoder Architecture

Encoder-Decoder with Attention

Convolutional Encoder-Decoder

Self-Attention and Transformer Networks

3 Transfer Learning with Transformers

4 Conclusions

André Martins (IST) Lecture 8 IST, Fall 2020 6 / 115

1950s: Early Machine Translation

(Source: https://youtu.be/K-HfpsHPmvw)

• MT research began in early 1950s

• Mostly Russian-English (motivated by the Cold War!)

• Systems were mostly rule-based, using a bilingual dictionary

André Martins (IST) Lecture 8 IST, Fall 2020 7 / 115

https://youtu.be/K-HfpsHPmvw

Noisy Channel Model (Shannon and Weaver, 1949)

“When I look at an article in Russian, I say:
‘This is really written in English, but it has been
coded in some strange symbols. I will now
proceed to decode.’ ”

André Martins (IST) Lecture 8 IST, Fall 2020 8 / 115

A very simple model: builds a generative story that works “backwards”
(flips source and target)

Yet: the dominant paradigm in MT for several decades (until 2014)

2014 was the year of neural machine translation (later)

André Martins (IST) Lecture 8 IST, Fall 2020 9 / 115

A very simple model: builds a generative story that works “backwards”
(flips source and target)

Yet: the dominant paradigm in MT for several decades (until 2014)

2014 was the year of neural machine translation (later)

André Martins (IST) Lecture 8 IST, Fall 2020 9 / 115

1990s-2010s: Statistical Machine Translation

Goal: find the best English sentence y , given Russian sentence x

ŷ = arg max
y

P(y | x)

Key idea: use Bayes’ rule to break this down into two components:

ŷ = arg max
y

P(x | y)P(y)

• Translation model: models how words/phrases are translated (learnt
from parallel data)

• Language model: models how to generate fluent English (learn from
monolingual data)

André Martins (IST) Lecture 8 IST, Fall 2020 10 / 115

How to Learn the Language Model?

Need large amounts of monolingual data (easy to get for most languages).

How to learn a language model from these data?

We covered language models in previous lectures:

• Markov models with smoothing (e.g. Kneser-Ney)

• Neural language models

• ...

Pick your favorite!

André Martins (IST) Lecture 8 IST, Fall 2020 11 / 115

How to Learn the Language Model?

Need large amounts of monolingual data (easy to get for most languages).

How to learn a language model from these data?

We covered language models in previous lectures:

• Markov models with smoothing (e.g. Kneser-Ney)

• Neural language models

• ...

Pick your favorite!

André Martins (IST) Lecture 8 IST, Fall 2020 11 / 115

How to Learn the Translation Model?

Need large amounts of parallel data!

(i.e. pairs of human translated Russian/English sentences.)

André Martins (IST) Lecture 8 IST, Fall 2020 12 / 115

Rosetta Stone

• (Re-)discovered in 1799 near
Alexandria

• Parallel corpora: ancient
Egyptian, demotic Egyptian,
ancient Greek

André Martins (IST) Lecture 8 IST, Fall 2020 13 / 115

Europarl

• Proceedings from the European parliament sessions, translated into
all EU official languages
• Around ∼ 1M parallel sentences for some language pairs
• Other corpora: Hansard, MultiUN, News Commentary, Wikipedia,

OpenSubtitles, Paracrawl, ...

André Martins (IST) Lecture 8 IST, Fall 2020 14 / 115

1990s: IBM Models for Statistical MT

How to learn the translation model P(x | y)?

Assume we have enough parallel training data.

Break it down further: consider instead

P(x , a | y),

where a are word alignments, i.e., word-level correspondences between
Russian sentence x and English sentence y

Word alignments are generally a latent variable at training time, and need
to be marginalized over at test time.

André Martins (IST) Lecture 8 IST, Fall 2020 15 / 115

Word Alignments

Example for English-French:

Some words may be unaligned (no counterpart in the other language)!

André Martins (IST) Lecture 8 IST, Fall 2020 16 / 115

Word Alignments

Alignment can be one-to-many (word fertility):

André Martins (IST) Lecture 8 IST, Fall 2020 17 / 115

Word Alignments

Alignment can be many-to-one:

André Martins (IST) Lecture 8 IST, Fall 2020 18 / 115

Word Alignments

Alignment can be many-to-many (phrase-level): phrase-based MT:

André Martins (IST) Lecture 8 IST, Fall 2020 19 / 115

1990s: IBM Models for Statistical MT

How to learn the translation model P(x | y)?

Assume we have enough parallel training data.

Break it down further: consider instead

P(x , a | y).

We learn P(x , a | y) as a combination of several factors:

• Probability of particular words aligning (co-occurrence, relative
position, etc.)

• Probability of words having a particular fertility

• ...

This leads to IBM models 1, 2, 3, 4, ...

André Martins (IST) Lecture 8 IST, Fall 2020 20 / 115

1990s: IBM Models for Statistical MT

To search the best translation, we need to solve

ŷ = arg max
y

∑
a

P(x , a | y)P(y),

combining the translation and language models.

Enumerating all possible hypothesis and alignments is intractable.

Typical approach: heuristic search to gradually build the translation,
discarding hypotheses that are too low probability.

André Martins (IST) Lecture 8 IST, Fall 2020 21 / 115

Searching for the Best Translation

(Slide credit: https://web.stanford.edu/class/cs224n/lectures/lecture10.pdf)

André Martins (IST) Lecture 8 IST, Fall 2020 22 / 115

https://web.stanford.edu/class/cs224n/lectures/lecture10.pdf

To Sum Up: Statistical Machine Translation

We only saw the tip of the iceberg: SMT is (was?) a huge research field.

• The best systems are extremely complex

• It’s a big pipeline with many separately-designed subcomponents
(translation and language model are only two examples)

• Lots of feature engineering

• System design is very language dependent

• Require compiling and maintaining extra resources (e.g., phrase
tables)

• Models are disk/memory hungry

• Lots of human effort to maintain.

André Martins (IST) Lecture 8 IST, Fall 2020 23 / 115

2014: Neural Machine Translation

André Martins (IST) Lecture 8 IST, Fall 2020 24 / 115

Outline

1 Statistical Machine Translation

2 Neural Machine Translation

Encoder-Decoder Architecture

Encoder-Decoder with Attention

Convolutional Encoder-Decoder

Self-Attention and Transformer Networks

3 Transfer Learning with Transformers

4 Conclusions

André Martins (IST) Lecture 8 IST, Fall 2020 25 / 115

What is Neural Machine Translation?

• A way to do MT with a single neural network

• The system is trained end-to-end with parallel data (no more complex
pipelines!)

• The underlying architecture is an encoder-decoder (also called a
sequence-to-sequence model)

• To be rigorous, neural MT is also statistical; however, historically,
“statistical MT” refers to non-neural models, and “neural MT” to
neural network based models.

André Martins (IST) Lecture 8 IST, Fall 2020 26 / 115

Outline

1 Statistical Machine Translation

2 Neural Machine Translation

Encoder-Decoder Architecture

Encoder-Decoder with Attention

Convolutional Encoder-Decoder

Self-Attention and Transformer Networks

3 Transfer Learning with Transformers

4 Conclusions

André Martins (IST) Lecture 8 IST, Fall 2020 27 / 115

Recap: Recurrent Neural Networks

In the last lecture, we covered RNNs and we saw they can have several
usages...

André Martins (IST) Lecture 8 IST, Fall 2020 28 / 115

Recap: RNNs for Pooled Classification

(Slide credit: Ollion & Grisel)

André Martins (IST) Lecture 8 IST, Fall 2020 29 / 115

Recap: Auto-Regressive RNNs for Sequence
Generation

André Martins (IST) Lecture 8 IST, Fall 2020 30 / 115

Sequence-to-Sequence Learning (Cho et al., 2014;
Sutskever et al., 2014)

Can we put the two things together?

Idea:

1 An encoder RNN to encode the source sentence and generate a vector
state

2 A decoder RNN to generate the target sentence conditioned on that
vector state.

André Martins (IST) Lecture 8 IST, Fall 2020 31 / 115

Encode a Sequence as a Vector

(Slide credit: Chris Dyer)

What is a vector representation of a sequence x?

c = RNN(x)

What is the probability of a sequence y | x?

y | x ∼ RNNLM(c)

André Martins (IST) Lecture 8 IST, Fall 2020 32 / 115

Encoder-Decoder Architecture

(Slide credit: Chris Dyer)

André Martins (IST) Lecture 8 IST, Fall 2020 33 / 115

Encoder-Decoder Architecture

Another way of depicting it (from Sutskever et al. (2014)):

André Martins (IST) Lecture 8 IST, Fall 2020 34 / 115

Some Problems

If the source sentence is long, the encoder may forget the initial words and
the translation will be degraded

• Poor man’s solution: reverse the source sentence.

The decoder does greedy search—this leads to error propagation

• Solution: beam search.

André Martins (IST) Lecture 8 IST, Fall 2020 35 / 115

Beam Search

Ideally we want to find the target sentence y that maximizes

P(y | x) =
L∏

i=1

P(yi | y1:i−1, x)

Enumerating all y is intractable!

Beam Search:

• an approximate search strategy

• on each step of the decoder, keep track of the k most probable partial
translations; discard the rest

• k is the beam size

• if k = 1, we recover greedy search.

André Martins (IST) Lecture 8 IST, Fall 2020 36 / 115

Beam Search

(Source: https://web.stanford.edu/class/cs224n/lectures/lecture10.pdf)

André Martins (IST) Lecture 8 IST, Fall 2020 37 / 115

https://web.stanford.edu/class/cs224n/lectures/lecture10.pdf

Beam Search

A little better than greedy search, but still greedy

Runtime linear as a function of beam size: trade-off speed/accuracy

In practice: beam sizes ∼ 4–12

André Martins (IST) Lecture 8 IST, Fall 2020 38 / 115

Some Additional Tricks

From Sutskever et al. (2014):

• Deep LSTMs

• Reversing the source
sentence

At run time:

• Beam search

• Ensembling: combine N independently trained models and obtaining
a “consensus” (always helps!)

André Martins (IST) Lecture 8 IST, Fall 2020 39 / 115

End-to-End Neural Machine Translation

• Previous statistical machine translation models were complicated
pipelines (word alignments → phrase table extraction → language
model → decoding a phrase lattice)

• As an alternative, can do end-to-end NMT using a simple
encoder-decoder

• Doesn’t quite work yet, but gets close to top performance

André Martins (IST) Lecture 8 IST, Fall 2020 40 / 115

Encode Everything as a Vector

Works for image inputs too!

André Martins (IST) Lecture 8 IST, Fall 2020 41 / 115

Caption Generation

(Slide credit: Chris Dyer)

André Martins (IST) Lecture 8 IST, Fall 2020 42 / 115

Progress in Machine Translation

Slide credit: Rico Sennrich

André Martins (IST) Lecture 8 IST, Fall 2020 43 / 115

NMT: A Success Story

Neural MT went from a fringe research activity in 2014 to the leading
standard method in 2016

• 2014: First seq2seq paper published

• 2016: Google Translate switches from SMT to NMT

This is amazing!

SMT systems, built by hundreds of engineers over many years,
outperformed by NMT systems trained by a handful of engineers in a few
months.

André Martins (IST) Lecture 8 IST, Fall 2020 44 / 115

So Is Machine Translation Solved?

No. Many difficulties remain:

• Out-of-vocabulary words

• Domain mismatch between train and test data

• Low-resource language pairs

• Maintaining context over longer text (coming next!)

André Martins (IST) Lecture 8 IST, Fall 2020 45 / 115

Limitations

A possible conceptual problem:

• Sentences have unbounded lengths

• Vectors have finite capacity

“You can’t cram the meaning of a whole %&$# sen-
tence into a single $&# vector!” (Ray Mooney)

A possible practical problem:

• Distance between “translations” and their sources are distant—can
LSTMs learn this?

André Martins (IST) Lecture 8 IST, Fall 2020 46 / 115

Outline

1 Statistical Machine Translation

2 Neural Machine Translation

Encoder-Decoder Architecture

Encoder-Decoder with Attention

Convolutional Encoder-Decoder

Self-Attention and Transformer Networks

3 Transfer Learning with Transformers

4 Conclusions

André Martins (IST) Lecture 8 IST, Fall 2020 47 / 115

Encode Sentences as Matrices, Not Vectors

Problem with the fixed-size vector model:

• Sentences are of different sizes but vectors are of the same size

• Bottleneck problem: a single vector needs to represent the full source
sentence!

Solution: use matrices instead!

• Fixed number of rows, but number of columns depends on the
number of words

• Then, before generating each word in the decoder, use an attention
mechanism to condition on the relevant source words only

André Martins (IST) Lecture 8 IST, Fall 2020 48 / 115

How to Encode a Sentence as a Matrix?

First shot: define the sentence words’ vectors as the columns

(Image credit: Chris Dyer)

• Not very effective, since the word vectors carry no contextual
information

André Martins (IST) Lecture 8 IST, Fall 2020 49 / 115

How to Encode a Sentence as a Matrix?

Other strategies:

• Convolutional neural networks (Kalchbrenner et al., 2014): can
capture context

• Typical choice: Bidirectional LSTMs (Bahdanau et al., 2015)

• Later: Transformer networks (Vaswani et al., 2017).

André Martins (IST) Lecture 8 IST, Fall 2020 50 / 115

Bidirectional LSTM Encoder

(Slide credit: Chris Dyer)

André Martins (IST) Lecture 8 IST, Fall 2020 51 / 115

Generation from Matrices

We now have a matrix F representing the input. How to generate from it?

Answer: use attention! (Bahdanau et al., 2015)

Attention is the neural counterpart of word alignments.

André Martins (IST) Lecture 8 IST, Fall 2020 52 / 115

Generation from Matrices with Attention

Generate the output sentence word by word using an RNN

At each output position t, the RNN receives two inputs:

• a fixed-size vector embedding of the previous output symbol yt−1

• a fixed-size vector encoding a “view” of the input matrix F , via a
weighted sum of its columns (i.e., words): Fat

The weighting of the input columns at each time-step (at) is called the
attention distribution.

André Martins (IST) Lecture 8 IST, Fall 2020 53 / 115

Attention Mechanism (Bahdanau et al., 2015)

Let s1, s2, . . . be the states produced by the decoder RNN

When predicting the tth target word:

1 Compute “similarity” with each of the source words:

zt,i = v · g(Whi + Ust−1 + b), ∀i ∈ [L]

where hi is the ith column of F (representation of the ith source
word), and v , W , U , b are parameters of the model

2 Form vector zt = (zt,1, . . . , zt,i , . . . , zt,L) and compute attention
at = softmax(zt)

3 Use attention to compute input conditioning state ct = Fat
4 Update RNN state st based on st−1, yt−1, ct
5 Predict yt ∼ p(yt | st)

André Martins (IST) Lecture 8 IST, Fall 2020 54 / 115

Encoder-Decoder with Attention

(Slide credit: Chris Dyer)

André Martins (IST) Lecture 8 IST, Fall 2020 55 / 115

Putting It All Together

obtain input matrix F with a bidirectional LSTM
t = 0, y0 = start (the start symbol)
s0 = w (learned initial state)
repeat
t = t + 1
et = v · g(WF + Ust−1 + b)
compute attention at = softmax(et)
compute input conditioning state ct = Fat
st = RNN(st−1, [E (yt−1), ct])
yt |y<t , x ∼ softmax(Pst + b)

until yt 6= stop

André Martins (IST) Lecture 8 IST, Fall 2020 56 / 115

Attention Mechanisms

Attention is closely related to “pooling” operations in convnets (and other
architectures)

• Attention in MT plays a similar role as alignment, but leads to “soft”
alignment instead of “hard” alignment

• Bahdanau et al. (2015)’s model has no bias in favor of diagonals,
short jumps, fertility, etc.

• Some recent work adds some “structural” biases (Luong et al., 2015;
Cohn et al., 2016)

• Other works constrains the amount of attention each word can
receive (based on its fertility): Malaviya et al. (2018).

André Martins (IST) Lecture 8 IST, Fall 2020 57 / 115

Attention is Great!

Attention significantly improves NMT performance!

• It’s very useful to allow decoder to focus on certain parts of the source

• Attention solves the bottleneck problem (by allowing the decoder to
look directly at source)

• Attention helps with vanishing gradient problem (provides shortcut to
faraway states)

• Attention provides some interpretability (we can see what the decoder
was focusing on)

• This is cool because we never explicitly trained an word aligner; the
network learns it by itself!

André Martins (IST) Lecture 8 IST, Fall 2020 58 / 115

Attention Map

André Martins (IST) Lecture 8 IST, Fall 2020 59 / 115

Example: Machine Translation

Some positive examples where NMT has impressive performance:

(From Wu et al. (2016))

André Martins (IST) Lecture 8 IST, Fall 2020 60 / 115

Example: Machine Translation

... But also some negative examples:

• Dropping source words (lack of attention)

• Repeated source words (too much attention)

Source: 1922 in Wien geboren, studierte Mang während und nach dem Zweiten
Weltkrieg Architektur an der Technischen Hochschule in Wien bei
Friedrich Lehmann.

Human: Born in Vienna in 1922, Meng studied architecture at the Technical Uni-
versity in Vienna under Friedrich Lehmann during and after the second
World War.

NMT: *Born in Vienna in 1922, Mang studied architecture at the Technical
College in Vienna with Friedrich Lehmann.

Source: Es ist schon komisch, wie dies immer wieder zu dieser Jahreszeit auf-
taucht.

Human: It’s funny how this always comes up at this time of year.
NMT: *It’s funny how this time to come back to this time of year.

André Martins (IST) Lecture 8 IST, Fall 2020 61 / 115

Example: Machine Translation

... And an example where neural MT failed miserably:

(Credit: Barry Haddow)

André Martins (IST) Lecture 8 IST, Fall 2020 62 / 115

Example: Caption Generation

Attention over images:

(Slide credit to Yoshua Bengio)

André Martins (IST) Lecture 8 IST, Fall 2020 63 / 115

A More Extreme Example...

(Slide credit to Dhruv Batra)

André Martins (IST) Lecture 8 IST, Fall 2020 64 / 115

Attention and Memories

Attention is used in other problems, sometimes under different names:

• image caption generation (Xu et al., 2015)

• speech recognition (Chorowski et al., 2015)

• memory networks for reading comprehension (Sukhbaatar et al., 2015;
Hermann et al., 2015)

• neural Turing machines and other “differentiable computers” (Graves
et al., 2014; Grefenstette et al., 2015)

André Martins (IST) Lecture 8 IST, Fall 2020 65 / 115

Other Attentions

Can we have more interpretable attention? Closer to hard alignments?

Can we upper bound how much attention a word receives? This may
prevent a common problem in neural MT, repetitions

We’ll see:

• Sparse attention via sparsemax (Martins and Astudillo, 2016)

• Constrained attention with constrained softmax/sparsemax (Malaviya
et al., 2018)

André Martins (IST) Lecture 8 IST, Fall 2020 66 / 115

Recap: Sparsemax (Martins and Astudillo, 2016)

A sparse-friendly alternative to softmax is sparsemax : RC → ∆C−1:

sparsemax(z) := arg minp∈∆C−1 ‖p − z‖2.

• In words: Euclidean projection of z onto the probability simplex

• Likely to hit the boundary of the simplex, in which case
sparsemax(z) becomes sparse (hence the name)

• Retains many of the properties of softmax (e.g. differentiability),
having in addition the ability of producing sparse distributions

• Projecting onto the simplex amounts to a soft-thresholding operation
(next)

• Efficient forward/backward propagation.

André Martins (IST) Lecture 8 IST, Fall 2020 67 / 115

Sparsemax in Closed Form

• Projecting onto the simplex amounts to a soft-thresholding operation:

sparsemaxi (z) = max{0, zi − τ}

where τ is a normalizing constant such that
∑

j max{0, zj − τ} = 1

• To evaluate the sparsemax, all we need is to compute τ

• Coordinates above the threshold will be shifted by this amount; the
others will be truncated to zero.

• This will result in a sparse probability vector!

André Martins (IST) Lecture 8 IST, Fall 2020 68 / 115

A Formal Algorithm

Input: z ∈ RC

Sort z as z(1) ≥ . . . ≥ z(C)

Find k(z) := max
{
k ∈ [C] | 1 + kz(k) >

∑
j≤k z(j)

}
Define τ(z) =

(
∑

j≤k(z) z(j))−1

k(z)

Output: p ∈ ∆C−1 s.t. pi = [zi − τ(z)]+.

• Time complexity is O(C logC) due to the sort operation; but O(C)
algorithms exist based on linear-time selection.

• Note: evaluating softmax costs O(C) too.

André Martins (IST) Lecture 8 IST, Fall 2020 69 / 115

Two Dimensions

• Parametrize z = (t, 0)
• The 2D softmax is the logistic (sigmoid) function:

softmax1(z) = (1 + exp(−t))−1

• The 2D sparsemax is the “hard” version of the sigmoid:

− 3 − 2 − 1 0 1 2 3
t

0.0

0.2

0.4

0.6

0.8

1.0 softmax1([t,0])

sparsemax1([t,0])

André Martins (IST) Lecture 8 IST, Fall 2020 70 / 115

Three Dimensions

• Parameterize z = (t1, t2, 0) and plot softmax1(z) and
sparsemax1(z) as a function of t1 and t2

• sparsemax is piecewise linear, but asymptotically similar to softmax

André Martins (IST) Lecture 8 IST, Fall 2020 71 / 115

Example: Sparse Attention for Natural Language
Inference

• SNLI corpus (Bowman et al., 2015): 570K sentence pairs (a premise
and an hypothesis), labeled as entailment, contradiction, or neutral

• We used an attention-based architecture as Rocktäschel et al. (2015)

André Martins (IST) Lecture 8 IST, Fall 2020 72 / 115

Example: Sparse Attention for Natural Language
Inference

• In blue, the premise words selected by the sparse attention mechanism

• In red, the hypothesis

• Only a few words are selected, which are key for the system’s decision

• The sparsemax activation yields a compact and more interpretable
selection, which can be particularly useful in long sentences

A boy rides on a camel in a crowded area while talking on his cellphone.
—— A boy is riding an animal. [entailment]
A young girl wearing a pink coat plays with a yellow toy golf club.
—— A girl is wearing a blue jacket. [contradiction]
Two black dogs are frolicking around the grass together.
—— Two dogs swim in the lake. [contradiction]
A man wearing a yellow striped shirt laughs while seated next to another man who
is wearing a light blue shirt and clasping his hands together.
—— Two mimes sit in complete silence. [contradiction]

André Martins (IST) Lecture 8 IST, Fall 2020 73 / 115

Constrained Softmax

Constrained softmax resembles softmax, but it allows imposing hard
constraints on the maximal probability assigned to each word

• Given scores z ∈ RC and upper bounds u ∈ RC :

csoftmax(z ; u) = arg minp∈∆C−1 KL(p ‖ softmax(z))

s.t. p ≤ u

• Related to posterior regularization (Ganchev et al., 2010)

Particular cases:

• If u ≥ 1, all constraints are loose and this reduces to softmax

• If u ∈ ∆C−1, they are tight and we must have p = u

André Martins (IST) Lecture 8 IST, Fall 2020 74 / 115

How to Evaluate?

Forward computation takes O(C logC) time (Martins and Kreutzer,
2017):

• Let A = {i ∈ [C] | p?i < ui} be the constraints that are met
strictly

• Then by writing the KKT conditions we can express the solution as:

p?i = min

{
exp(zi)

Z
, ui

}
∀i ∈ [C], where Z =

∑
i∈A exp(zi)

1−
∑

i /∈A ui
.

• Identifying the set A can be done in O(C logC) time with a sort

André Martins (IST) Lecture 8 IST, Fall 2020 75 / 115

How to Backpropagate?

We need to compute gradients with respect to both z and u

Can be done in O(C) time (Martins and Kreutzer, 2017):

• Let L(θ) be a loss function, dp = ∇αL(θ) be the output gradient,
and dz = ∇zL(θ) and du = ∇uL(θ) be the input gradients

• Then, the input gradients are given as:

dzi = I(i ∈ A)pi (dpi −m)

dui = I(i /∈ A)(dpi −m),

where m = (
∑

i∈A pi dpi)/(1−
∑

i /∈A ui).

André Martins (IST) Lecture 8 IST, Fall 2020 76 / 115

Constrained Sparsemax (Malaviya et al., 2018)

Similar idea, but replacing softmax by sparsemax:

• Given scores z ∈ RC and upper bounds u ∈ RC :

csparsemax(z ; u) = arg minp∈∆C−1 ‖p − z‖2

s.t. p ≤ u

• Both sparse and upper bounded

• If u ≥ 1, all constraints are loose and this reduces to sparsemax

• If u ∈ ∆C−1, they are tight and we must have p = u

André Martins (IST) Lecture 8 IST, Fall 2020 77 / 115

How to Evaluate?

Forward computation can be done with a sort in O(C logC) time

Can be reduced to O(C) (Malaviya et al., 2018; Pardalos and Kovoor,
1990):

• Let A = {i ∈ [C] | 0 < p?i < ui} be the constraints that are met
strictly

• Let AR = {i ∈ [C] | p?i = ui}
• Then by writing the KKT conditions we can express the solution as:

p?i = max{0,min{ui , zi − τ}} ∀i ∈ [C], where τ is a constant.

• Identifying the sets A and AR can be done in O(C logC) time with a
sort

André Martins (IST) Lecture 8 IST, Fall 2020 78 / 115

How to Backpropagate?

We need to compute gradients with respect to both z and u

Can be done in sublinear time O(|A|+ |AR |) (Malaviya et al., 2018):

• Let L(θ) be a loss function, dp = ∇αL(θ) be the output gradient,
and dz = ∇zL(θ) and du = ∇uL(θ) be the input gradients

• Then, the input gradients are given as:

dzi = I(i ∈ A)(dpi −m)

dui = I(i ∈ AR)(dpi −m),

where m = 1
|A|
∑

i∈A dpi .

André Martins (IST) Lecture 8 IST, Fall 2020 79 / 115

Next, we show how to use these constrained attentions in neural machine
translation decoders, inspired by the idea of fertility (IBM Model 2)...

André Martins (IST) Lecture 8 IST, Fall 2020 80 / 115

Modeling Fertility in NMT

We do the following procedure:

1 Align the training data with fast align

2 Train a separate BILSTM to predict fertility fi for each word

3 At each decoder step, use upper bound ui = fi − βi for each word,
where βi is the cumulative attention

See Malaviya et al. (2018) for more details.

André Martins (IST) Lecture 8 IST, Fall 2020 81 / 115

Example: Source Sentence with Three Words

Assume each word is given fertility 1:

(0.52, 0.35, 0.13)

softmax

(0.36, 0.44, 0.2)

(0.18, 0.27, 0.55)

0

1

Fe
rti

lit
ie
s

(0.7, 0.3, 0)

sparsemax

(0.4, 0.6, 0)

(0, 0.15, 0.85)

0

1

(0.52, 0.35, 0.13)

csoftmax

(0.36, 0.44, 0.2)

(0.12, 0.21, 0.67)

0

1

(0.7, 0.3, 0)

csparsemax

(0.3, 0.7, 0)

(0, 0, 1)

0

1

André Martins (IST) Lecture 8 IST, Fall 2020 82 / 115

Attention Maps

Softmax (left) vs Constrained Sparsemax (right) for De-En:

th
is is

th
e

la
s
t

h
u
n
d
re

d
y
e
a
rs

la
w o
f

th
e

la
s
t

h
u
n
d
re

d

<
E
O

S
>

<SINK>
.

jahre
hundert
letzten

der
gesetz

moores
ist

das
.

th
is is

m
oo

re 's
la
w

la
st

hu
nd

re
d

ye
ar
s .

<E
O
S
>

i
a
m

g
o
in

g to
g
iv
e

y
o
u

th
e

g
o
v
e
rn

m
e
n
t

g
o
v
e
rn

m
e
n
t .

<
E
O

S
>

<SINK>
.

wählen
'

regierung
'

thema
das
nun

werde
ich

no
w i

am
go

in
g to

ch
oo

se th
e

go
ve
rn
m
en

t .
<E

O
S
>

André Martins (IST) Lecture 8 IST, Fall 2020 83 / 115

Sentence Examples

input so ungefähr , sie wissen schon .
reference like that , you know .
softmax so , you know , you know .
sparsemax so , you know , you know .
csoftmax so , you know , you know .
csparsemax like that , you know .

input und wir benutzen dieses wort mit solcher verachtung .
reference and we say that word with such contempt .
softmax and we use this word with such contempt contempt .
sparsemax and we use this word with such contempt .
csoftmax and we use this word with like this .
csparsemax and we use this word with such contempt .

André Martins (IST) Lecture 8 IST, Fall 2020 84 / 115

Outline

1 Statistical Machine Translation

2 Neural Machine Translation

Encoder-Decoder Architecture

Encoder-Decoder with Attention

Convolutional Encoder-Decoder

Self-Attention and Transformer Networks

3 Transfer Learning with Transformers

4 Conclusions

André Martins (IST) Lecture 8 IST, Fall 2020 85 / 115

Disadvantages of the RNN Architecture

• Sequential computation prevents parallelization

• Long-range dependencies between words that are far apart involve too
many computation steps (information will be dropped, even with
GRUs or LSTMs)

• Solution: replace the RNN encoder by a hierarchical CNN!

André Martins (IST) Lecture 8 IST, Fall 2020 86 / 115

Convolutional Encoder

(Gehring et al., 2017)

André Martins (IST) Lecture 8 IST, Fall 2020 87 / 115

Fully Convolutional

• Can have a CNN decoder too!

• Convolutions will be over output prefixes only

• Encoder is parallelizable, but decoder still requires sequential
computation (the model is still auto-regressive)

André Martins (IST) Lecture 8 IST, Fall 2020 88 / 115

Convolutional Sequence-to-Sequence

André Martins (IST) Lecture 8 IST, Fall 2020 89 / 115

Convolutional Sequence-to-Sequence

(Gehring et al., 2017)

André Martins (IST) Lecture 8 IST, Fall 2020 90 / 115

Outline

1 Statistical Machine Translation

2 Neural Machine Translation

Encoder-Decoder Architecture

Encoder-Decoder with Attention

Convolutional Encoder-Decoder

Self-Attention and Transformer Networks

3 Transfer Learning with Transformers

4 Conclusions

André Martins (IST) Lecture 8 IST, Fall 2020 91 / 115

Self-Attention

• Both RNN and CNN decoders require an attention mechanism

• Attention allows focusing on an arbitrary position in the source
sentence, shortcutting the computation graph

• But if attention gives us access to any state... maybe we don’t need
the RNN?

André Martins (IST) Lecture 8 IST, Fall 2020 92 / 115

Transformer (Vaswani et al., 2017)

• Key idea: instead of RNN/CNNs,
use self-attention in the encoder

• Each word state attends to all the
other words

• Each self-attention is followed by a
feed-forward transformation

• Do several layers of this

• Do the same for the decoder,
attending only to already generated
words.

André Martins (IST) Lecture 8 IST, Fall 2020 93 / 115

Transformer Basics

Let’s define the basic building blocks of transformer networks first: new
attention layers!

Two innovations:

• scaled dot-product attention

• multi-head attention

André Martins (IST) Lecture 8 IST, Fall 2020 94 / 115

Scaled Dot-Product and Multi-Head Attention

(Vaswani et al., 2017)

André Martins (IST) Lecture 8 IST, Fall 2020 95 / 115

Scaled Dot-Product Attention

Inputs:

• A query vector q (e.g. the decoder state)

• A matrix K whose columns are key vectors (e.g. the encoder states)

• A matrix V whose columns are value vectors (e.g. the encoder states)

When discussing attention with RNNs, we assume the key and value
vectors were the same, but they don’t need to!

Output: the weighted sum of values, where each weight is computed by a
dot product between the query and the corresponding key:

a = softmax(Kq), v̄ = Va.

With multiple queries,

V̄ = softmax(QK>)V , Q ∈ R|Q|×dk ,K ∈ R|K |×dk ,V ∈ R|K |×dv .

André Martins (IST) Lecture 8 IST, Fall 2020 96 / 115

Scaled Dot-Product Attention

Problem: As dk gets large, the variance of q>k increases, the softmax
gets very peaked, hence its gradient gets smaller.

Solution: scale by length of query/key vectors:

V̄ = softmax

(
QK>√

dk

)
V .

André Martins (IST) Lecture 8 IST, Fall 2020 97 / 115

Scaled Dot-Product and Multi-Head Attention

(Vaswani et al., 2017)

André Martins (IST) Lecture 8 IST, Fall 2020 98 / 115

Multi-Head Attention

Self-attention lets each word state form a query vector and attend to the
other words’ key vectors

This is vaguely similar to a 1D convolution, but where the filter weights
are “dynamic” is the window size spans the entire sentence!

Problem: only one channel for words to interact with one-another

Solution: multi-head attention!

• first project Q, K , and V into lower dimensional spaces

• then apply attention in multiple channels, concatenate the outputs
and pipe through linear layer:

MultiHead(Q,K ,V) = Concat(head1, . . . ,headh)WO ,

where headi = Attention(QWQ
i ,KW K

i ,VW V
i).

André Martins (IST) Lecture 8 IST, Fall 2020 99 / 115

Other Tricks

• Self-attention blocks are repeated 6
times

• Residual connections on each
attention block

• Positional encodings (to distinguish
word positions)

• Layer normalization

André Martins (IST) Lecture 8 IST, Fall 2020 100 / 115

Attention Visualization Layer 5

André Martins (IST) Lecture 8 IST, Fall 2020 101 / 115

Implicit Anaphora Resolution

André Martins (IST) Lecture 8 IST, Fall 2020 102 / 115

More Transformer Tricks

• Subword units

• Checkpoint averaging

• ADAM optimizer with non-standard learning rate schedules

• Label smoothing

• Auto-regressive decoding with beam search and length penalties

Overall, transformers are harder to optimize than RNN
sequence-to-sequence models

They don’t work out of the box: hyperparameter tuning is very important.

André Martins (IST) Lecture 8 IST, Fall 2020 103 / 115

Transformer Results

André Martins (IST) Lecture 8 IST, Fall 2020 104 / 115

Outline

1 Statistical Machine Translation

2 Neural Machine Translation

Encoder-Decoder Architecture

Encoder-Decoder with Attention

Convolutional Encoder-Decoder

Self-Attention and Transformer Networks

3 Transfer Learning with Transformers

4 Conclusions

André Martins (IST) Lecture 8 IST, Fall 2020 105 / 115

GPT-2

Transformers can be used for language generation.

Example: OpenAI’s GPT-2:

• A transformer-based language model with 1.5 billion parameters,
trained on 8 million web pages

• Training objective: predict the next word, given all of the previous
words

• Test time: top-k truncated random sampling

• Lots of hype!

André Martins (IST) Lecture 8 IST, Fall 2020 106 / 115

GPT-2 Generated Text

A machine learning school was held in Bangkok early August.

I
had originally expected a much more “procedural and algorith-
mic” approach as well, but was ple asantly surprised by the level
of expertise of the students. These were both very experienced
mathematicians, but also had an appreciation for machine learn-
ing techniques. These ar e the same school that created and op-
erates the very popular Algorithmia blog , so they aren’t exactly
new to me, and are well known to other Algorithmia grads at the
University o f Central Europe.

https://talktotransformer.com/

André Martins (IST) Lecture 8 IST, Fall 2020 107 / 115

https://talktotransformer.com/

GPT-2 Generated Text

A machine learning school was held in Bangkok early August. I
had originally expected a much more “procedural and algorith-
mic” approach as well, but was ple asantly surprised by the level
of expertise of the students. These were both very experienced
mathematicians, but also had an appreciation for machine learn-
ing techniques. These ar e the same school that created and op-
erates the very popular Algorithmia blog , so they aren’t exactly
new to me, and are well known to other Algorithmia grads at the
University o f Central Europe.

https://talktotransformer.com/

André Martins (IST) Lecture 8 IST, Fall 2020 107 / 115

https://talktotransformer.com/

BERT

Transformers can also be used to pre-train big models and fine-tune them
for specific tasks.

Example: BERT (Devlin et al., 2018)

• Randomly mask some words of the input and train a Transformer to
recover those words from the context

• Both left and right context, used simultaneously!

• In doing so, learn contextual word representations (just like ELMo)

• Can use this as a pre-trained model and fine-tune it to any
downstream task

• Extremely effective! Achieved SOTA on 11 NLP tasks (7.7% absolute
point improvement on GLUE score).

André Martins (IST) Lecture 8 IST, Fall 2020 108 / 115

BERT

(Devlin et al., 2018)

André Martins (IST) Lecture 8 IST, Fall 2020 109 / 115

TransformerXL and XLNet

Big transformers can look at larger contexts.

TransformerXL: enables going beyond a fixed length without disrupting
temporal coherence:

(Dai et al., 2019)

XLNet: uses TransformerXL for transfer learning, replacing BERT’s
masking by sampling different generation orderings (Yang et al., 2019)

André Martins (IST) Lecture 8 IST, Fall 2020 110 / 115

Outline

1 Statistical Machine Translation

2 Neural Machine Translation

Encoder-Decoder Architecture

Encoder-Decoder with Attention

Convolutional Encoder-Decoder

Self-Attention and Transformer Networks

3 Transfer Learning with Transformers

4 Conclusions

André Martins (IST) Lecture 8 IST, Fall 2020 111 / 115

Conclusions

• Machine translation is a key problem in AI since the 1950s

• Neural machine translation with sequence-to-sequence models was a
breakthrough

• Representing a full sentence with a single vector is a bottleneck

• Attention mechanisms allow focusing on different parts of the input
and solve the bottleneck problem

• Encoders/decoders can be RNNs, CNNs, or self-attention layers

• Transformer networks are the current state of the art in this task

• Other applications beyond MT: speech recognition, image captioning,
etc.

• Code available and more info:
https://github.com/tensorflow/tensor2tensor.

André Martins (IST) Lecture 8 IST, Fall 2020 112 / 115

https://github.com/tensorflow/tensor2tensor

Thank you!

Questions?

André Martins (IST) Lecture 8 IST, Fall 2020 113 / 115

References I

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural Machine Translation by Jointly Learning to Align and Translate. In
International Conference on Learning Representations.

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. (2015). A Large Annotated Corpus for Learning Natural Language
Inference. In Proc. of Empirical Methods in Natural Language Processing.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. (2014). Learning Phrase
Representations Using RNN Encoder-Decoder for Statistical Machine Translation. In Proc. of Empirical Methods in Natural
Language Processing.

Chorowski, J. K., Bahdanau, D., Serdyuk, D., Cho, K., and Bengio, Y. (2015). Attention-based Models for Speech Recognition.
In Advances in Neural Information Processing Systems, pages 577–585.

Cohn, T., Hoang, C. D. V., Vymolova, E., Yao, K., Dyer, C., and Haffari, G. (2016). Incorporating structural alignment biases
into an attentional neural translation model. arXiv preprint arXiv:1601.01085.

Dai, Z., Yang, Z., Yang, Y., Cohen, W. W., Carbonell, J., Le, Q. V., and Salakhutdinov, R. (2019). Transformer-xl: Attentive
language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805.

Ganchev, K., Graca, J., Gillenwater, J., and Taskar, B. (2010). Posterior regularization for structured latent variable models.
Journal of Machine Learning Research, 11:2001–2049.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N. (2017). Convolutional sequence to sequence learning. arXiv
preprint arXiv:1705.03122.

Graves, A., Wayne, G., and Danihelka, I. (2014). Neural Turing Machines. arXiv preprint arXiv:1410.5401.

Grefenstette, E., Hermann, K. M., Suleyman, M., and Blunsom, P. (2015). Learning to Transduce with Unbounded Memory. In
Advances in Neural Information Processing Systems, pages 1819–1827.

Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., and Blunsom, P. (2015). Teaching
Machines to Read and Comprehend. In Advances in Neural Information Processing Systems, pages 1684–1692.

André Martins (IST) Lecture 8 IST, Fall 2020 114 / 115

References II
Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). A convolutional neural network for modelling sentences. arXiv

preprint arXiv:1404.2188.

Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. arXiv
preprint arXiv:1508.04025.

Malaviya, C., Ferreira, P., and Martins, A. F. T. (2018). Sparse and constrained attention for neural machine translation. In
Proc. of the Annual Meeting of the Association for Computational Linguistics.

Martins, A. F. T. and Astudillo, R. (2016). From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label
Classification. In Proc. of the International Conference on Machine Learning.

Martins, A. F. T. and Kreutzer, J. (2017). Fully differentiable neural easy-first taggers. In Proc. of Empirical Methods for
Natural Language Processing.

Pardalos, P. M. and Kovoor, N. (1990). An algorithm for a singly constrained class of quadratic programs subject to upper and
lower bounds. Mathematical Programming, 46(1):321–328.

Rocktäschel, T., Grefenstette, E., Hermann, K. M., Kocisky, T., and Blunsom, P. (2015). Reasoning about Entailment with
Neural Attention. arXiv preprint arXiv:1509.06664.

Shannon, C. E. and Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press, 29.

Sukhbaatar, S., Szlam, A., Weston, J., and Fergus, R. (2015). End-to-End Memory Networks. In Advances in Neural
Information Processing Systems, pages 2431–2439.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in Neural
Information Processing Systems, pages 3104–3112.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. (2017). Attention
is all you need. In Advances in Neural Information Processing Systems, pages 5998–6008.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., et al.
(2016). Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv
preprint arXiv:1609.08144.

Xu, K., Ba, J., Kiros, R., Courville, A., Salakhutdinov, R., Zemel, R., and Bengio, Y. (2015). Show, Attend and Tell: Neural
Image Caption Generation with Visual Attention. In International Conference on Machine Learning.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., and Le, Q. V. (2019). Xlnet: Generalized autoregressive
pretraining for language understanding. arXiv preprint arXiv:1906.08237.

André Martins (IST) Lecture 8 IST, Fall 2020 115 / 115

	Statistical Machine Translation
	Neural Machine Translation
	Encoder-Decoder Architecture
	Encoder-Decoder with Attention
	Convolutional Encoder-Decoder
	Self-Attention and Transformer Networks

	Transfer Learning with Transformers
	Conclusions
	References
	References

