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Welcome

This tutorial is about sparsity, a topic of great relevance to NLP.

Sparsity relates to feature selection, model compactness, runtime,
memory footprint, interpretability of our models.

New idea in the last 7 years: structured sparsity. This tutorial tries to
answer:

What is structured sparsity?

How do we apply it?

How has it been used so far?
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Notation

Many NLP problems involve mapping from one structured space to
another. Notation:

Input set X

For each x ∈ X, candidate outputs are Y(x) ⊆ Y

Mapping is hw : X→ Y
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Linear Models

Our predictor will take the form

hw(x) = arg max
y∈Y(x)

w>f(x , y)

where:

f is a vector function that encodes all the relevant things about
(x , y); the result of a theory, our knowledge, feature engineering, etc.

w ∈ RD are the weights that parameterize the mapping.

NLP today: D is often in the tens or hundreds of millions.
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Learning Linear Models

Max ent, perceptron, CRF, SVM, even supervised generative models all fit
the linear modeling framework.

General training setup:

We observe a collection of examples {〈xn, yn〉}N
n=1.

Perform statistical analysis to discover w from the data.
Ranges from “count and normalize” to complex optimization routines.

Optimization view:

ŵ = arg min
w

1

N

N∑
n=1

L(w; xn, yn)︸ ︷︷ ︸
empirical loss

+ Ω(w)︸ ︷︷ ︸
regularizer

This tutorial will focus on the regularizer, Ω.
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What is Sparsity?

The word “sparsity” has (at least) four related meanings in NLP!

1 Data sparsity: N is too small to obtain a good estimate for w.
Also known as “curse of dimensionality.”
(Usually bad.)

2 “Probability” sparsity: I have a probability distribution over events
(e.g., X× Y), most of which receive zero probability.
(Might be good or bad.)

3 Sparsity in the dual: associated with SVMs and other kernel-based
methods; implies that the predictor can be represented via kernel
calculations involving just a few training instances.

4 Model sparsity: Most dimensions of f are not needed for a good hw;
those dimensions of w can be zero, leading to a sparse w (model).

This tutorial is about sense #4: today, (model) sparsity is a good thing!
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Why Sparsity is Desirable in NLP

Occam’s razor and interpretability.

The bet on sparsity (Friedman et al., 2004): it’s often correct. When it
isn’t, there’s no good solution anyway!

Models with just a few features are

easy to explain and implement

attractive as linguistic hypotheses

reminiscent of classical symbolic systems
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A decision list from Yarowsky (1995).
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Why Sparsity is Desirable in NLP

Computational savings.

wd = 0 is equivalent to erasing the feature from the model; smaller
effective D implies smaller memory footprint.

This, in turn, implies faster decoding runtime.

Further, sometimes entire kinds of features can be eliminated, giving
asymptotic savings.
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Why Sparsity is Desirable in NLP

Generalization.

The challenge of learning is to extract from the data only what will
generalize to new examples.

Forcing a learner to use few features is one way to discourage
overfitting.

Text categorization experiments in Kazama and Tsujii (2003): +3
accuracy points with 1% as many features
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(Automatic) Feature Selection

Human NLPers are good at thinking of features.

Can we automate the process of selecting which ones to keep?

Three kinds of methods:

1 filters

2 wrappers

3 embedded methods (this tutorial)
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Filter-based Feature Selection

For each candidate feature fd , apply a heuristic to determine whether to
include it. (Excluding fd equates to fixing wd = 0.)

Examples:

Count threshold: is |{n | fd (xn, yn) > 0}| > τ?
(Ignore rare features.)

Mutual information or correlation between features and labels

Advantage: speed!

Disadvantages:

Ignores the learning algorithm

Thresholds require tuning
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Ratnaparkhi (1996), on his POS tagger:

The behavior of a feature that occurs very sparsely in the
training set is often difficult to predict, since its statistics may
not be reliable. Therefore, the model uses the heuristic that any
feature which occurs less than 10 times in the data is unreliable,
and ignores features whose counts are less than 10.1 While there
are many smoothing algorithms which use techniques more
rigorous than a simple count cutoff, they have not yet been
investigated in conjunction with this tagger.

1Except for features that look only at the current word, i.e., features of the
form wi =<word> and ti = <TAG>. The count of 10 was chosen by inspection of
Training and Development data.
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Wrapper-based Feature Selection

For each subset F ⊆ {1, 2, . . .D}, learn hwF
for features {fd | d ∈ F}.

2D − 1 choices; so perform a search over subsets.

Cons:

NP-hard problem (Amaldi and Kann, 1998; Davis et al., 1997)

Must resort to greedy methods

Even those require iterative calls to a black-box learner

Danger of overfitting in choosing F.
(Typically use development data or cross-validate.)
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Della Pietra et al. (1997) add features one at a time. Step (3) involves
re-estimating parameters:
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Embedded Methods for Feature Selection

Formulate the learning problem as a trade-off between

minimizing loss (fitting the training data, achieving good accuracy on
the training data, etc.)

choosing a desirable model (e.g., one with no more features than
needed)

min
w

1

N

N∑
n=1

L(w; xn, yn) + Ω(w)

Key advantage: declarative statements of model “desirability” often lead
to well-understood, solvable optimization problems.
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Useful Papers on Feature Selection and Sparsity

Overview of many feature selection methods:
Guyon and Elisseeff (2003)

Greedy wrapper-based method used for max ent models in NLP:
Della Pietra et al. (1997)

Early uses of sparsity in NLP:
Kazama and Tsujii (2003); Goodman (2004)
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Learning Problem

Recall that we formulate the learning problem as:

min
w

Ω(w)︸ ︷︷ ︸
regularizer

+
N∑

i=1

L(w, xi , yi )︸ ︷︷ ︸
total loss

,
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Loss functions (I)

Regression (y ∈ R) typically uses the squared error loss:

LSE(w; x , y) =
1

2

(
y −w>f(x)

)2

Total loss:

1

2

N∑
n=1

(
yn −w>f(xn)

)2
=

1

2
‖Aw − y‖2

2

Design matrix: A = [Aij ]i=1,...,N; j=1,...,D , where Aij = fj (xi ).

Response vector: y = [y1, ..., yN ]>.

Arguably, the most/best studied loss function (statistics, machine
learning, signal processing).
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Loss functions (II)

Classification and structured prediction using log-linear models
(logistic regression, max ent, conditional random fields):

LLR(w; x , y) = − log P (y |x ; w)

= − log
exp(w>f(x , y))∑

y ′∈Y(x) exp(w>f(x , y ′))

= −w>f(x , y) + log Z (w, x)

Partition function:

Z (w, x) =
∑

y ′∈Y(x)

exp(w>f(x , y ′)).

Related loss functions: hinge loss (in SVM) and the perceptron loss.
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Main Loss Functions: Summary

Squared (linear regression) 1
2

(
y −w>f(x)

)2

Log-linear (MaxEnt, CRF, logistic) −w>f(x , y) + log
∑
y ′∈Y

exp(w>f(x , y ′))

Hinge (SVMs) −w>f(x , y) + max
y ′∈Y

(
w>f(x , y ′) + c(y , y ′)

)
Perceptron −w>f(x , y) + max

y ′∈Y
w>f(x , y ′)

(in the SVM loss, c(y , y ′) is a cost function.)

The log-linear, hinge, and perceptron losses are particular cases of general
family (Martins et al., 2010).
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Regularization Formulations

Tikhonov regularization: ŵ = arg min
w
λΩ̄(w) +

N∑
n=1

L(w; xn, yn)

Ivanov regularization

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to Ω(w) ≤ τ

Morozov regularization

ŵ = arg min
w

Ω(w)

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

Equivalent, under mild conditions (namely convexity).
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Regularization

Why regularize?

Improve generalization by avoiding over-fitting.

Express prior knowledge about w.

Select relevant features (via sparsity-inducing regularization).
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Regularization vs. Bayesian estimation

Regularized parameter estimate: ŵ = arg min
w

Ω(w) +
N∑

n=1

L(w; xn, yn)

...interpretable as Bayesian maximum a posteriori (MAP) estimate:

ŵ = arg max
w

exp (−Ω(w))︸ ︷︷ ︸
prior p(w)

N∏
n=1

exp (−L(w; xn, yn))︸ ︷︷ ︸
likelihood (i.i.d. data)

.

This interpretation underlies the logistic regression (LR) loss:
LLR(w; xn, yn) = − log P (yn|xn; w).

Same is true for the squared error (SE) loss:

LSE(w; xn, yn) = 1
2

(
y −w>f(x)

)2
= − logN(y |w>f(x), 1)
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Classical Regularizers: Ridge

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

Arguably, the most classical choice: squared `2 norm: Ω(w) =
λ

2
‖w‖2

2

Corresponds to zero-mean Gaussian prior p(w) ∝ exp
(
−λ

2‖w‖
2
2

)

Ridge regression (SE loss): Hoerl and Kennard (1962 and 1970).

Ridge logistic regression: Schaefer et al. (1984), Cessie and
Houwelingen (1992); in NLP: Chen and Rosenfeld (1999).

Closely related to Tikhonov (1943) and Wiener (1949).

Pros: smooth and convex, thus benign for optimization.

Cons: doesn’t promote sparsity (no explicit feature selection).

Cons: only encodes trivial prior knowledge.
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Classical Regularizers: Lasso

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

The new classic is the `1 norm: Ω(w) = λ‖w‖1 = λ

D∑
i=1

|wi |.

Corresponds to zero-mean Laplacian prior p(wi ) ∝ exp (−λ|wi |)

Best known as: least absolute shrinkage and selection operator
(Lasso) (Tibshirani, 1996).

Used earlier in signal processing (Claerbout and Muir, 1973; Taylor
et al., 1979) neural networks (Williams, 1995),...

In NLP: Kazama and Tsujii (2003); Goodman (2004).

Pros: encourages sparsity: embedded feature selection.

Cons: convex, but non-smooth: challenging optimization.

Cons: only encodes trivial prior knowledge.
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The Lasso and Sparsity
Why does the Lasso yield sparsity?

The simplest case:

ŵ = arg min
w

1

2
(w − y)2 + λ|w | = soft(y , λ) =


y − λ ⇐ y > λ
0 ⇐ |y | ≤ λ
y + λ ⇐ y < −λ

Contrast with the squared `2 (ridge) regularizer (linear scaling):

ŵ = arg min
w

1

2
(w − y)2 +

λ

2
w 2 =

1

1 + λ
y
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The Lasso and Sparsity (II)

Why does the Lasso yield sparsity?
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Norms: A Quick Review

A norm is a function satisfying:

‖αw‖ = |α|‖w‖, for any w (homogeneity);

‖w + w′‖ ≤ ‖w‖+ ‖w′‖, for any w,w′ (triangle inequality);

‖w‖ = 0 if and only if w = 0.

Examples of norms:

‖w‖1 = (
∑

i |wi |)1 =
∑

i |wi |.

‖w‖2 =
(∑

i |wi |2
)1/2

=
√∑

i |wi |2.

‖w‖p = (
∑

i |wi |p)1/p (called `p norm, for p ≥ 1).

‖w‖∞ = lim
p→∞

‖w‖p = max{|wi |, i = 1, ...,D}

Fact: all norms are convex.

Also important (but not a norm): ‖w‖0 = lim
p→0
‖w‖p

p = |{i : wi 6= 0}|
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Relationship Between `1 and `0

The `0 “norm” (number of non-zeros): ‖w‖0 = |{i : wi 6= 0}|.
Not convex, but...

ŵ = arg min
w

1

2
(w − y)2 + λ|w |0 = hard(y ,

√
2λ) =

{
y ⇐ |y | >

√
2λ

0 ⇐ |y | ≤
√

2λ

The “ideal” feature selection criterion (best subset):

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to ‖w‖0 ≤ τ (limit the number of features)
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Relationship Between `1 and `0 (II)
The best subset selection problem

is NP-hard Amaldi and Kann
(1998)(Davis et al., 1997).

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to ‖w‖0 ≤ τ

A closely related problem, also NP-hard (Muthukrishnan, 2005).

ŵ = arg min
w
‖w‖0

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

In some cases, one may replace `0 with `1 and obtain “similar” results:

central issue in compressive sensing (CS) (Candès et al., 2006; Donoho,

2006)

.
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ŵ = arg min
w
‖w‖0

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

In some cases, one may replace `0 with `1 and obtain “similar” results:

central issue in compressive sensing (CS) (Candès et al., 2006; Donoho,

2006)

.
Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 35 / 128

http://tiny.cc/ssnlp14


Relationship Between `1 and `0 (II)
The best subset selection problem is NP-hard Amaldi and Kann
(1998)(Davis et al., 1997).
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ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to ‖w‖0 ≤ τ

A closely related problem, also NP-hard (Muthukrishnan, 2005).
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Take-Home Messages

Sparsity is desirable for interpretability, computational savings, and
generalization

`1-regularization gives an embedded method for feature selection

Another view of `1: a convex surrogate for direct penalization of
cardinality (`0)

There are compelling algorithmic reasons for using convex surrogates
like `1
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Outline

1 Introduction

2 Loss Functions and Sparsity

3 Structured Sparsity

4 Algorithms

Batch Algorithms

Online Algorithms

5 Applications

6 Conclusions
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Models

`1 regularization promotes sparse models

A very simple sparsity pattern: prefer models with small cardinality

Our main question: how can we promote less trivial sparsity patterns?

We’ll talk about structured sparsity and group-Lasso regularization.
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Structured Sparsity and Groups

Main goal: promote structural patterns, not just penalize cardinality

Group sparsity: discard entire groups of features

density inside each group

sparsity with respect to the groups which are selected

choice of groups: prior knowledge about the intended sparsity patterns

Leads to statistical gains if the prior assumptions are correct (Stojnic
et al., 2009)
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Tons of Uses

feature template selection (Martins et al., 2011b)

multi-task learning (Caruana, 1997; Obozinski et al., 2010)

multiple kernel learning (Lanckriet et al., 2004)

learning the structure of graphical models (Schmidt and Murphy,
2010)
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“Grid” Sparsity

For feature spaces that can be arranged as a grid (examples next)

Goal: push entire columns to have zero weights

The groups are the columns of the grid
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Example 1: Sparsity with Multiple Classes

Assume the feature map decomposes as f(x , y) = f(x)⊗ ey

In words: we’re conjoining each input feature with each output class

input features

la
b
e
ls

“Standard” sparsity is wasteful—we still need to hash all the input features

What we want: discard some input features, along with each class they
conjoin with

Solution: one group per input feature
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Example 2: Multi-Task Learning
(Caruana, 1997; Obozinski et al., 2010)

Same thing, except now rows are tasks and columns are features

shared features

ta
sk

s

What we want: discard features that are irrelevant for all tasks

Solution: one group per feature
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Group Sparsity

D features

M groups G1, . . . ,GM , each
Gm ⊆ {1, . . . ,D}
parameter subvectors w1, . . . ,wM

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

Ω(w) =
∑M

m=1 ‖wm‖2

Intuitively: the `1 norm of the `2 norms

Technically, still a norm (called a mixed norm, denoted `2,1)

λm: prior weight for group Gm (different groups have different sizes)
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Regularization Formulations (reminder)

Tikhonov regularization: ŵ = arg min
w

Ω(w) +
N∑

n=1

L(w; xn, yn)

Ivanov regularization

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to Ω(w) ≤ τ

Morozov regularization

ŵ = arg min
w

Ω(w)

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

Equivalent, under mild conditions (namely convexity).
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Lasso versus group-Lasso
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Other names, other norms

Statisticians call these composite absolute penalties (Zhao et al., 2009)

In general: the (weighted) `r -norm of the `q-norms (r ≥ 1, q ≥ 1), called
the mixed `q,r norm

Ω(w) =
(∑M

m=1λm‖wm‖r
q

)1/r

Group sparsity corresponds to r = 1

This talk: q = 2

However q =∞ is also popular (Quattoni et al., 2009; Graça et al., 2009;

Wright et al., 2009; Eisenstein et al., 2011)
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Three Scenarios

Non-overlapping Groups

Tree-structured Groups

Graph-structured Groups
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Non-overlapping Groups

Assume G1, . . . ,GM are disjoint

⇒ Each feature belongs to exactly one group

Ω(w) =
∑M

m=1 λm‖wm‖2

Trivial choices of groups recover unstructured regularizers:

`2-regularization: one large group G1 = {1, . . . ,D}
`1-regularization: D singleton groups Gd = {d}

Examples of non-trivial groups:

label-based groups (groups are columns of a matrix)

template-based groups (next)
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Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template
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Three Scenarios

Non-overlapping Groups

Tree-structured Groups

Graph-structured Groups
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Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded
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Graph-Structured Groups

In general: groups can be represented as a directed acyclic graph

set inclusion induces a partial order on groups (Jenatton et al., 2009)

feature space becomes a poset

sparsity patterns: given by this poset
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Example: coarse-to-fine regularization

1 Define a partial order between basic feature templates (e.g., p0 � w0)

2 Extend this partial order to all templates by lexicographic closure:
p0 � p0p1 � w0w1

Goal: only include finer features if coarser ones are also in the model
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Things to Keep in Mind

Structured sparsity cares about the structure of the feature space

Group-Lasso regularization generalizes `1 and it’s still convex

Choice of groups: problem dependent, opportunity to use prior
knowledge to favour certain structural patterns

Next: algorithms

We’ll see that optimization is easier with non-overlapping or
tree-structured groups than with arbitrary overlaps
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4 Algorithms

Batch Algorithms
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5 Applications
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Learning the Model

Recall that learning involves solving

min
w

Ω(w)︸ ︷︷ ︸
regularizer

+
N∑

i=1

L(w, xi , yi )︸ ︷︷ ︸
total loss

,

We’ll address two kinds of optimization algorithms:

batch algorithms (attacks the complete problem);

online algorithms (uses the training examples one by one)
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Key Concepts: Convex Functions

f is a convex function if:

∀λ ∈ [0, 1], x and x ′ ∈ domain(f )

f (λx + (1− λ)x ′) ≤ λf (x) + (1− λ)f (x ′)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 59 / 128

http://tiny.cc/ssnlp14


Outline

1 Introduction

2 Loss Functions and Sparsity

3 Structured Sparsity

4 Algorithms

Batch Algorithms

Online Algorithms

5 Applications

6 Conclusions

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 60 / 128

http://tiny.cc/ssnlp14


Batch Algorithms

Subgradient methods

Proximal methods

Alternating direction method of multipliers
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Key Concepts: Subgradients
Convexity ⇒ continuity; convexity 6⇒ differentiability (e.g., f (w) = ‖w‖1).

Subgradients generalize gradients for (maybe non-diff.) convex functions:

v is a subgradient of f at x if f (x′) ≥ f (x) + v>(x′ − x)

Subdifferential: ∂f (x) = {v : v is a subgradient of f at x}
If f is differentiable, ∂f (x) = {∇f (x)}

linear lower bound non-differentiable case

Notation: ∇̃f (x) is a subgradient of f at x
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Subgradient Methods

minw Ω(w) + Λ(w), where Λ(w) =
∑N

i=1 L(w, xi , yi ) (loss)

Subgradient methods were invented by Shor in the 1970’s (Shor, 1985):

input: stepsize sequence (ηt)T
t=1

initialize w
for t = 1, 2, . . . do

(sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃Λ(w)

)
end for

Key disadvantages:

The step size ηt needs to be annealed for convergence: very slow!

Doesn’t explicitly capture the sparsity promoted by sparse regularizers.
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Key Concepts: Proximity Operators
Let Ω : RD → R̄ be a convex function.

The Ω-proximity operator is the following RD → RD map:

w 7→ proxΩ(w) = arg min
u

1

2
‖u−w‖2

2 + Ω(u)

...always well defined, because ‖u−w‖2
2 is strictly convex.

Classical examples:

Squared `2 regularization, Ω(w) = λ
2‖w‖

2
2: scaling operation

proxΩ(w) =
1

1 + λ
w

`1 regularization, Ω(w) = λ‖w‖1: soft-thresholding;

proxΩ(w) = soft(w, λ)
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Key Concepts: Proximity Operators (II)

proxΩ(w) = arg min
u

1

2
‖u−w‖2

2 + Ω(u)

`2 regularization, Ω(w) = λ‖w‖2: vector soft thresholding

proxΩ(w) =

{
0 ⇐ ‖w‖ ≤ λ

w
‖w‖ (‖w‖ − λ) ⇐ ‖w‖ > λ

indicator function, Ω(w) = ιS(w) =

{
0 ⇐ w ∈ S

+∞ ⇐ w 6∈ S

proxΩ(w) = PS(w)

Euclidean projection
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Key Concepts: Proximity Operators (III)

Group regularizers: Ω(w) =
M∑

m=1

Ωm(wm)

Groups: Gm ⊂ {1, 2, ...,D}. wm is a sub-vector of w with the
indices in Gm.

Non-overlapping groups (Gm ∩ Gn = ∅, for m 6= n): separable prox
operator

[proxΩ(w)]m = proxΩm
(wm)

Tree-structured groups: (two groups are either non-overlapping or
one contais the other) proxΩ can be computed recursively (Jenatton
et al., 2011).

Arbitrary groups:
For Ωj (wm) = ‖wm‖2: solved via convex smooth optimization (Yuan
et al., 2011).
Sequential proximity steps (Martins et al., 2011a) (more later).
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Proximal Gradient
Recall the problem: min

w
Ω(w) + Λ(w)

Key assumptions: ∇Λ(w) and proxΩ “easy”.

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt))

Key feature: each steps decouples the loss and the regularizer.

Projected gradient is a particular case, for proxΩ = PS.

Often called iterative shrinkage thresholding (IST).

Can be derived with different tools:

expectation-maximization (EM) (Figueiredo and Nowak, 2003);

majorization-minimization (Daubechies et al., 2004);

forward-backward splitting (Combettes and Wajs, 2006);

separable approximation (Wright et al., 2009).
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Monotonicity and Convergence

Proximal gradient, a.k.a., iterative shrinkage thresholding (IST):

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt)) .

Assume Λ(w) has L-Lipschitz gradient: ‖∇Λ(w)−∇Λ(w′)‖ ≤ L‖w −w′‖.

Monotonicity: if ηt ≤ 1/L, then Λ(wt+1) + Ω(wt+1) ≤ Λ(wt) + Ω(wt).

Convergence of objective value (Beck and Teboulle, 2009)

(
Λ(wt) + Ω(wt)

)
−
(
Λ(w∗) + Ω(w∗)

)
= O

(
1

ε

)
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Accelerating IST: FISTA

Idea: compute wt+1 based, not only on wt , but also on wt−1.

Fast IST algorithm (FISTA) (Beck and Teboulle, 2009):

bt+1 =
1+
√

1+4 b2
t

2

z = wt + bt−1
bt+1

(wt −wt−1)

wt+1 = proxηΩ (z− η∇Λ(z))

Convergence of objective value (Beck and Teboulle, 2009)

(
Λ(wt) + Ω(wt)

)
−
(
Λ(w∗) + Ω(w∗)

)
= O

(
1√
ε

)
(vs O(1/ε) for IST)

Other IST variants: Nesterov’s method (Nesterov, 2007), SpaRSA (Wright
et al., 2009), TwIST (two-step IST; Bioucas-Dias and Figueiredo, 2007).
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Alternating Direction Method of Multipliers

Combine benefits of dual decomposition and augmented Lagrangian
methods for constrained optimization (Hestenes, 1969; Powell, 1969).

Key ideas

break down the optimization problem into subproblems, each
depending on a subset of w.

each subproblem p receives a “copy” of the subvector w, denoted by
vp.

encode constraints forcing each vp to “agree” with the global solution
w.

Particularly suitable for distributed optimization.
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Alternating Direction Method of Multipliers

Original problem min
w

Ω(w) + Λ(w) where Ω(w) =
M∑

m=1

Ωm(wm) .

ADMM objective min
w,v

Ω(v) + Λ(w) subject to Av + Bw = c

For example, in the overlapping group lasso case, we have A = I and
c = 0. The constraint becomes v = −Bw.
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Alternating Direction Method of Multipliers

The augmented Lagrangian is:

Ω(v) +Λ(w) + u>(Av + Bw − c) + ρ
2‖Av + Bw − c‖2

2

ADMM iteratively solves:

ŵ = arg minw Λ(w) + u>Bw + ρ
2‖Av + Bw − c‖2

2

v̂ = arg minv Ω(v) + u>Av + ρ
2‖Av + Bw − c‖2

2

u = u + ρ(Av + Bw − c)

Key advantage: the minimization of v can be done in parallel.
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Alternating Direction Method of Multipliers

Convergence of ADMM in theory (Boyd et al., 2010)

Assumptions:

Λ and Ω are closed, proper, and convex.

The unaugmented Lagrangian has a saddle point

As t →∞, we have:

Residual convergence: Av + Bw − c→ 0.

Primal convergence: Λ(wt) + Ω(vt)→ p∗ where p∗ is the optimal
value.

Dual convergence: ut → u∗.
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Alternating Direction Method of Multipliers

ADMM can handle various kinds of regularizers by adapting A and B.

ADMM is well suited for structured sparse models with group overlaps
because we can design A and B such that Ω(v) no longer has overlapping
groups. Hence, we can solve each subproblem separately in parallel.

Practical considerations:

ADMM can be slow to converge in practice, but tens of iterations are
often enough to produce good results.

ADMM only produces weakly sparse solution (we only get sparsity in
the limit).
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the limit).
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Alternating Direction Method of Multipliers

Recall that the ADMM objective is:

min
w,v

Ωstruct(v) + Λ(w) subject to Av + Bw = c

We can introduce an additional lasso penalty (sparse group lasso;
Friedman et al., 2010):

min
w,v

Ωstruct(v) + Ωlasso(w) + Λ(w) subject to Av + Bw = c

We get sparse solutions and can still guarantee convergence (Yogatama
and Smith, 2014a).
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Summary of Algorithms

Converges? Rate? Sparse? Groups? Overlaps?
Prox-grad (IST) X O(1/ε) X X Not easy
FISTA X O(1/

√
ε) X X Not easy

ADMM X O(1/ε) No X X

Note that we can still get sparsity for ADMM with sparse group lasso
(Yogatama and Smith, 2014a).
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Some Stuff We Didn’t Talk About

shooting method (Fu, 1998);

grafting (Perkins et al., 2003) and grafting-light (Zhu et al., 2010);
(Afonso et al., 2010; Figueiredo and Bioucas-Dias, 2011).

forward stagewise regression (Hastie et al., 2007).

homotopy/continuation method (Osborne et al., 2000; Efron et al.,
2004; Figueiredo et al., 2007; Hale et al., 2008).

Next: We’ll talk about online algorithms.
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Outline

1 Introduction

2 Loss Functions and Sparsity

3 Structured Sparsity

4 Algorithms

Batch Algorithms

Online Algorithms

5 Applications

6 Conclusions
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Why Online?

1 Suitable for large datasets

2 Suitable for structured prediction

3 Faster to approach a near-optimal region

4 Slower convergence, but this is fine in machine learning

cf. “the tradeoffs of large scale learning” (Bottou and Bousquet, 2007)

What we will say can be straighforwardly extended to the mini-batch case.
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Plain Stochastic (Sub-)Gradient Descent

min
w

Ω(w)︸ ︷︷ ︸
regularizer

+
1

N

N∑
i=1

L(w, xi , yi )︸ ︷︷ ︸
empirical loss

,

input: stepsize sequence (ηt)T
t=1

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
(sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)
end for
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What’s the Problem with SGD?

(Sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)

`2-regularization Ω(w) = λ
2‖w‖

2
2 =⇒ ∇̃Ω(w) = λw

w ← (1− ηtλ)w︸ ︷︷ ︸
scaling

− ηt∇̃L(w; xt , yt)

`1-regularization Ω(w) = λ‖w‖1 =⇒ ∇̃Ω(w) = λsign(w)

w ← w − ηtλsign(w)︸ ︷︷ ︸
constant penalty

− ηt∇̃L(w; xt , yt)

Problem: iterates are never sparse!
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Plain SGD with `2-regularization
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“Sparse” Online Algorithms

Truncated Gradient (Langford et al., 2009)

Online Forward-Backward Splitting (Duchi and Singer, 2009)

Regularized Dual Averaging (Xiao, 2010)

Online Proximal Gradient (Martins et al., 2011a)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 84 / 128

http://tiny.cc/ssnlp14


“Sparse” Online Algorithms

Truncated Gradient (Langford et al., 2009)

Online Forward-Backward Splitting (Duchi and Singer, 2009)

Regularized Dual Averaging (Xiao, 2010)

Online Proximal Gradient (Martins et al., 2011a)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 84 / 128

http://tiny.cc/ssnlp14


Truncated Gradient (Langford et al., 2009)

input: laziness coefficient K , stepsize sequence (ηt)T
t=1

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
(sub-)gradient step: w ← w − ηt∇̃L(θ; xt , yt)
if t/K is integer then

truncation step: w ← w − sign(w) (|w| − ηtKτ)︸ ︷︷ ︸
soft-thresholding

end if
end for

take gradients only with respect to the loss

every K rounds: a “lazy” soft-thresholding step

Langford et al. (2009) also suggest other forms of truncation

converges to ε-accurate objective after O(1/ε2) iterations
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Truncated Gradient (Langford et al., 2009)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 86 / 128

http://tiny.cc/ssnlp14


Truncated Gradient (Langford et al., 2009)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 86 / 128

http://tiny.cc/ssnlp14


Truncated Gradient (Langford et al., 2009)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 86 / 128

http://tiny.cc/ssnlp14


Truncated Gradient (Langford et al., 2009)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 86 / 128

http://tiny.cc/ssnlp14


Truncated Gradient (Langford et al., 2009)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 86 / 128

http://tiny.cc/ssnlp14


Truncated Gradient (Langford et al., 2009)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 86 / 128

http://tiny.cc/ssnlp14


Truncated Gradient (Langford et al., 2009)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 86 / 128

http://tiny.cc/ssnlp14


Truncated Gradient (Langford et al., 2009)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 86 / 128

http://tiny.cc/ssnlp14


Truncated Gradient (Langford et al., 2009)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 86 / 128

http://tiny.cc/ssnlp14


Truncated Gradient (Langford et al., 2009)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 86 / 128

http://tiny.cc/ssnlp14


“Sparse” Online Algorithms

Truncated Gradient (Langford et al., 2009)

Online Forward-Backward Splitting (Duchi and Singer, 2009)

Regularized Dual Averaging (Xiao, 2010)

Online Proximal Gradient (Martins et al., 2011a)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 87 / 128

http://tiny.cc/ssnlp14


Online Forward-Backward Splitting (Duchi and
Singer, 2009)

input: stepsize sequences (ηt)T
t=1, (ρt)T

t=1

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
gradient step: w ← w − ηt∇L(w; xt , yt)
proximal step: w ← proxρt Ω(w)

end for

generalizes truncated gradient to arbitrary regularizers Ω
can tackle non-overlapping or hierarchical group-Lasso, but arbitrary
overlaps are difficult to handle (more later)

practical drawback: without a laziness parameter, iterates are
usually not very sparse

converges to ε-accurate objective after O(1/ε2) iterations
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Regularized Dual Averaging (Xiao, 2010)

input: coefficient η0

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
gradient step: s ← s +∇L(w; xt , yt)
proximal step: w ← η0

√
t × proxΩ(−s/t)

end for

based on the dual averaging technique (Nesterov, 2009)

in practice: quite effective at getting sparse iterates (the proximal
steps are not vanishing)

O(C1/ε
2 + C2/

√
ε) convergence, where C1 is a Lipschitz constant,

and C2 is the variance of the stochastic gradients

drawback: requires storing two vectors (w and s), and s is not sparse
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What About Group Sparsity?

Both online forward-backward splitting (Duchi and Singer, 2009) and
regularized dual averaging (Xiao, 2010) can handle groups

All that is necessary is to compute proxΩ(w)

easy for non-overlapping and tree-structured groups

But what about general overlapping groups?

Martins et al. (2011a): a prox-grad algorithm that can handle arbitrary
overlapping groups

decompose Ω(w) =
∑J

j=1 Ωj (w) where each Ωj is non-overlapping

then apply proxΩj
sequentially

still convergent (Martins et al., 2011a)
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Online Proximal Gradient (Martins et al., 2011a)

input: gravity sequence (σt)T
t=1, stepsize sequence (ηt)T

t=1

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
gradient step: w ← w − ηt∇L(θ; xt , yt)
sequential proximal steps:
for j = 1, 2, . . . do

w ← proxηtσt Ωj
(w)

end for
end for

PAC Convergence. ε-accurate solution after T ≤ O(1/ε2) rounds

Computational efficiency. Each gradient step is linear in the
number of features that fire.
Each proximal step is linear in the number of groups M.
Both are independent of D.
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take training pair (xt , yt)
gradient step: w ← w − ηt∇L(θ; xt , yt)
sequential proximal steps:
for j = 1, 2, . . . do

w ← proxηtσt Ωj
(w)

end for
end for

PAC Convergence. ε-accurate solution after T ≤ O(1/ε2) rounds

Computational efficiency. Each gradient step is linear in the
number of features that fire.
Each proximal step is linear in the number of groups M.
Both are independent of D.
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Implementation Tricks (Martins et al., 2011b)

Budget driven shrinkage. Instead of a regularization constant,
specify a budget on the number of selected groups. Each proximal
step sets σt to meet this target.

Sparseptron. Let L(w) = w>(f(x , ŷ)− f(x , y)) be the perceptron
loss. The algorithm becomes perceptron with shrinkage.

Debiasing. Run a few iterations of sparseptron to identify the
relevant groups. Then run a unregularized learner at a second stage.

Memory efficiency. Only a
small active set of features need
to be maintained. Entire groups
can be deleted after each
proximal step.
Many irrelevant features are
never instantiated.
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Summary of Algorithms

Converges? Rate? Sparse? Groups? Overlaps?
Prox-grad (IST) X O(1/ε) X X Not easy
FISTA X O(1/

√
ε) X X Not easy

ADMM X O(1/ε) No X X
Online subgradient X O(1/ε2) No X No
Truncated gradient X O(1/ε2) X No No
FOBOS X O(1/ε2) Sort of X Not easy
RDA X O(1/ε2) X X Not easy
Online prox-grad X O(1/ε2) X X X
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Applications of Structured Sparsity in NLP

1 Non-overlapping groups by feature template

2 Tree-structured groups: coarse-to-fine

3 Arbitrarily overlapping groups
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Martins et al. (2011b): Group by Template

Feature templates provide a straightforward way to define non-overlapping
groups.

To achieve group sparsity, we optimize:

min
w

1

N

N∑
n=1

L(w; xn, yn)︸ ︷︷ ︸
empirical loss

+ Ω(w)︸ ︷︷ ︸
regularizer

where we use the `2,1 norm:

Ω(w) = λ

M∑
m=1

λm‖wm‖2

for M groups/templates.
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Structured Prediction Tasks (Martins et al., 2011b)

Chunking (CoNLL 2000 shared task; Sang and Buchholz, 2000)
+0.5 F1 with 30 groups (out of 96)

NER (CoNLL 2002/3 shared tasks on Spanish, Dutch, English; Sang,
2002; Sang and De Meulder, 2003)
+1–2 F1 with 200 groups (out of 452)

Dependency parsing (CoNLL-X shared task on several languages;
Buchholz and Marsi, 2006), 684 feature templates based on
McDonald et al. (2005)
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Which features get selected?

Qualitative analysis of selected templates:

Arabic Danish Japanese Slovene Spanish Turkish
Bilexical ++ + +
Lex. → POS + +
POS → Lex. ++ + + + +
POS → POS ++ +
Middle POS ++ ++ ++ ++ ++ ++
Shape ++ ++ ++ ++
Direction + + + + +
Distance ++ + + + + +

(Empty: none or very few templates selected; +: some templates
selected; ++: most or all templates selected.)

Morphologically-rich languages with small datasets (Turkish and
Slovene) avoid lexical features.

In Japanese, contextual POS appear to be especially relevant.

Take this with a grain of salt: some patterns may be properties of
the datasets, not the languages!
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Sociolinguistic Association Discovery
(Eisenstein et al., 2011)

Dataset:

geotagged tweets from 9,250 authors
mapping of locations to the U.S. Census’ ZIP code tabulation areas
(ZCTAs)
a ten-dimensional vector of statistics on demographic attributes

Can we learn a compact set of terms used on Twitter that associate
with demographics?
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Sociolinguistic Association Discovery
(Eisenstein et al., 2011)

Setup: multi-output regression.

xn is a P-dimensional vector of independent variables; matrix is
X ∈ RN×P

yn is a T -dimensional vector of dependent variables; matrix is
Y ∈ RN×T

wp,t is the regression coefficient for the pth variable in the tth task;
matrix is W ∈ RP×T

Regularized objective with squared error loss typical for regression:

min
W

Ω(W) + ‖Y − XW‖2
F

Regressions are run in both directions.
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Structured Sparsity with `∞,1

Drive entire rows of W to zero (Turlach et al., 2005): “some
predictors are useless for any task”

Ω(W) = λ

T∑
t=1

max
p

wp,t

Optimization with blockwise coordinate ascent (Liu et al., 2009) and
some tricks to maintain sparsity (Eisenstein et al., 2011)

See also: Duh et al. (2010) used multitask regression and `2,1 to
select features useful for reranking across many instances (application
in machine translation).
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Predicting Demographics from Text
(Eisenstein et al., 2011)

Predict 10-dimensional ZCTA characterization from words tweeted in
that region (vocabulary is P = 5, 418)
Measure Pearson’s correlation between prediction and correct value
(average over tasks, cross-validated test sets)
Compare with truncated SVD, greatest variance across authors, most
frequent words
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Predictive Words (Eisenstein et al., 2011)
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.
in
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- - - + - + + +
;) - + - +
:( -
:) -
:d + - + - +
as - + -
awesome + - - - +
break - + - -
campus - + - -
dead - + - + + +
hell - + - -
shit - +
train - + +
will - + -
would + -
atlanta - + - -
famu + - + - - -
harlem - +
bbm - + - + + +
lls + - + - -
lmaoo - + + - + + + +
lmaooo - + + - + + + +
lmaoooo - + + - + + +
lmfaoo - + - + + +
lmfaooo - + - + + +
lml - + + - + + + + -
odee - + - + + +
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c.

omw - + + - + + + +
smfh - + + - + + + +
smh - + + +
w| - + - + + + +

con + - + +
la - + - +
si - + - +
dats - + - + -
deadass - + + - + + + +
haha + - -
hahah + -
hahaha + - - +
ima - + - + +
madd - - + +
nah - + - + + +
ova - + - +
sis - + +
skool - + - + + + -
wassup - + + - + + + + -
wat - + + - + + + + -
ya - + +
yall - +
yep - + - - - -
yoo - + + - + + + +
yooo - + - + +

Table: Demographically-indicative terms discovered by multi-output sparse
regression. Statistically significant (p < .05) associations are marked (+/-).

Significant p < 0.05 positive (+) and negative (-) associations in a
69-feature model (see the paper for the rest).
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Non-overlapping Groups for “Some” Ambiguity

Learning mappings from word types to labels (POS or semantic predicates)

Semisupervised lexicon expansion with graph-based learning (Das and
Smith, 2012)

Elitist lasso (squared `1,2; Kowalski and Torrésani, 2009) for per-word
sparsity

λ
∑

v

(∑
y

|wv ,y |

)2

where v is a word and y is a label.
+3% accuracy on unknown-word frame prediction, with 35% as many
lexicon entries

Unsupervised POS tagging with posterior regularization (Graça et al.,
2009)

Incorporates `∞,1 norm
+2–7% accuracy on 1-many POS evaluation
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Applications of Structured Sparsity in NLP

1 Non-overlapping groups by feature template

2 Tree-structured groups: coarse-to-fine

3 Arbitrarily overlapping groups
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Log-Linear Language Models
(Nelakanti et al., 2013)

Setup: multinomial logistic regression (Della Pietra et al., 1997)

p(y | x) =
exp(w>y f(x))∑

v∈V exp(w>v f(x))

Regularized objective with logistic loss:

min
w
−

N∑
i=1

log p(yi | x1:k ; w) + Ω(w)

There are many choices for Ω(w). A key consideration is that the size of
w increases rapidly as k gets bigger.
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Log-Linear Language Models
(Nelakanti et al., 2013)

Encode history suffixes from length 0 to k in a tree; each is a feature.

Tree-structured penalty: a longer suffix can only be included if all its
shorter suffixes are included.

Can use `2,1 or `∞,1 norm
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Experimental Results: AP-news

Good generalization results (perplexity):
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Experimental Results: AP-news

Small model size:
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Groups from Word Clusters
(Yogatama and Smith, 2014a)

Task: text classification

Model: bag-of-words logistic regression

Hierarchical clusters from Brown et al. (1992): include the words in a
cluster only if its parent cluster is included.
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Brown et al. (1992) Clusters
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Regularize or Add Features?

20-newsgroups binary tasks:

+ Brown features Brown
dataset baseline lasso ridge elastic group lasso
science 91.90 (ridge) 86.96 90.51 91.14 93.04
sports 93.71 (elastic) 82.66 88.94 85.43 93.71
religion 92.47 (ridge) 94.98 96.93 96.93 92.89
computer 87.13 (elastic) 55.72 96.65 67.57 86.36

Caveat: we ought to use more data to learn the clusters!

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 114 / 128

http://tiny.cc/ssnlp14


Applications of Structured Sparsity in NLP

1 Non-overlapping groups by feature template

2 Tree-structured groups: coarse-to-fine

3 Arbitrarily overlapping groups
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Groups from Data
(Yogatama and Smith, 2014b)

Task: text classification

Model: bag-of-words logistic regression

Groups: one group for every sentence in every training-set document

Intuition: only some sentences are relevant
Past work used latent “relevance” variables (Yessenalina et al., 2010;
Tackstrom and McDonald, 2011)

Use ADMM to handle thousands/millions of overlapping groups.

Copy weights allow inspection to see which training sentences are
“selected”
Additional `1 penalty for strong sparsity
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Topic Classification (IBM vs. Mac)

Bars show log-odds effect of removing the sentence: sentence, elastic,
ridge, lasso.
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Sentiment Analysis
(Amazon DVDs; Blitzer et al., 2007)

Bars show log-odds effect of removing the sentence: sentence, elastic,
ridge, lasso.
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Summary

Sparsity is desirable in NLP: feature selection, runtime, memory
footprint, interpretability

Beyond plain sparsity: structured sparsity can be promoted through
group-Lasso regularization

Choice of groups reflects prior knowledge about the desired sparsity
patterns.

We have seen examples for feature template selection, tree structures,
and data-driven groups, but many more are possible!

Small/medium scale: many batch algorithms available, with fast
convergence (IST, FISTA, SpaRSA, ...)

Large scale: distributed optimization algorithms (ADMM) or online
proximal-gradient algorithms suitable to explore large feature spaces
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Thank you!

Questions?
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