
Structured Sparsity
in Natural Language Processing:

Models, Algorithms, and Applications

André F. T. Martins1,3 Dani Yogatama2 Noah A. Smith2

Mário A. T. Figueiredo1

1Instituto de Telecomunicações
Instituto Superior Técnico, Lisboa, Portugal

2Language Technologies Institute, School of Computer Science
Carnegie Mellon University, Pittsburgh, PA, USA

3Priberam, Lisboa, Portugal

EACL 2014 Tutorial, Gothenburg, Sweden, April 27, 2014
Slides online at http://tiny.cc/ssnlp14

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 1 / 128

http://tiny.cc/ssnlp14
http://tiny.cc/ssnlp14

Welcome

This tutorial is about sparsity, a topic of great relevance to NLP.

Sparsity relates to feature selection, model compactness, runtime,
memory footprint, interpretability of our models.

New idea in the last 7 years: structured sparsity. This tutorial tries to
answer:

What is structured sparsity?

How do we apply it?

How has it been used so far?

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 2 / 128

http://tiny.cc/ssnlp14

Outline

1 Introduction

2 Loss Functions and Sparsity

3 Structured Sparsity

4 Algorithms

Batch Algorithms

Online Algorithms

5 Applications

6 Conclusions

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 3 / 128

http://tiny.cc/ssnlp14

Notation

Many NLP problems involve mapping from one structured space to
another. Notation:

Input set X

For each x ∈ X, candidate outputs are Y(x) ⊆ Y

Mapping is hw : X→ Y

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 4 / 128

http://tiny.cc/ssnlp14

Linear Models

Our predictor will take the form

hw(x) = arg max
y∈Y(x)

w>f(x , y)

where:

f is a vector function that encodes all the relevant things about
(x , y); the result of a theory, our knowledge, feature engineering, etc.

w ∈ RD are the weights that parameterize the mapping.

NLP today: D is often in the tens or hundreds of millions.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 5 / 128

http://tiny.cc/ssnlp14

Learning Linear Models

Max ent, perceptron, CRF, SVM, even supervised generative models all fit
the linear modeling framework.

General training setup:

We observe a collection of examples {〈xn, yn〉}N
n=1.

Perform statistical analysis to discover w from the data.
Ranges from “count and normalize” to complex optimization routines.

Optimization view:

ŵ = arg min
w

1

N

N∑
n=1

L(w; xn, yn)︸ ︷︷ ︸
empirical loss

+ Ω(w)︸ ︷︷ ︸
regularizer

This tutorial will focus on the regularizer, Ω.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 6 / 128

http://tiny.cc/ssnlp14

What is Sparsity?

The word “sparsity” has (at least) four related meanings in NLP!

1 Data sparsity: N is too small to obtain a good estimate for w.
Also known as “curse of dimensionality.”
(Usually bad.)

2 “Probability” sparsity: I have a probability distribution over events
(e.g., X× Y), most of which receive zero probability.
(Might be good or bad.)

3 Sparsity in the dual: associated with SVMs and other kernel-based
methods; implies that the predictor can be represented via kernel
calculations involving just a few training instances.

4 Model sparsity: Most dimensions of f are not needed for a good hw;
those dimensions of w can be zero, leading to a sparse w (model).

This tutorial is about sense #4: today, (model) sparsity is a good thing!

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 7 / 128

http://tiny.cc/ssnlp14

Why Sparsity is Desirable in NLP

Occam’s razor and interpretability.

The bet on sparsity (Friedman et al., 2004): it’s often correct. When it
isn’t, there’s no good solution anyway!

Models with just a few features are

easy to explain and implement

attractive as linguistic hypotheses

reminiscent of classical symbolic systems

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 8 / 128

http://tiny.cc/ssnlp14

A decision list from Yarowsky (1995).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 9 / 128

http://tiny.cc/ssnlp14

Why Sparsity is Desirable in NLP

Computational savings.

wd = 0 is equivalent to erasing the feature from the model; smaller
effective D implies smaller memory footprint.

This, in turn, implies faster decoding runtime.

Further, sometimes entire kinds of features can be eliminated, giving
asymptotic savings.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 10 / 128

http://tiny.cc/ssnlp14

Why Sparsity is Desirable in NLP

Generalization.

The challenge of learning is to extract from the data only what will
generalize to new examples.

Forcing a learner to use few features is one way to discourage
overfitting.

Text categorization experiments in Kazama and Tsujii (2003): +3
accuracy points with 1% as many features

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 11 / 128

http://tiny.cc/ssnlp14

(Automatic) Feature Selection

Human NLPers are good at thinking of features.

Can we automate the process of selecting which ones to keep?

Three kinds of methods:

1 filters

2 wrappers

3 embedded methods (this tutorial)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 12 / 128

http://tiny.cc/ssnlp14

(Automatic) Feature Selection

Human NLPers are good at thinking of features.

Can we automate the process of selecting which ones to keep?

Three kinds of methods:

1 filters

2 wrappers

3 embedded methods (this tutorial)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 12 / 128

http://tiny.cc/ssnlp14

Filter-based Feature Selection

For each candidate feature fd , apply a heuristic to determine whether to
include it. (Excluding fd equates to fixing wd = 0.)

Examples:

Count threshold: is |{n | fd (xn, yn) > 0}| > τ?
(Ignore rare features.)

Mutual information or correlation between features and labels

Advantage: speed!

Disadvantages:

Ignores the learning algorithm

Thresholds require tuning

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 13 / 128

http://tiny.cc/ssnlp14

Ratnaparkhi (1996), on his POS tagger:

The behavior of a feature that occurs very sparsely in the
training set is often difficult to predict, since its statistics may
not be reliable. Therefore, the model uses the heuristic that any
feature which occurs less than 10 times in the data is unreliable,
and ignores features whose counts are less than 10.1 While there
are many smoothing algorithms which use techniques more
rigorous than a simple count cutoff, they have not yet been
investigated in conjunction with this tagger.

1Except for features that look only at the current word, i.e., features of the
form wi =<word> and ti = <TAG>. The count of 10 was chosen by inspection of
Training and Development data.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 14 / 128

http://tiny.cc/ssnlp14

(Automatic) Feature Selection

Human NLPers are good at thinking of features.

Can we automate the process of selecting which ones to keep?

Three kinds of methods:

1 filters

2 wrappers

3 embedded methods (this tutorial)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 15 / 128

http://tiny.cc/ssnlp14

(Automatic) Feature Selection

Human NLPers are good at thinking of features.

Can we automate the process of selecting which ones to keep?

Three kinds of methods:

1 filters

2 wrappers

3 embedded methods (this tutorial)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 15 / 128

http://tiny.cc/ssnlp14

Wrapper-based Feature Selection

For each subset F ⊆ {1, 2, . . .D}, learn hwF
for features {fd | d ∈ F}.

2D − 1 choices; so perform a search over subsets.

Cons:

NP-hard problem (Amaldi and Kann, 1998; Davis et al., 1997)

Must resort to greedy methods

Even those require iterative calls to a black-box learner

Danger of overfitting in choosing F.
(Typically use development data or cross-validate.)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 16 / 128

http://tiny.cc/ssnlp14

Della Pietra et al. (1997) add features one at a time. Step (3) involves
re-estimating parameters:

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 17 / 128

http://tiny.cc/ssnlp14

(Automatic) Feature Selection

Human NLPers are good at thinking of features.

Can we automate the process of selecting which ones to keep?

Three kinds of methods:

1 filters

2 wrappers

3 embedded methods (this tutorial)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 18 / 128

http://tiny.cc/ssnlp14

(Automatic) Feature Selection

Human NLPers are good at thinking of features.

Can we automate the process of selecting which ones to keep?

Three kinds of methods:

1 filters

2 wrappers

3 embedded methods (this tutorial)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 18 / 128

http://tiny.cc/ssnlp14

Embedded Methods for Feature Selection

Formulate the learning problem as a trade-off between

minimizing loss (fitting the training data, achieving good accuracy on
the training data, etc.)

choosing a desirable model (e.g., one with no more features than
needed)

min
w

1

N

N∑
n=1

L(w; xn, yn) + Ω(w)

Key advantage: declarative statements of model “desirability” often lead
to well-understood, solvable optimization problems.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 19 / 128

http://tiny.cc/ssnlp14

Useful Papers on Feature Selection and Sparsity

Overview of many feature selection methods:
Guyon and Elisseeff (2003)

Greedy wrapper-based method used for max ent models in NLP:
Della Pietra et al. (1997)

Early uses of sparsity in NLP:
Kazama and Tsujii (2003); Goodman (2004)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 20 / 128

http://tiny.cc/ssnlp14

Outline

1 Introduction

2 Loss Functions and Sparsity

3 Structured Sparsity

4 Algorithms

Batch Algorithms

Online Algorithms

5 Applications

6 Conclusions

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 21 / 128

http://tiny.cc/ssnlp14

Learning Problem

Recall that we formulate the learning problem as:

min
w

Ω(w)︸ ︷︷ ︸
regularizer

+
N∑

i=1

L(w, xi , yi)︸ ︷︷ ︸
total loss

,

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 22 / 128

http://tiny.cc/ssnlp14

Loss functions (I)

Regression (y ∈ R) typically uses the squared error loss:

LSE(w; x , y) =
1

2

(
y −w>f(x)

)2

Total loss:

1

2

N∑
n=1

(
yn −w>f(xn)

)2
=

1

2
‖Aw − y‖2

2

Design matrix: A = [Aij]i=1,...,N; j=1,...,D , where Aij = fj (xi).

Response vector: y = [y1, ..., yN]>.

Arguably, the most/best studied loss function (statistics, machine
learning, signal processing).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 23 / 128

http://tiny.cc/ssnlp14

Loss functions (I)

Regression (y ∈ R) typically uses the squared error loss:

LSE(w; x , y) =
1

2

(
y −w>f(x)

)2

Total loss:

1

2

N∑
n=1

(
yn −w>f(xn)

)2
=

1

2
‖Aw − y‖2

2

Design matrix: A = [Aij]i=1,...,N; j=1,...,D , where Aij = fj (xi).

Response vector: y = [y1, ..., yN]>.

Arguably, the most/best studied loss function (statistics, machine
learning, signal processing).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 23 / 128

http://tiny.cc/ssnlp14

Loss functions (I)

Regression (y ∈ R) typically uses the squared error loss:

LSE(w; x , y) =
1

2

(
y −w>f(x)

)2

Total loss:

1

2

N∑
n=1

(
yn −w>f(xn)

)2
=

1

2
‖Aw − y‖2

2

Design matrix: A = [Aij]i=1,...,N; j=1,...,D , where Aij = fj (xi).

Response vector: y = [y1, ..., yN]>.

Arguably, the most/best studied loss function (statistics, machine
learning, signal processing).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 23 / 128

http://tiny.cc/ssnlp14

Loss functions (I)

Regression (y ∈ R) typically uses the squared error loss:

LSE(w; x , y) =
1

2

(
y −w>f(x)

)2

Total loss:

1

2

N∑
n=1

(
yn −w>f(xn)

)2
=

1

2
‖Aw − y‖2

2

Design matrix: A = [Aij]i=1,...,N; j=1,...,D , where Aij = fj (xi).

Response vector: y = [y1, ..., yN]>.

Arguably, the most/best studied loss function (statistics, machine
learning, signal processing).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 23 / 128

http://tiny.cc/ssnlp14

Loss functions (I)

Regression (y ∈ R) typically uses the squared error loss:

LSE(w; x , y) =
1

2

(
y −w>f(x)

)2

Total loss:

1

2

N∑
n=1

(
yn −w>f(xn)

)2
=

1

2
‖Aw − y‖2

2

Design matrix: A = [Aij]i=1,...,N; j=1,...,D , where Aij = fj (xi).

Response vector: y = [y1, ..., yN]>.

Arguably, the most/best studied loss function (statistics, machine
learning, signal processing).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 23 / 128

http://tiny.cc/ssnlp14

Loss functions (II)

Classification and structured prediction using log-linear models
(logistic regression, max ent, conditional random fields):

LLR(w; x , y) = − log P (y |x ; w)

= − log
exp(w>f(x , y))∑

y ′∈Y(x) exp(w>f(x , y ′))

= −w>f(x , y) + log Z (w, x)

Partition function:

Z (w, x) =
∑

y ′∈Y(x)

exp(w>f(x , y ′)).

Related loss functions: hinge loss (in SVM) and the perceptron loss.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 24 / 128

http://tiny.cc/ssnlp14

Loss functions (II)

Classification and structured prediction using log-linear models
(logistic regression, max ent, conditional random fields):

LLR(w; x , y) = − log P (y |x ; w)

= − log
exp(w>f(x , y))∑

y ′∈Y(x) exp(w>f(x , y ′))

= −w>f(x , y) + log Z (w, x)

Partition function:

Z (w, x) =
∑

y ′∈Y(x)

exp(w>f(x , y ′)).

Related loss functions: hinge loss (in SVM) and the perceptron loss.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 24 / 128

http://tiny.cc/ssnlp14

Loss functions (II)

Classification and structured prediction using log-linear models
(logistic regression, max ent, conditional random fields):

LLR(w; x , y) = − log P (y |x ; w)

= − log
exp(w>f(x , y))∑

y ′∈Y(x) exp(w>f(x , y ′))

= −w>f(x , y) + log Z (w, x)

Partition function:

Z (w, x) =
∑

y ′∈Y(x)

exp(w>f(x , y ′)).

Related loss functions: hinge loss (in SVM) and the perceptron loss.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 24 / 128

http://tiny.cc/ssnlp14

Main Loss Functions: Summary

Squared (linear regression) 1
2

(
y −w>f(x)

)2

Log-linear (MaxEnt, CRF, logistic) −w>f(x , y) + log
∑
y ′∈Y

exp(w>f(x , y ′))

Hinge (SVMs) −w>f(x , y) + max
y ′∈Y

(
w>f(x , y ′) + c(y , y ′)

)
Perceptron −w>f(x , y) + max

y ′∈Y
w>f(x , y ′)

(in the SVM loss, c(y , y ′) is a cost function.)

The log-linear, hinge, and perceptron losses are particular cases of general
family (Martins et al., 2010).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 25 / 128

http://tiny.cc/ssnlp14

Main Loss Functions: Summary

Squared (linear regression) 1
2

(
y −w>f(x)

)2

Log-linear (MaxEnt, CRF, logistic) −w>f(x , y) + log
∑
y ′∈Y

exp(w>f(x , y ′))

Hinge (SVMs) −w>f(x , y) + max
y ′∈Y

(
w>f(x , y ′) + c(y , y ′)

)
Perceptron −w>f(x , y) + max

y ′∈Y
w>f(x , y ′)

(in the SVM loss, c(y , y ′) is a cost function.)

The log-linear, hinge, and perceptron losses are particular cases of general
family (Martins et al., 2010).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 25 / 128

http://tiny.cc/ssnlp14

Regularization Formulations

Tikhonov regularization: ŵ = arg min
w
λΩ̄(w) +

N∑
n=1

L(w; xn, yn)

Ivanov regularization

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to Ω(w) ≤ τ

Morozov regularization

ŵ = arg min
w

Ω(w)

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

Equivalent, under mild conditions (namely convexity).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 26 / 128

http://tiny.cc/ssnlp14

Regularization Formulations

Tikhonov regularization: ŵ = arg min
w
λΩ̄(w) +

N∑
n=1

L(w; xn, yn)

Ivanov regularization

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to Ω(w) ≤ τ

Morozov regularization

ŵ = arg min
w

Ω(w)

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

Equivalent, under mild conditions (namely convexity).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 26 / 128

http://tiny.cc/ssnlp14

Regularization Formulations

Tikhonov regularization: ŵ = arg min
w
λΩ̄(w) +

N∑
n=1

L(w; xn, yn)

Ivanov regularization

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to Ω(w) ≤ τ

Morozov regularization

ŵ = arg min
w

Ω(w)

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

Equivalent, under mild conditions (namely convexity).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 26 / 128

http://tiny.cc/ssnlp14

Regularization Formulations

Tikhonov regularization: ŵ = arg min
w
λΩ̄(w) +

N∑
n=1

L(w; xn, yn)

Ivanov regularization

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to Ω(w) ≤ τ

Morozov regularization

ŵ = arg min
w

Ω(w)

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

Equivalent, under mild conditions (namely convexity).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 26 / 128

http://tiny.cc/ssnlp14

Regularization

Why regularize?

Improve generalization by avoiding over-fitting.

Express prior knowledge about w.

Select relevant features (via sparsity-inducing regularization).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 27 / 128

http://tiny.cc/ssnlp14

Regularization

Why regularize?

Improve generalization by avoiding over-fitting.

Express prior knowledge about w.

Select relevant features (via sparsity-inducing regularization).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 27 / 128

http://tiny.cc/ssnlp14

Regularization

Why regularize?

Improve generalization by avoiding over-fitting.

Express prior knowledge about w.

Select relevant features (via sparsity-inducing regularization).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 27 / 128

http://tiny.cc/ssnlp14

Regularization

Why regularize?

Improve generalization by avoiding over-fitting.

Express prior knowledge about w.

Select relevant features (via sparsity-inducing regularization).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 27 / 128

http://tiny.cc/ssnlp14

Regularization

Why regularize?

Improve generalization by avoiding over-fitting.

Express prior knowledge about w.

Select relevant features (via sparsity-inducing regularization).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 27 / 128

http://tiny.cc/ssnlp14

Regularization vs. Bayesian estimation

Regularized parameter estimate: ŵ = arg min
w

Ω(w) +
N∑

n=1

L(w; xn, yn)

...interpretable as Bayesian maximum a posteriori (MAP) estimate:

ŵ = arg max
w

exp (−Ω(w))︸ ︷︷ ︸
prior p(w)

N∏
n=1

exp (−L(w; xn, yn))︸ ︷︷ ︸
likelihood (i.i.d. data)

.

This interpretation underlies the logistic regression (LR) loss:
LLR(w; xn, yn) = − log P (yn|xn; w).

Same is true for the squared error (SE) loss:

LSE(w; xn, yn) = 1
2

(
y −w>f(x)

)2
= − logN(y |w>f(x), 1)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 28 / 128

http://tiny.cc/ssnlp14

Regularization vs. Bayesian estimation

Regularized parameter estimate: ŵ = arg min
w

Ω(w) +
N∑

n=1

L(w; xn, yn)

...interpretable as Bayesian maximum a posteriori (MAP) estimate:

ŵ = arg max
w

exp (−Ω(w))︸ ︷︷ ︸
prior p(w)

N∏
n=1

exp (−L(w; xn, yn))︸ ︷︷ ︸
likelihood (i.i.d. data)

.

This interpretation underlies the logistic regression (LR) loss:
LLR(w; xn, yn) = − log P (yn|xn; w).

Same is true for the squared error (SE) loss:

LSE(w; xn, yn) = 1
2

(
y −w>f(x)

)2
= − logN(y |w>f(x), 1)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 28 / 128

http://tiny.cc/ssnlp14

Regularization vs. Bayesian estimation

Regularized parameter estimate: ŵ = arg min
w

Ω(w) +
N∑

n=1

L(w; xn, yn)

...interpretable as Bayesian maximum a posteriori (MAP) estimate:

ŵ = arg max
w

exp (−Ω(w))︸ ︷︷ ︸
prior p(w)

N∏
n=1

exp (−L(w; xn, yn))︸ ︷︷ ︸
likelihood (i.i.d. data)

.

This interpretation underlies the logistic regression (LR) loss:
LLR(w; xn, yn) = − log P (yn|xn; w).

Same is true for the squared error (SE) loss:

LSE(w; xn, yn) = 1
2

(
y −w>f(x)

)2
= − logN(y |w>f(x), 1)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 28 / 128

http://tiny.cc/ssnlp14

Classical Regularizers: Ridge

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

Arguably, the most classical choice: squared `2 norm: Ω(w) =
λ

2
‖w‖2

2

Corresponds to zero-mean Gaussian prior p(w) ∝ exp
(
−λ

2‖w‖
2
2

)

Ridge regression (SE loss): Hoerl and Kennard (1962 and 1970).

Ridge logistic regression: Schaefer et al. (1984), Cessie and
Houwelingen (1992); in NLP: Chen and Rosenfeld (1999).

Closely related to Tikhonov (1943) and Wiener (1949).

Pros: smooth and convex, thus benign for optimization.

Cons: doesn’t promote sparsity (no explicit feature selection).

Cons: only encodes trivial prior knowledge.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 29 / 128

http://tiny.cc/ssnlp14

Classical Regularizers: Ridge

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

Arguably, the most classical choice: squared `2 norm: Ω(w) =
λ

2
‖w‖2

2

Corresponds to zero-mean Gaussian prior p(w) ∝ exp
(
−λ

2‖w‖
2
2

)
Ridge regression (SE loss): Hoerl and Kennard (1962 and 1970).

Ridge logistic regression: Schaefer et al. (1984), Cessie and
Houwelingen (1992); in NLP: Chen and Rosenfeld (1999).

Closely related to Tikhonov (1943) and Wiener (1949).

Pros: smooth and convex, thus benign for optimization.

Cons: doesn’t promote sparsity (no explicit feature selection).

Cons: only encodes trivial prior knowledge.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 29 / 128

http://tiny.cc/ssnlp14

Classical Regularizers: Ridge

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

Arguably, the most classical choice: squared `2 norm: Ω(w) =
λ

2
‖w‖2

2

Corresponds to zero-mean Gaussian prior p(w) ∝ exp
(
−λ

2‖w‖
2
2

)
Ridge regression (SE loss): Hoerl and Kennard (1962 and 1970).

Ridge logistic regression: Schaefer et al. (1984), Cessie and
Houwelingen (1992); in NLP: Chen and Rosenfeld (1999).

Closely related to Tikhonov (1943) and Wiener (1949).

Pros: smooth and convex, thus benign for optimization.

Cons: doesn’t promote sparsity (no explicit feature selection).

Cons: only encodes trivial prior knowledge.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 29 / 128

http://tiny.cc/ssnlp14

Classical Regularizers: Ridge

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

Arguably, the most classical choice: squared `2 norm: Ω(w) =
λ

2
‖w‖2

2

Corresponds to zero-mean Gaussian prior p(w) ∝ exp
(
−λ

2‖w‖
2
2

)
Ridge regression (SE loss): Hoerl and Kennard (1962 and 1970).

Ridge logistic regression: Schaefer et al. (1984), Cessie and
Houwelingen (1992); in NLP: Chen and Rosenfeld (1999).

Closely related to Tikhonov (1943) and Wiener (1949).

Pros: smooth and convex, thus benign for optimization.

Cons: doesn’t promote sparsity (no explicit feature selection).

Cons: only encodes trivial prior knowledge.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 29 / 128

http://tiny.cc/ssnlp14

Classical Regularizers: Ridge

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

Arguably, the most classical choice: squared `2 norm: Ω(w) =
λ

2
‖w‖2

2

Corresponds to zero-mean Gaussian prior p(w) ∝ exp
(
−λ

2‖w‖
2
2

)
Ridge regression (SE loss): Hoerl and Kennard (1962 and 1970).

Ridge logistic regression: Schaefer et al. (1984), Cessie and
Houwelingen (1992); in NLP: Chen and Rosenfeld (1999).

Closely related to Tikhonov (1943) and Wiener (1949).

Pros: smooth and convex, thus benign for optimization.

Cons: doesn’t promote sparsity (no explicit feature selection).

Cons: only encodes trivial prior knowledge.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 29 / 128

http://tiny.cc/ssnlp14

Classical Regularizers: Ridge

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

Arguably, the most classical choice: squared `2 norm: Ω(w) =
λ

2
‖w‖2

2

Corresponds to zero-mean Gaussian prior p(w) ∝ exp
(
−λ

2‖w‖
2
2

)
Ridge regression (SE loss): Hoerl and Kennard (1962 and 1970).

Ridge logistic regression: Schaefer et al. (1984), Cessie and
Houwelingen (1992); in NLP: Chen and Rosenfeld (1999).

Closely related to Tikhonov (1943) and Wiener (1949).

Pros: smooth and convex, thus benign for optimization.

Cons: doesn’t promote sparsity (no explicit feature selection).

Cons: only encodes trivial prior knowledge.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 29 / 128

http://tiny.cc/ssnlp14

Classical Regularizers: Ridge

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

Arguably, the most classical choice: squared `2 norm: Ω(w) =
λ

2
‖w‖2

2

Corresponds to zero-mean Gaussian prior p(w) ∝ exp
(
−λ

2‖w‖
2
2

)
Ridge regression (SE loss): Hoerl and Kennard (1962 and 1970).

Ridge logistic regression: Schaefer et al. (1984), Cessie and
Houwelingen (1992); in NLP: Chen and Rosenfeld (1999).

Closely related to Tikhonov (1943) and Wiener (1949).

Pros: smooth and convex, thus benign for optimization.

Cons: doesn’t promote sparsity (no explicit feature selection).

Cons: only encodes trivial prior knowledge.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 29 / 128

http://tiny.cc/ssnlp14

Classical Regularizers: Lasso

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

The new classic is the `1 norm: Ω(w) = λ‖w‖1 = λ

D∑
i=1

|wi |.

Corresponds to zero-mean Laplacian prior p(wi) ∝ exp (−λ|wi |)

Best known as: least absolute shrinkage and selection operator
(Lasso) (Tibshirani, 1996).

Used earlier in signal processing (Claerbout and Muir, 1973; Taylor
et al., 1979) neural networks (Williams, 1995),...

In NLP: Kazama and Tsujii (2003); Goodman (2004).

Pros: encourages sparsity: embedded feature selection.

Cons: convex, but non-smooth: challenging optimization.

Cons: only encodes trivial prior knowledge.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 30 / 128

http://tiny.cc/ssnlp14

Classical Regularizers: Lasso

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

The new classic is the `1 norm: Ω(w) = λ‖w‖1 = λ

D∑
i=1

|wi |.

Corresponds to zero-mean Laplacian prior p(wi) ∝ exp (−λ|wi |)
Best known as: least absolute shrinkage and selection operator
(Lasso) (Tibshirani, 1996).

Used earlier in signal processing (Claerbout and Muir, 1973; Taylor
et al., 1979) neural networks (Williams, 1995),...

In NLP: Kazama and Tsujii (2003); Goodman (2004).

Pros: encourages sparsity: embedded feature selection.

Cons: convex, but non-smooth: challenging optimization.

Cons: only encodes trivial prior knowledge.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 30 / 128

http://tiny.cc/ssnlp14

Classical Regularizers: Lasso

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

The new classic is the `1 norm: Ω(w) = λ‖w‖1 = λ

D∑
i=1

|wi |.

Corresponds to zero-mean Laplacian prior p(wi) ∝ exp (−λ|wi |)
Best known as: least absolute shrinkage and selection operator
(Lasso) (Tibshirani, 1996).

Used earlier in signal processing (Claerbout and Muir, 1973; Taylor
et al., 1979) neural networks (Williams, 1995),...

In NLP: Kazama and Tsujii (2003); Goodman (2004).

Pros: encourages sparsity: embedded feature selection.

Cons: convex, but non-smooth: challenging optimization.

Cons: only encodes trivial prior knowledge.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 30 / 128

http://tiny.cc/ssnlp14

Classical Regularizers: Lasso

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

The new classic is the `1 norm: Ω(w) = λ‖w‖1 = λ

D∑
i=1

|wi |.

Corresponds to zero-mean Laplacian prior p(wi) ∝ exp (−λ|wi |)
Best known as: least absolute shrinkage and selection operator
(Lasso) (Tibshirani, 1996).

Used earlier in signal processing (Claerbout and Muir, 1973; Taylor
et al., 1979) neural networks (Williams, 1995),...

In NLP: Kazama and Tsujii (2003); Goodman (2004).

Pros: encourages sparsity: embedded feature selection.

Cons: convex, but non-smooth: challenging optimization.

Cons: only encodes trivial prior knowledge.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 30 / 128

http://tiny.cc/ssnlp14

Classical Regularizers: Lasso

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

The new classic is the `1 norm: Ω(w) = λ‖w‖1 = λ

D∑
i=1

|wi |.

Corresponds to zero-mean Laplacian prior p(wi) ∝ exp (−λ|wi |)
Best known as: least absolute shrinkage and selection operator
(Lasso) (Tibshirani, 1996).

Used earlier in signal processing (Claerbout and Muir, 1973; Taylor
et al., 1979) neural networks (Williams, 1995),...

In NLP: Kazama and Tsujii (2003); Goodman (2004).

Pros: encourages sparsity: embedded feature selection.

Cons: convex, but non-smooth: challenging optimization.

Cons: only encodes trivial prior knowledge.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 30 / 128

http://tiny.cc/ssnlp14

Classical Regularizers: Lasso

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

The new classic is the `1 norm: Ω(w) = λ‖w‖1 = λ

D∑
i=1

|wi |.

Corresponds to zero-mean Laplacian prior p(wi) ∝ exp (−λ|wi |)
Best known as: least absolute shrinkage and selection operator
(Lasso) (Tibshirani, 1996).

Used earlier in signal processing (Claerbout and Muir, 1973; Taylor
et al., 1979) neural networks (Williams, 1995),...

In NLP: Kazama and Tsujii (2003); Goodman (2004).

Pros: encourages sparsity: embedded feature selection.

Cons: convex, but non-smooth: challenging optimization.

Cons: only encodes trivial prior knowledge.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 30 / 128

http://tiny.cc/ssnlp14

Classical Regularizers: Lasso

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

The new classic is the `1 norm: Ω(w) = λ‖w‖1 = λ

D∑
i=1

|wi |.

Corresponds to zero-mean Laplacian prior p(wi) ∝ exp (−λ|wi |)
Best known as: least absolute shrinkage and selection operator
(Lasso) (Tibshirani, 1996).

Used earlier in signal processing (Claerbout and Muir, 1973; Taylor
et al., 1979) neural networks (Williams, 1995),...

In NLP: Kazama and Tsujii (2003); Goodman (2004).

Pros: encourages sparsity: embedded feature selection.

Cons: convex, but non-smooth: challenging optimization.

Cons: only encodes trivial prior knowledge.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 30 / 128

http://tiny.cc/ssnlp14

The Lasso and Sparsity
Why does the Lasso yield sparsity?

The simplest case:

ŵ = arg min
w

1

2
(w − y)2 + λ|w | = soft(y , λ) =

y − λ ⇐ y > λ
0 ⇐ |y | ≤ λ
y + λ ⇐ y < −λ

Contrast with the squared `2 (ridge) regularizer (linear scaling):

ŵ = arg min
w

1

2
(w − y)2 +

λ

2
w 2 =

1

1 + λ
y

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 31 / 128

http://tiny.cc/ssnlp14

The Lasso and Sparsity
Why does the Lasso yield sparsity?

The simplest case:

ŵ = arg min
w

1

2
(w − y)2 + λ|w | = soft(y , λ) =

y − λ ⇐ y > λ
0 ⇐ |y | ≤ λ
y + λ ⇐ y < −λ

Contrast with the squared `2 (ridge) regularizer (linear scaling):

ŵ = arg min
w

1

2
(w − y)2 +

λ

2
w 2 =

1

1 + λ
y

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 31 / 128

http://tiny.cc/ssnlp14

The Lasso and Sparsity
Why does the Lasso yield sparsity?

The simplest case:

ŵ = arg min
w

1

2
(w − y)2 + λ|w | = soft(y , λ) =

y − λ ⇐ y > λ
0 ⇐ |y | ≤ λ
y + λ ⇐ y < −λ

Contrast with the squared `2 (ridge) regularizer (linear scaling):

ŵ = arg min
w

1

2
(w − y)2 +

λ

2
w 2 =

1

1 + λ
y

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 31 / 128

http://tiny.cc/ssnlp14

The Lasso and Sparsity (II)

Why does the Lasso yield sparsity?

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 32 / 128

http://tiny.cc/ssnlp14

The Lasso and Sparsity (II)

Why does the Lasso yield sparsity?

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 32 / 128

http://tiny.cc/ssnlp14

Norms: A Quick Review

A norm is a function satisfying:

‖αw‖ = |α|‖w‖, for any w (homogeneity);

‖w + w′‖ ≤ ‖w‖+ ‖w′‖, for any w,w′ (triangle inequality);

‖w‖ = 0 if and only if w = 0.

Examples of norms:

‖w‖1 = (
∑

i |wi |)1 =
∑

i |wi |.

‖w‖2 =
(∑

i |wi |2
)1/2

=
√∑

i |wi |2.

‖w‖p = (
∑

i |wi |p)1/p (called `p norm, for p ≥ 1).

‖w‖∞ = lim
p→∞

‖w‖p = max{|wi |, i = 1, ...,D}

Fact: all norms are convex.

Also important (but not a norm): ‖w‖0 = lim
p→0
‖w‖p

p = |{i : wi 6= 0}|

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 33 / 128

http://tiny.cc/ssnlp14

Norms: A Quick Review

A norm is a function satisfying:

‖αw‖ = |α|‖w‖, for any w (homogeneity);

‖w + w′‖ ≤ ‖w‖+ ‖w′‖, for any w,w′ (triangle inequality);

‖w‖ = 0 if and only if w = 0.

Examples of norms:

‖w‖1 = (
∑

i |wi |)1 =
∑

i |wi |.

‖w‖2 =
(∑

i |wi |2
)1/2

=
√∑

i |wi |2.

‖w‖p = (
∑

i |wi |p)1/p (called `p norm, for p ≥ 1).

‖w‖∞ = lim
p→∞

‖w‖p = max{|wi |, i = 1, ...,D}

Fact: all norms are convex.

Also important (but not a norm): ‖w‖0 = lim
p→0
‖w‖p

p = |{i : wi 6= 0}|

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 33 / 128

http://tiny.cc/ssnlp14

Norms: A Quick Review

A norm is a function satisfying:

‖αw‖ = |α|‖w‖, for any w (homogeneity);

‖w + w′‖ ≤ ‖w‖+ ‖w′‖, for any w,w′ (triangle inequality);

‖w‖ = 0 if and only if w = 0.

Examples of norms:

‖w‖1 = (
∑

i |wi |)1 =
∑

i |wi |.

‖w‖2 =
(∑

i |wi |2
)1/2

=
√∑

i |wi |2.

‖w‖p = (
∑

i |wi |p)1/p (called `p norm, for p ≥ 1).

‖w‖∞ = lim
p→∞

‖w‖p = max{|wi |, i = 1, ...,D}

Fact: all norms are convex.

Also important (but not a norm): ‖w‖0 = lim
p→0
‖w‖p

p = |{i : wi 6= 0}|

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 33 / 128

http://tiny.cc/ssnlp14

Norms: A Quick Review

A norm is a function satisfying:

‖αw‖ = |α|‖w‖, for any w (homogeneity);

‖w + w′‖ ≤ ‖w‖+ ‖w′‖, for any w,w′ (triangle inequality);

‖w‖ = 0 if and only if w = 0.

Examples of norms:

‖w‖1 = (
∑

i |wi |)1 =
∑

i |wi |.

‖w‖2 =
(∑

i |wi |2
)1/2

=
√∑

i |wi |2.

‖w‖p = (
∑

i |wi |p)1/p (called `p norm, for p ≥ 1).

‖w‖∞ = lim
p→∞

‖w‖p = max{|wi |, i = 1, ...,D}

Fact: all norms are convex.

Also important (but not a norm): ‖w‖0 = lim
p→0
‖w‖p

p = |{i : wi 6= 0}|

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 33 / 128

http://tiny.cc/ssnlp14

Norms: A Quick Review

A norm is a function satisfying:

‖αw‖ = |α|‖w‖, for any w (homogeneity);

‖w + w′‖ ≤ ‖w‖+ ‖w′‖, for any w,w′ (triangle inequality);

‖w‖ = 0 if and only if w = 0.

Examples of norms:

‖w‖1 = (
∑

i |wi |)1 =
∑

i |wi |.

‖w‖2 =
(∑

i |wi |2
)1/2

=
√∑

i |wi |2.

‖w‖p = (
∑

i |wi |p)1/p (called `p norm, for p ≥ 1).

‖w‖∞ = lim
p→∞

‖w‖p = max{|wi |, i = 1, ...,D}

Fact: all norms are convex.

Also important (but not a norm): ‖w‖0 = lim
p→0
‖w‖p

p = |{i : wi 6= 0}|

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 33 / 128

http://tiny.cc/ssnlp14

Norms: A Quick Review

A norm is a function satisfying:

‖αw‖ = |α|‖w‖, for any w (homogeneity);

‖w + w′‖ ≤ ‖w‖+ ‖w′‖, for any w,w′ (triangle inequality);

‖w‖ = 0 if and only if w = 0.

Examples of norms:

‖w‖1 = (
∑

i |wi |)1 =
∑

i |wi |.

‖w‖2 =
(∑

i |wi |2
)1/2

=
√∑

i |wi |2.

‖w‖p = (
∑

i |wi |p)1/p (called `p norm, for p ≥ 1).

‖w‖∞ = lim
p→∞

‖w‖p = max{|wi |, i = 1, ...,D}

Fact: all norms are convex.

Also important (but not a norm): ‖w‖0 = lim
p→0
‖w‖p

p = |{i : wi 6= 0}|

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 33 / 128

http://tiny.cc/ssnlp14

Norms: A Quick Review

A norm is a function satisfying:

‖αw‖ = |α|‖w‖, for any w (homogeneity);

‖w + w′‖ ≤ ‖w‖+ ‖w′‖, for any w,w′ (triangle inequality);

‖w‖ = 0 if and only if w = 0.

Examples of norms:

‖w‖1 = (
∑

i |wi |)1 =
∑

i |wi |.

‖w‖2 =
(∑

i |wi |2
)1/2

=
√∑

i |wi |2.

‖w‖p = (
∑

i |wi |p)1/p (called `p norm, for p ≥ 1).

‖w‖∞ = lim
p→∞

‖w‖p = max{|wi |, i = 1, ...,D}

Fact: all norms are convex.

Also important (but not a norm): ‖w‖0 = lim
p→0
‖w‖p

p = |{i : wi 6= 0}|

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 33 / 128

http://tiny.cc/ssnlp14

Norms: A Quick Review

A norm is a function satisfying:

‖αw‖ = |α|‖w‖, for any w (homogeneity);

‖w + w′‖ ≤ ‖w‖+ ‖w′‖, for any w,w′ (triangle inequality);

‖w‖ = 0 if and only if w = 0.

Examples of norms:

‖w‖1 = (
∑

i |wi |)1 =
∑

i |wi |.

‖w‖2 =
(∑

i |wi |2
)1/2

=
√∑

i |wi |2.

‖w‖p = (
∑

i |wi |p)1/p (called `p norm, for p ≥ 1).

‖w‖∞ = lim
p→∞

‖w‖p = max{|wi |, i = 1, ...,D}

Fact: all norms are convex.

Also important (but not a norm): ‖w‖0 = lim
p→0
‖w‖p

p = |{i : wi 6= 0}|

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 33 / 128

http://tiny.cc/ssnlp14

Norms: A Quick Review

A norm is a function satisfying:

‖αw‖ = |α|‖w‖, for any w (homogeneity);

‖w + w′‖ ≤ ‖w‖+ ‖w′‖, for any w,w′ (triangle inequality);

‖w‖ = 0 if and only if w = 0.

Examples of norms:

‖w‖1 = (
∑

i |wi |)1 =
∑

i |wi |.

‖w‖2 =
(∑

i |wi |2
)1/2

=
√∑

i |wi |2.

‖w‖p = (
∑

i |wi |p)1/p (called `p norm, for p ≥ 1).

‖w‖∞ = lim
p→∞

‖w‖p = max{|wi |, i = 1, ...,D}

Fact: all norms are convex.

Also important (but not a norm): ‖w‖0 = lim
p→0
‖w‖p

p = |{i : wi 6= 0}|

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 33 / 128

http://tiny.cc/ssnlp14

Norms: A Quick Review

A norm is a function satisfying:

‖αw‖ = |α|‖w‖, for any w (homogeneity);

‖w + w′‖ ≤ ‖w‖+ ‖w′‖, for any w,w′ (triangle inequality);

‖w‖ = 0 if and only if w = 0.

Examples of norms:

‖w‖1 = (
∑

i |wi |)1 =
∑

i |wi |.

‖w‖2 =
(∑

i |wi |2
)1/2

=
√∑

i |wi |2.

‖w‖p = (
∑

i |wi |p)1/p (called `p norm, for p ≥ 1).

‖w‖∞ = lim
p→∞

‖w‖p = max{|wi |, i = 1, ...,D}

Fact: all norms are convex.

Also important (but not a norm): ‖w‖0 = lim
p→0
‖w‖p

p = |{i : wi 6= 0}|

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 33 / 128

http://tiny.cc/ssnlp14

Relationship Between `1 and `0

The `0 “norm” (number of non-zeros): ‖w‖0 = |{i : wi 6= 0}|.
Not convex, but...

ŵ = arg min
w

1

2
(w − y)2 + λ|w |0 = hard(y ,

√
2λ) =

{
y ⇐ |y | >

√
2λ

0 ⇐ |y | ≤
√

2λ

The “ideal” feature selection criterion (best subset):

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to ‖w‖0 ≤ τ (limit the number of features)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 34 / 128

http://tiny.cc/ssnlp14

Relationship Between `1 and `0

The `0 “norm” (number of non-zeros): ‖w‖0 = |{i : wi 6= 0}|.
Not convex, but...

ŵ = arg min
w

1

2
(w − y)2 + λ|w |0 = hard(y ,

√
2λ) =

{
y ⇐ |y | >

√
2λ

0 ⇐ |y | ≤
√

2λ

The “ideal” feature selection criterion (best subset):

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to ‖w‖0 ≤ τ (limit the number of features)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 34 / 128

http://tiny.cc/ssnlp14

Relationship Between `1 and `0

The `0 “norm” (number of non-zeros): ‖w‖0 = |{i : wi 6= 0}|.
Not convex, but...

ŵ = arg min
w

1

2
(w − y)2 + λ|w |0 = hard(y ,

√
2λ) =

{
y ⇐ |y | >

√
2λ

0 ⇐ |y | ≤
√

2λ

The “ideal” feature selection criterion (best subset):

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to ‖w‖0 ≤ τ (limit the number of features)
Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 34 / 128

http://tiny.cc/ssnlp14

Relationship Between `1 and `0 (II)
The best subset selection problem

is NP-hard Amaldi and Kann
(1998)(Davis et al., 1997).

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to ‖w‖0 ≤ τ

A closely related problem, also NP-hard (Muthukrishnan, 2005).

ŵ = arg min
w
‖w‖0

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

In some cases, one may replace `0 with `1 and obtain “similar” results:

central issue in compressive sensing (CS) (Candès et al., 2006; Donoho,

2006)

.
Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 35 / 128

http://tiny.cc/ssnlp14

Relationship Between `1 and `0 (II)
The best subset selection problem is NP-hard Amaldi and Kann
(1998)(Davis et al., 1997).

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to ‖w‖0 ≤ τ

A closely related problem, also NP-hard (Muthukrishnan, 2005).

ŵ = arg min
w
‖w‖0

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

In some cases, one may replace `0 with `1 and obtain “similar” results:

central issue in compressive sensing (CS) (Candès et al., 2006; Donoho,

2006)

.
Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 35 / 128

http://tiny.cc/ssnlp14

Relationship Between `1 and `0 (II)
The best subset selection problem is NP-hard Amaldi and Kann
(1998)(Davis et al., 1997).

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to ‖w‖0 ≤ τ

A closely related problem,

also NP-hard (Muthukrishnan, 2005).

ŵ = arg min
w
‖w‖0

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

In some cases, one may replace `0 with `1 and obtain “similar” results:

central issue in compressive sensing (CS) (Candès et al., 2006; Donoho,

2006)

.
Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 35 / 128

http://tiny.cc/ssnlp14

Relationship Between `1 and `0 (II)
The best subset selection problem is NP-hard Amaldi and Kann
(1998)(Davis et al., 1997).

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to ‖w‖0 ≤ τ

A closely related problem, also NP-hard (Muthukrishnan, 2005).

ŵ = arg min
w
‖w‖0

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

In some cases, one may replace `0 with `1 and obtain “similar” results:

central issue in compressive sensing (CS) (Candès et al., 2006; Donoho,

2006)

.
Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 35 / 128

http://tiny.cc/ssnlp14

Relationship Between `1 and `0 (II)
The best subset selection problem is NP-hard Amaldi and Kann
(1998)(Davis et al., 1997).

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to ‖w‖0 ≤ τ

A closely related problem, also NP-hard (Muthukrishnan, 2005).

ŵ = arg min
w
‖w‖0

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

In some cases, one may replace `0 with `1 and obtain “similar” results:

central issue in compressive sensing (CS) (Candès et al., 2006; Donoho,

2006).
Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 35 / 128

http://tiny.cc/ssnlp14

Take-Home Messages

Sparsity is desirable for interpretability, computational savings, and
generalization

`1-regularization gives an embedded method for feature selection

Another view of `1: a convex surrogate for direct penalization of
cardinality (`0)

There are compelling algorithmic reasons for using convex surrogates
like `1

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 36 / 128

http://tiny.cc/ssnlp14

Outline

1 Introduction

2 Loss Functions and Sparsity

3 Structured Sparsity

4 Algorithms

Batch Algorithms

Online Algorithms

5 Applications

6 Conclusions

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 37 / 128

http://tiny.cc/ssnlp14

Models

`1 regularization promotes sparse models

A very simple sparsity pattern: prefer models with small cardinality

Our main question: how can we promote less trivial sparsity patterns?

We’ll talk about structured sparsity and group-Lasso regularization.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 38 / 128

http://tiny.cc/ssnlp14

Models

`1 regularization promotes sparse models

A very simple sparsity pattern: prefer models with small cardinality

Our main question: how can we promote less trivial sparsity patterns?

We’ll talk about structured sparsity and group-Lasso regularization.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 38 / 128

http://tiny.cc/ssnlp14

Models

`1 regularization promotes sparse models

A very simple sparsity pattern: prefer models with small cardinality

Our main question: how can we promote less trivial sparsity patterns?

We’ll talk about structured sparsity and group-Lasso regularization.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 38 / 128

http://tiny.cc/ssnlp14

Structured Sparsity and Groups

Main goal: promote structural patterns, not just penalize cardinality

Group sparsity: discard entire groups of features

density inside each group

sparsity with respect to the groups which are selected

choice of groups: prior knowledge about the intended sparsity patterns

Leads to statistical gains if the prior assumptions are correct (Stojnic
et al., 2009)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 39 / 128

http://tiny.cc/ssnlp14

Structured Sparsity and Groups

Main goal: promote structural patterns, not just penalize cardinality

Group sparsity: discard entire groups of features

density inside each group

sparsity with respect to the groups which are selected

choice of groups: prior knowledge about the intended sparsity patterns

Leads to statistical gains if the prior assumptions are correct (Stojnic
et al., 2009)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 39 / 128

http://tiny.cc/ssnlp14

Structured Sparsity and Groups

Main goal: promote structural patterns, not just penalize cardinality

Group sparsity: discard entire groups of features

density inside each group

sparsity with respect to the groups which are selected

choice of groups: prior knowledge about the intended sparsity patterns

Leads to statistical gains if the prior assumptions are correct (Stojnic
et al., 2009)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 39 / 128

http://tiny.cc/ssnlp14

Tons of Uses

feature template selection (Martins et al., 2011b)

multi-task learning (Caruana, 1997; Obozinski et al., 2010)

multiple kernel learning (Lanckriet et al., 2004)

learning the structure of graphical models (Schmidt and Murphy,
2010)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 40 / 128

http://tiny.cc/ssnlp14

“Grid” Sparsity

For feature spaces that can be arranged as a grid (examples next)

Goal: push entire columns to have zero weights

The groups are the columns of the grid

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 41 / 128

http://tiny.cc/ssnlp14

“Grid” Sparsity

For feature spaces that can be arranged as a grid (examples next)

Goal: push entire columns to have zero weights

The groups are the columns of the grid

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 41 / 128

http://tiny.cc/ssnlp14

“Grid” Sparsity

For feature spaces that can be arranged as a grid (examples next)

Goal: push entire columns to have zero weights

The groups are the columns of the grid

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 41 / 128

http://tiny.cc/ssnlp14

Example 1: Sparsity with Multiple Classes

Assume the feature map decomposes as f(x , y) = f(x)⊗ ey

In words: we’re conjoining each input feature with each output class

input features

la
b
e
ls

“Standard” sparsity is wasteful—we still need to hash all the input features

What we want: discard some input features, along with each class they
conjoin with

Solution: one group per input feature

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 42 / 128

http://tiny.cc/ssnlp14

Example 1: Sparsity with Multiple Classes

Assume the feature map decomposes as f(x , y) = f(x)⊗ ey

In words: we’re conjoining each input feature with each output class

input features

la
b
e
ls

“Standard” sparsity is wasteful—we still need to hash all the input features

What we want: discard some input features, along with each class they
conjoin with

Solution: one group per input feature

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 42 / 128

http://tiny.cc/ssnlp14

Example 2: Multi-Task Learning
(Caruana, 1997; Obozinski et al., 2010)

Same thing, except now rows are tasks and columns are features

shared features

ta
sk

s

What we want: discard features that are irrelevant for all tasks

Solution: one group per feature

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 43 / 128

http://tiny.cc/ssnlp14

Example 2: Multi-Task Learning
(Caruana, 1997; Obozinski et al., 2010)

Same thing, except now rows are tasks and columns are features

shared features

ta
sk

s

What we want: discard features that are irrelevant for all tasks

Solution: one group per feature

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 43 / 128

http://tiny.cc/ssnlp14

Group Sparsity

D features

M groups G1, . . . ,GM , each
Gm ⊆ {1, . . . ,D}
parameter subvectors w1, . . . ,wM

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

Ω(w) =
∑M

m=1 ‖wm‖2

Intuitively: the `1 norm of the `2 norms

Technically, still a norm (called a mixed norm, denoted `2,1)

λm: prior weight for group Gm (different groups have different sizes)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 44 / 128

http://tiny.cc/ssnlp14

Group Sparsity

D features

M groups G1, . . . ,GM , each
Gm ⊆ {1, . . . ,D}
parameter subvectors w1, . . . ,wM

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

Ω(w) =
∑M

m=1 ‖wm‖2

Intuitively: the `1 norm of the `2 norms

Technically, still a norm (called a mixed norm, denoted `2,1)

λm: prior weight for group Gm (different groups have different sizes)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 44 / 128

http://tiny.cc/ssnlp14

Group Sparsity

D features

M groups G1, . . . ,GM , each
Gm ⊆ {1, . . . ,D}
parameter subvectors w1, . . . ,wM

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

Ω(w) =
∑M

m=1 ‖wm‖2

Intuitively: the `1 norm of the `2 norms

Technically, still a norm (called a mixed norm, denoted `2,1)

λm: prior weight for group Gm (different groups have different sizes)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 44 / 128

http://tiny.cc/ssnlp14

Group Sparsity

D features

M groups G1, . . . ,GM , each
Gm ⊆ {1, . . . ,D}
parameter subvectors w1, . . . ,wM

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

Ω(w) =
∑M

m=1 ‖wm‖2

Intuitively: the `1 norm of the `2 norms

Technically, still a norm (called a mixed norm, denoted `2,1)

λm: prior weight for group Gm (different groups have different sizes)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 44 / 128

http://tiny.cc/ssnlp14

Group Sparsity

D features

M groups G1, . . . ,GM , each
Gm ⊆ {1, . . . ,D}
parameter subvectors w1, . . . ,wM

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

Ω(w) =
∑M

m=1 λm‖wm‖2

Intuitively: the `1 norm of the `2 norms

Technically, still a norm (called a mixed norm, denoted `2,1)

λm: prior weight for group Gm (different groups have different sizes)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 44 / 128

http://tiny.cc/ssnlp14

Regularization Formulations (reminder)

Tikhonov regularization: ŵ = arg min
w

Ω(w) +
N∑

n=1

L(w; xn, yn)

Ivanov regularization

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to Ω(w) ≤ τ

Morozov regularization

ŵ = arg min
w

Ω(w)

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

Equivalent, under mild conditions (namely convexity).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 45 / 128

http://tiny.cc/ssnlp14

Lasso versus group-Lasso

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 46 / 128

http://tiny.cc/ssnlp14

Lasso versus group-Lasso

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 46 / 128

http://tiny.cc/ssnlp14

Other names, other norms

Statisticians call these composite absolute penalties (Zhao et al., 2009)

In general: the (weighted) `r -norm of the `q-norms (r ≥ 1, q ≥ 1), called
the mixed `q,r norm

Ω(w) =
(∑M

m=1λm‖wm‖r
q

)1/r

Group sparsity corresponds to r = 1

This talk: q = 2

However q =∞ is also popular (Quattoni et al., 2009; Graça et al., 2009;

Wright et al., 2009; Eisenstein et al., 2011)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 47 / 128

http://tiny.cc/ssnlp14

Other names, other norms

Statisticians call these composite absolute penalties (Zhao et al., 2009)

In general: the (weighted) `r -norm of the `q-norms (r ≥ 1, q ≥ 1), called
the mixed `q,r norm

Ω(w) =
(∑M

m=1λm‖wm‖r
q

)1/r

Group sparsity corresponds to r = 1

This talk: q = 2

However q =∞ is also popular (Quattoni et al., 2009; Graça et al., 2009;

Wright et al., 2009; Eisenstein et al., 2011)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 47 / 128

http://tiny.cc/ssnlp14

Other names, other norms

Statisticians call these composite absolute penalties (Zhao et al., 2009)

In general: the (weighted) `r -norm of the `q-norms (r ≥ 1, q ≥ 1), called
the mixed `q,r norm

Ω(w) =
(∑M

m=1λm‖wm‖r
q

)1/r

Group sparsity corresponds to r = 1

This talk: q = 2

However q =∞ is also popular (Quattoni et al., 2009; Graça et al., 2009;

Wright et al., 2009; Eisenstein et al., 2011)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 47 / 128

http://tiny.cc/ssnlp14

Three Scenarios

Non-overlapping Groups

Tree-structured Groups

Graph-structured Groups

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 48 / 128

http://tiny.cc/ssnlp14

Three Scenarios

Non-overlapping Groups

Tree-structured Groups

Graph-structured Groups

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 48 / 128

http://tiny.cc/ssnlp14

Non-overlapping Groups

Assume G1, . . . ,GM are disjoint

⇒ Each feature belongs to exactly one group

Ω(w) =
∑M

m=1 λm‖wm‖2

Trivial choices of groups recover unstructured regularizers:

`2-regularization: one large group G1 = {1, . . . ,D}
`1-regularization: D singleton groups Gd = {d}

Examples of non-trivial groups:

label-based groups (groups are columns of a matrix)

template-based groups (next)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 49 / 128

http://tiny.cc/ssnlp14

Non-overlapping Groups

Assume G1, . . . ,GM are disjoint

⇒ Each feature belongs to exactly one group

Ω(w) =
∑M

m=1 λm‖wm‖2

Trivial choices of groups recover unstructured regularizers:

`2-regularization: one large group G1 = {1, . . . ,D}
`1-regularization: D singleton groups Gd = {d}

Examples of non-trivial groups:

label-based groups (groups are columns of a matrix)

template-based groups (next)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 49 / 128

http://tiny.cc/ssnlp14

Non-overlapping Groups

Assume G1, . . . ,GM are disjoint

⇒ Each feature belongs to exactly one group

Ω(w) =
∑M

m=1 λm‖wm‖2

Trivial choices of groups recover unstructured regularizers:

`2-regularization: one large group G1 = {1, . . . ,D}
`1-regularization: D singleton groups Gd = {d}

Examples of non-trivial groups:

label-based groups (groups are columns of a matrix)

template-based groups (next)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 49 / 128

http://tiny.cc/ssnlp14

Non-overlapping Groups

Assume G1, . . . ,GM are disjoint

⇒ Each feature belongs to exactly one group

Ω(w) =
∑M

m=1 λm‖wm‖2

Trivial choices of groups recover unstructured regularizers:

`2-regularization: one large group G1 = {1, . . . ,D}
`1-regularization: D singleton groups Gd = {d}

Examples of non-trivial groups:

label-based groups (groups are columns of a matrix)

template-based groups (next)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 49 / 128

http://tiny.cc/ssnlp14

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 50 / 128

http://tiny.cc/ssnlp14

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 50 / 128

http://tiny.cc/ssnlp14

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 50 / 128

http://tiny.cc/ssnlp14

Example: Feature Template Selection

5

5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 50 / 128

http://tiny.cc/ssnlp14

Example: Feature Template Selection

5

5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 50 / 128

http://tiny.cc/ssnlp14

Example: Feature Template Selection

5

5
Input: We want to explore the feature space

PRP VBP TO VB DT NN NN
Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

"the feature"

"explore the"

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 50 / 128

http://tiny.cc/ssnlp14

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

"the feature"

"explore the"

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 50 / 128

http://tiny.cc/ssnlp14

Example: Feature Template Selection

5

5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

"the feature"

"explore the"

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 50 / 128

http://tiny.cc/ssnlp14

Example: Feature Template Selection

5

5
Input: We want to explore the feature space

PRP VBP TO VB DT NN NN
Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

"the feature"

"explore the"

"DT NN NN"

"VB DT NN"

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 50 / 128

http://tiny.cc/ssnlp14

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

"the feature"

"explore the"

"DT NN NN"

"VB DT NN"

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 50 / 128

http://tiny.cc/ssnlp14

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

"DT NN NN"

"VB DT NN"

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 50 / 128

http://tiny.cc/ssnlp14

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 50 / 128

http://tiny.cc/ssnlp14

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 50 / 128

http://tiny.cc/ssnlp14

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 50 / 128

http://tiny.cc/ssnlp14

Three Scenarios

Non-overlapping Groups

Tree-structured Groups

Graph-structured Groups

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 51 / 128

http://tiny.cc/ssnlp14

Three Scenarios

Non-overlapping Groups

Tree-structured Groups

Graph-structured Groups

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 51 / 128

http://tiny.cc/ssnlp14

Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 52 / 128

http://tiny.cc/ssnlp14

Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 52 / 128

http://tiny.cc/ssnlp14

Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 52 / 128

http://tiny.cc/ssnlp14

Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 52 / 128

http://tiny.cc/ssnlp14

Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 52 / 128

http://tiny.cc/ssnlp14

Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 52 / 128

http://tiny.cc/ssnlp14

Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 52 / 128

http://tiny.cc/ssnlp14

Three Scenarios

Non-overlapping Groups

Tree-structured Groups

Graph-structured Groups

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 53 / 128

http://tiny.cc/ssnlp14

Three Scenarios

Non-overlapping Groups

Tree-structured Groups

Graph-structured Groups

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 53 / 128

http://tiny.cc/ssnlp14

Graph-Structured Groups

In general: groups can be represented as a directed acyclic graph

set inclusion induces a partial order on groups (Jenatton et al., 2009)

feature space becomes a poset

sparsity patterns: given by this poset

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 54 / 128

http://tiny.cc/ssnlp14

Example: coarse-to-fine regularization

1 Define a partial order between basic feature templates (e.g., p0 � w0)

2 Extend this partial order to all templates by lexicographic closure:
p0 � p0p1 � w0w1

Goal: only include finer features if coarser ones are also in the model

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 55 / 128

http://tiny.cc/ssnlp14

Things to Keep in Mind

Structured sparsity cares about the structure of the feature space

Group-Lasso regularization generalizes `1 and it’s still convex

Choice of groups: problem dependent, opportunity to use prior
knowledge to favour certain structural patterns

Next: algorithms

We’ll see that optimization is easier with non-overlapping or
tree-structured groups than with arbitrary overlaps

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 56 / 128

http://tiny.cc/ssnlp14

Things to Keep in Mind

Structured sparsity cares about the structure of the feature space

Group-Lasso regularization generalizes `1 and it’s still convex

Choice of groups: problem dependent, opportunity to use prior
knowledge to favour certain structural patterns

Next: algorithms

We’ll see that optimization is easier with non-overlapping or
tree-structured groups than with arbitrary overlaps

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 56 / 128

http://tiny.cc/ssnlp14

Things to Keep in Mind

Structured sparsity cares about the structure of the feature space

Group-Lasso regularization generalizes `1 and it’s still convex

Choice of groups: problem dependent, opportunity to use prior
knowledge to favour certain structural patterns

Next: algorithms

We’ll see that optimization is easier with non-overlapping or
tree-structured groups than with arbitrary overlaps

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 56 / 128

http://tiny.cc/ssnlp14

Outline

1 Introduction

2 Loss Functions and Sparsity

3 Structured Sparsity

4 Algorithms

Batch Algorithms

Online Algorithms

5 Applications

6 Conclusions

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 57 / 128

http://tiny.cc/ssnlp14

Learning the Model

Recall that learning involves solving

min
w

Ω(w)︸ ︷︷ ︸
regularizer

+
N∑

i=1

L(w, xi , yi)︸ ︷︷ ︸
total loss

,

We’ll address two kinds of optimization algorithms:

batch algorithms (attacks the complete problem);

online algorithms (uses the training examples one by one)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 58 / 128

http://tiny.cc/ssnlp14

Learning the Model

Recall that learning involves solving

min
w

Ω(w)︸ ︷︷ ︸
regularizer

+
N∑

i=1

L(w, xi , yi)︸ ︷︷ ︸
total loss

,

We’ll address two kinds of optimization algorithms:

batch algorithms (attacks the complete problem);

online algorithms (uses the training examples one by one)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 58 / 128

http://tiny.cc/ssnlp14

Key Concepts: Convex Functions

f is a convex function if:

∀λ ∈ [0, 1], x and x ′ ∈ domain(f)

f (λx + (1− λ)x ′) ≤ λf (x) + (1− λ)f (x ′)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 59 / 128

http://tiny.cc/ssnlp14

Outline

1 Introduction

2 Loss Functions and Sparsity

3 Structured Sparsity

4 Algorithms

Batch Algorithms

Online Algorithms

5 Applications

6 Conclusions

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 60 / 128

http://tiny.cc/ssnlp14

Batch Algorithms

Subgradient methods

Proximal methods

Alternating direction method of multipliers

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 61 / 128

http://tiny.cc/ssnlp14

Key Concepts: Subgradients
Convexity ⇒ continuity; convexity 6⇒ differentiability (e.g., f (w) = ‖w‖1).

Subgradients generalize gradients for (maybe non-diff.) convex functions:

v is a subgradient of f at x if f (x′) ≥ f (x) + v>(x′ − x)

Subdifferential: ∂f (x) = {v : v is a subgradient of f at x}
If f is differentiable, ∂f (x) = {∇f (x)}

linear lower bound non-differentiable case

Notation: ∇̃f (x) is a subgradient of f at x

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 62 / 128

http://tiny.cc/ssnlp14

Key Concepts: Subgradients
Convexity ⇒ continuity; convexity 6⇒ differentiability (e.g., f (w) = ‖w‖1).

Subgradients generalize gradients for (maybe non-diff.) convex functions:

v is a subgradient of f at x if f (x′) ≥ f (x) + v>(x′ − x)

Subdifferential: ∂f (x) = {v : v is a subgradient of f at x}

If f is differentiable, ∂f (x) = {∇f (x)}

linear lower bound

non-differentiable case

Notation: ∇̃f (x) is a subgradient of f at x

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 62 / 128

http://tiny.cc/ssnlp14

Key Concepts: Subgradients
Convexity ⇒ continuity; convexity 6⇒ differentiability (e.g., f (w) = ‖w‖1).

Subgradients generalize gradients for (maybe non-diff.) convex functions:

v is a subgradient of f at x if f (x′) ≥ f (x) + v>(x′ − x)

Subdifferential: ∂f (x) = {v : v is a subgradient of f at x}
If f is differentiable, ∂f (x) = {∇f (x)}

linear lower bound

non-differentiable case

Notation: ∇̃f (x) is a subgradient of f at x

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 62 / 128

http://tiny.cc/ssnlp14

Key Concepts: Subgradients
Convexity ⇒ continuity; convexity 6⇒ differentiability (e.g., f (w) = ‖w‖1).

Subgradients generalize gradients for (maybe non-diff.) convex functions:

v is a subgradient of f at x if f (x′) ≥ f (x) + v>(x′ − x)

Subdifferential: ∂f (x) = {v : v is a subgradient of f at x}
If f is differentiable, ∂f (x) = {∇f (x)}

linear lower bound non-differentiable case

Notation: ∇̃f (x) is a subgradient of f at x

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 62 / 128

http://tiny.cc/ssnlp14

Key Concepts: Subgradients
Convexity ⇒ continuity; convexity 6⇒ differentiability (e.g., f (w) = ‖w‖1).

Subgradients generalize gradients for (maybe non-diff.) convex functions:

v is a subgradient of f at x if f (x′) ≥ f (x) + v>(x′ − x)

Subdifferential: ∂f (x) = {v : v is a subgradient of f at x}
If f is differentiable, ∂f (x) = {∇f (x)}

linear lower bound non-differentiable case

Notation: ∇̃f (x) is a subgradient of f at x
Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 62 / 128

http://tiny.cc/ssnlp14

Subgradient Methods

minw Ω(w) + Λ(w), where Λ(w) =
∑N

i=1 L(w, xi , yi) (loss)

Subgradient methods were invented by Shor in the 1970’s (Shor, 1985):

input: stepsize sequence (ηt)T
t=1

initialize w
for t = 1, 2, . . . do

(sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃Λ(w)

)
end for

Key disadvantages:

The step size ηt needs to be annealed for convergence: very slow!

Doesn’t explicitly capture the sparsity promoted by sparse regularizers.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 63 / 128

http://tiny.cc/ssnlp14

Subgradient Methods

minw Ω(w) + Λ(w), where Λ(w) =
∑N

i=1 L(w, xi , yi) (loss)

Subgradient methods were invented by Shor in the 1970’s (Shor, 1985):

input: stepsize sequence (ηt)T
t=1

initialize w
for t = 1, 2, . . . do

(sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃Λ(w)

)
end for

Key disadvantages:

The step size ηt needs to be annealed for convergence: very slow!

Doesn’t explicitly capture the sparsity promoted by sparse regularizers.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 63 / 128

http://tiny.cc/ssnlp14

Subgradient Methods

minw Ω(w) + Λ(w), where Λ(w) =
∑N

i=1 L(w, xi , yi) (loss)

Subgradient methods were invented by Shor in the 1970’s (Shor, 1985):

input: stepsize sequence (ηt)T
t=1

initialize w
for t = 1, 2, . . . do

(sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃Λ(w)

)
end for

Key disadvantages:

The step size ηt needs to be annealed for convergence: very slow!

Doesn’t explicitly capture the sparsity promoted by sparse regularizers.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 63 / 128

http://tiny.cc/ssnlp14

Key Concepts: Proximity Operators
Let Ω : RD → R̄ be a convex function.

The Ω-proximity operator is the following RD → RD map:

w 7→ proxΩ(w) = arg min
u

1

2
‖u−w‖2

2 + Ω(u)

...always well defined, because ‖u−w‖2
2 is strictly convex.

Classical examples:

Squared `2 regularization, Ω(w) = λ
2‖w‖

2
2: scaling operation

proxΩ(w) =
1

1 + λ
w

`1 regularization, Ω(w) = λ‖w‖1: soft-thresholding;

proxΩ(w) = soft(w, λ)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 64 / 128

http://tiny.cc/ssnlp14

Key Concepts: Proximity Operators
Let Ω : RD → R̄ be a convex function.

The Ω-proximity operator is the following RD → RD map:

w 7→ proxΩ(w) = arg min
u

1

2
‖u−w‖2

2 + Ω(u)

...always well defined, because ‖u−w‖2
2 is strictly convex.

Classical examples:

Squared `2 regularization, Ω(w) = λ
2‖w‖

2
2: scaling operation

proxΩ(w) =
1

1 + λ
w

`1 regularization, Ω(w) = λ‖w‖1: soft-thresholding;

proxΩ(w) = soft(w, λ)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 64 / 128

http://tiny.cc/ssnlp14

Key Concepts: Proximity Operators
Let Ω : RD → R̄ be a convex function.

The Ω-proximity operator is the following RD → RD map:

w 7→ proxΩ(w) = arg min
u

1

2
‖u−w‖2

2 + Ω(u)

...always well defined, because ‖u−w‖2
2 is strictly convex.

Classical examples:

Squared `2 regularization, Ω(w) = λ
2‖w‖

2
2: scaling operation

proxΩ(w) =
1

1 + λ
w

`1 regularization, Ω(w) = λ‖w‖1: soft-thresholding;

proxΩ(w) = soft(w, λ)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 64 / 128

http://tiny.cc/ssnlp14

Key Concepts: Proximity Operators
Let Ω : RD → R̄ be a convex function.

The Ω-proximity operator is the following RD → RD map:

w 7→ proxΩ(w) = arg min
u

1

2
‖u−w‖2

2 + Ω(u)

...always well defined, because ‖u−w‖2
2 is strictly convex.

Classical examples:

Squared `2 regularization, Ω(w) = λ
2‖w‖

2
2: scaling operation

proxΩ(w) =
1

1 + λ
w

`1 regularization, Ω(w) = λ‖w‖1: soft-thresholding;

proxΩ(w) = soft(w, λ)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 64 / 128

http://tiny.cc/ssnlp14

Key Concepts: Proximity Operators (II)

proxΩ(w) = arg min
u

1

2
‖u−w‖2

2 + Ω(u)

`2 regularization, Ω(w) = λ‖w‖2: vector soft thresholding

proxΩ(w) =

{
0 ⇐ ‖w‖ ≤ λ

w
‖w‖ (‖w‖ − λ) ⇐ ‖w‖ > λ

indicator function, Ω(w) = ιS(w) =

{
0 ⇐ w ∈ S

+∞ ⇐ w 6∈ S

proxΩ(w) = PS(w)

Euclidean projection

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 65 / 128

http://tiny.cc/ssnlp14

Key Concepts: Proximity Operators (II)

proxΩ(w) = arg min
u

1

2
‖u−w‖2

2 + Ω(u)

`2 regularization, Ω(w) = λ‖w‖2: vector soft thresholding

proxΩ(w) =

{
0 ⇐ ‖w‖ ≤ λ

w
‖w‖ (‖w‖ − λ) ⇐ ‖w‖ > λ

indicator function, Ω(w) = ιS(w) =

{
0 ⇐ w ∈ S

+∞ ⇐ w 6∈ S

proxΩ(w) = PS(w)

Euclidean projection

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 65 / 128

http://tiny.cc/ssnlp14

Key Concepts: Proximity Operators (II)

proxΩ(w) = arg min
u

1

2
‖u−w‖2

2 + Ω(u)

`2 regularization, Ω(w) = λ‖w‖2: vector soft thresholding

proxΩ(w) =

{
0 ⇐ ‖w‖ ≤ λ

w
‖w‖ (‖w‖ − λ) ⇐ ‖w‖ > λ

indicator function, Ω(w) = ιS(w) =

{
0 ⇐ w ∈ S

+∞ ⇐ w 6∈ S

proxΩ(w) = PS(w)

Euclidean projection

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 65 / 128

http://tiny.cc/ssnlp14

Key Concepts: Proximity Operators (III)

Group regularizers: Ω(w) =
M∑

m=1

Ωm(wm)

Groups: Gm ⊂ {1, 2, ...,D}. wm is a sub-vector of w with the
indices in Gm.

Non-overlapping groups (Gm ∩ Gn = ∅, for m 6= n): separable prox
operator

[proxΩ(w)]m = proxΩm
(wm)

Tree-structured groups: (two groups are either non-overlapping or
one contais the other) proxΩ can be computed recursively (Jenatton
et al., 2011).

Arbitrary groups:
For Ωj (wm) = ‖wm‖2: solved via convex smooth optimization (Yuan
et al., 2011).
Sequential proximity steps (Martins et al., 2011a) (more later).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 66 / 128

http://tiny.cc/ssnlp14

Key Concepts: Proximity Operators (III)

Group regularizers: Ω(w) =
M∑

m=1

Ωm(wm)

Groups: Gm ⊂ {1, 2, ...,D}. wm is a sub-vector of w with the
indices in Gm.

Non-overlapping groups (Gm ∩ Gn = ∅, for m 6= n): separable prox
operator

[proxΩ(w)]m = proxΩm
(wm)

Tree-structured groups: (two groups are either non-overlapping or
one contais the other) proxΩ can be computed recursively (Jenatton
et al., 2011).

Arbitrary groups:
For Ωj (wm) = ‖wm‖2: solved via convex smooth optimization (Yuan
et al., 2011).
Sequential proximity steps (Martins et al., 2011a) (more later).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 66 / 128

http://tiny.cc/ssnlp14

Key Concepts: Proximity Operators (III)

Group regularizers: Ω(w) =
M∑

m=1

Ωm(wm)

Groups: Gm ⊂ {1, 2, ...,D}. wm is a sub-vector of w with the
indices in Gm.

Non-overlapping groups (Gm ∩ Gn = ∅, for m 6= n): separable prox
operator

[proxΩ(w)]m = proxΩm
(wm)

Tree-structured groups: (two groups are either non-overlapping or
one contais the other) proxΩ can be computed recursively (Jenatton
et al., 2011).

Arbitrary groups:
For Ωj (wm) = ‖wm‖2: solved via convex smooth optimization (Yuan
et al., 2011).
Sequential proximity steps (Martins et al., 2011a) (more later).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 66 / 128

http://tiny.cc/ssnlp14

Key Concepts: Proximity Operators (III)

Group regularizers: Ω(w) =
M∑

m=1

Ωm(wm)

Groups: Gm ⊂ {1, 2, ...,D}. wm is a sub-vector of w with the
indices in Gm.

Non-overlapping groups (Gm ∩ Gn = ∅, for m 6= n): separable prox
operator

[proxΩ(w)]m = proxΩm
(wm)

Tree-structured groups: (two groups are either non-overlapping or
one contais the other) proxΩ can be computed recursively (Jenatton
et al., 2011).

Arbitrary groups:
For Ωj (wm) = ‖wm‖2: solved via convex smooth optimization (Yuan
et al., 2011).
Sequential proximity steps (Martins et al., 2011a) (more later).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 66 / 128

http://tiny.cc/ssnlp14

Proximal Gradient
Recall the problem: min

w
Ω(w) + Λ(w)

Key assumptions: ∇Λ(w) and proxΩ “easy”.

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt))

Key feature: each steps decouples the loss and the regularizer.

Projected gradient is a particular case, for proxΩ = PS.

Often called iterative shrinkage thresholding (IST).

Can be derived with different tools:

expectation-maximization (EM) (Figueiredo and Nowak, 2003);

majorization-minimization (Daubechies et al., 2004);

forward-backward splitting (Combettes and Wajs, 2006);

separable approximation (Wright et al., 2009).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 67 / 128

http://tiny.cc/ssnlp14

Proximal Gradient
Recall the problem: min

w
Ω(w) + Λ(w)

Key assumptions: ∇Λ(w) and proxΩ “easy”.

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt))

Key feature: each steps decouples the loss and the regularizer.

Projected gradient is a particular case, for proxΩ = PS.

Often called iterative shrinkage thresholding (IST).

Can be derived with different tools:

expectation-maximization (EM) (Figueiredo and Nowak, 2003);

majorization-minimization (Daubechies et al., 2004);

forward-backward splitting (Combettes and Wajs, 2006);

separable approximation (Wright et al., 2009).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 67 / 128

http://tiny.cc/ssnlp14

Proximal Gradient
Recall the problem: min

w
Ω(w) + Λ(w)

Key assumptions: ∇Λ(w) and proxΩ “easy”.

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt))

Key feature: each steps decouples the loss and the regularizer.

Projected gradient is a particular case, for proxΩ = PS.

Often called iterative shrinkage thresholding (IST).

Can be derived with different tools:

expectation-maximization (EM) (Figueiredo and Nowak, 2003);

majorization-minimization (Daubechies et al., 2004);

forward-backward splitting (Combettes and Wajs, 2006);

separable approximation (Wright et al., 2009).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 67 / 128

http://tiny.cc/ssnlp14

Proximal Gradient
Recall the problem: min

w
Ω(w) + Λ(w)

Key assumptions: ∇Λ(w) and proxΩ “easy”.

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt))

Key feature: each steps decouples the loss and the regularizer.

Projected gradient is a particular case, for proxΩ = PS.

Often called iterative shrinkage thresholding (IST).

Can be derived with different tools:

expectation-maximization (EM) (Figueiredo and Nowak, 2003);

majorization-minimization (Daubechies et al., 2004);

forward-backward splitting (Combettes and Wajs, 2006);

separable approximation (Wright et al., 2009).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 67 / 128

http://tiny.cc/ssnlp14

Proximal Gradient
Recall the problem: min

w
Ω(w) + Λ(w)

Key assumptions: ∇Λ(w) and proxΩ “easy”.

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt))

Key feature: each steps decouples the loss and the regularizer.

Projected gradient is a particular case, for proxΩ = PS.

Often called iterative shrinkage thresholding (IST).

Can be derived with different tools:

expectation-maximization (EM) (Figueiredo and Nowak, 2003);

majorization-minimization (Daubechies et al., 2004);

forward-backward splitting (Combettes and Wajs, 2006);

separable approximation (Wright et al., 2009).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 67 / 128

http://tiny.cc/ssnlp14

Proximal Gradient
Recall the problem: min

w
Ω(w) + Λ(w)

Key assumptions: ∇Λ(w) and proxΩ “easy”.

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt))

Key feature: each steps decouples the loss and the regularizer.

Projected gradient is a particular case, for proxΩ = PS.

Often called iterative shrinkage thresholding (IST).

Can be derived with different tools:

expectation-maximization (EM) (Figueiredo and Nowak, 2003);

majorization-minimization (Daubechies et al., 2004);

forward-backward splitting (Combettes and Wajs, 2006);

separable approximation (Wright et al., 2009).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 67 / 128

http://tiny.cc/ssnlp14

Proximal Gradient
Recall the problem: min

w
Ω(w) + Λ(w)

Key assumptions: ∇Λ(w) and proxΩ “easy”.

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt))

Key feature: each steps decouples the loss and the regularizer.

Projected gradient is a particular case, for proxΩ = PS.

Often called iterative shrinkage thresholding (IST).

Can be derived with different tools:

expectation-maximization (EM) (Figueiredo and Nowak, 2003);

majorization-minimization (Daubechies et al., 2004);

forward-backward splitting (Combettes and Wajs, 2006);

separable approximation (Wright et al., 2009).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 67 / 128

http://tiny.cc/ssnlp14

Monotonicity and Convergence

Proximal gradient, a.k.a., iterative shrinkage thresholding (IST):

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt)) .

Assume Λ(w) has L-Lipschitz gradient: ‖∇Λ(w)−∇Λ(w′)‖ ≤ L‖w −w′‖.

Monotonicity: if ηt ≤ 1/L, then Λ(wt+1) + Ω(wt+1) ≤ Λ(wt) + Ω(wt).

Convergence of objective value (Beck and Teboulle, 2009)

(
Λ(wt) + Ω(wt)

)
−
(
Λ(w∗) + Ω(w∗)

)
= O

(
1

ε

)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 68 / 128

http://tiny.cc/ssnlp14

Monotonicity and Convergence

Proximal gradient, a.k.a., iterative shrinkage thresholding (IST):

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt)) .

Assume Λ(w) has L-Lipschitz gradient: ‖∇Λ(w)−∇Λ(w′)‖ ≤ L‖w −w′‖.
Monotonicity: if ηt ≤ 1/L, then Λ(wt+1) + Ω(wt+1) ≤ Λ(wt) + Ω(wt).

Convergence of objective value (Beck and Teboulle, 2009)

(
Λ(wt) + Ω(wt)

)
−
(
Λ(w∗) + Ω(w∗)

)
= O

(
1

ε

)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 68 / 128

http://tiny.cc/ssnlp14

Monotonicity and Convergence

Proximal gradient, a.k.a., iterative shrinkage thresholding (IST):

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt)) .

Assume Λ(w) has L-Lipschitz gradient: ‖∇Λ(w)−∇Λ(w′)‖ ≤ L‖w −w′‖.
Monotonicity: if ηt ≤ 1/L, then Λ(wt+1) + Ω(wt+1) ≤ Λ(wt) + Ω(wt).

Convergence of objective value (Beck and Teboulle, 2009)

(
Λ(wt) + Ω(wt)

)
−
(
Λ(w∗) + Ω(w∗)

)
= O

(
1

ε

)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 68 / 128

http://tiny.cc/ssnlp14

Accelerating IST: FISTA

Idea: compute wt+1 based, not only on wt , but also on wt−1.

Fast IST algorithm (FISTA) (Beck and Teboulle, 2009):

bt+1 =
1+
√

1+4 b2
t

2

z = wt + bt−1
bt+1

(wt −wt−1)

wt+1 = proxηΩ (z− η∇Λ(z))

Convergence of objective value (Beck and Teboulle, 2009)

(
Λ(wt) + Ω(wt)

)
−
(
Λ(w∗) + Ω(w∗)

)
= O

(
1√
ε

)
(vs O(1/ε) for IST)

Other IST variants: Nesterov’s method (Nesterov, 2007), SpaRSA (Wright
et al., 2009), TwIST (two-step IST; Bioucas-Dias and Figueiredo, 2007).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 69 / 128

http://tiny.cc/ssnlp14

Accelerating IST: FISTA

Idea: compute wt+1 based, not only on wt , but also on wt−1.

Fast IST algorithm (FISTA) (Beck and Teboulle, 2009):

bt+1 =
1+
√

1+4 b2
t

2

z = wt + bt−1
bt+1

(wt −wt−1)

wt+1 = proxηΩ (z− η∇Λ(z))

Convergence of objective value (Beck and Teboulle, 2009)

(
Λ(wt) + Ω(wt)

)
−
(
Λ(w∗) + Ω(w∗)

)
= O

(
1√
ε

)
(vs O(1/ε) for IST)

Other IST variants: Nesterov’s method (Nesterov, 2007), SpaRSA (Wright
et al., 2009), TwIST (two-step IST; Bioucas-Dias and Figueiredo, 2007).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 69 / 128

http://tiny.cc/ssnlp14

Accelerating IST: FISTA

Idea: compute wt+1 based, not only on wt , but also on wt−1.

Fast IST algorithm (FISTA) (Beck and Teboulle, 2009):

bt+1 =
1+
√

1+4 b2
t

2

z = wt + bt−1
bt+1

(wt −wt−1)

wt+1 = proxηΩ (z− η∇Λ(z))

Convergence of objective value (Beck and Teboulle, 2009)

(
Λ(wt) + Ω(wt)

)
−
(
Λ(w∗) + Ω(w∗)

)
= O

(
1√
ε

)
(vs O(1/ε) for IST)

Other IST variants: Nesterov’s method (Nesterov, 2007), SpaRSA (Wright
et al., 2009), TwIST (two-step IST; Bioucas-Dias and Figueiredo, 2007).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 69 / 128

http://tiny.cc/ssnlp14

Accelerating IST: FISTA

Idea: compute wt+1 based, not only on wt , but also on wt−1.

Fast IST algorithm (FISTA) (Beck and Teboulle, 2009):

bt+1 =
1+
√

1+4 b2
t

2

z = wt + bt−1
bt+1

(wt −wt−1)

wt+1 = proxηΩ (z− η∇Λ(z))

Convergence of objective value (Beck and Teboulle, 2009)

(
Λ(wt) + Ω(wt)

)
−
(
Λ(w∗) + Ω(w∗)

)
= O

(
1√
ε

)
(vs O(1/ε) for IST)

Other IST variants: Nesterov’s method (Nesterov, 2007), SpaRSA (Wright
et al., 2009), TwIST (two-step IST; Bioucas-Dias and Figueiredo, 2007).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 69 / 128

http://tiny.cc/ssnlp14

Alternating Direction Method of Multipliers

Combine benefits of dual decomposition and augmented Lagrangian
methods for constrained optimization (Hestenes, 1969; Powell, 1969).

Key ideas

break down the optimization problem into subproblems, each
depending on a subset of w.

each subproblem p receives a “copy” of the subvector w, denoted by
vp.

encode constraints forcing each vp to “agree” with the global solution
w.

Particularly suitable for distributed optimization.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 70 / 128

http://tiny.cc/ssnlp14

Alternating Direction Method of Multipliers

Combine benefits of dual decomposition and augmented Lagrangian
methods for constrained optimization (Hestenes, 1969; Powell, 1969).

Key ideas

break down the optimization problem into subproblems, each
depending on a subset of w.

each subproblem p receives a “copy” of the subvector w, denoted by
vp.

encode constraints forcing each vp to “agree” with the global solution
w.

Particularly suitable for distributed optimization.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 70 / 128

http://tiny.cc/ssnlp14

Alternating Direction Method of Multipliers

Combine benefits of dual decomposition and augmented Lagrangian
methods for constrained optimization (Hestenes, 1969; Powell, 1969).

Key ideas

break down the optimization problem into subproblems, each
depending on a subset of w.

each subproblem p receives a “copy” of the subvector w, denoted by
vp.

encode constraints forcing each vp to “agree” with the global solution
w.

Particularly suitable for distributed optimization.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 70 / 128

http://tiny.cc/ssnlp14

Alternating Direction Method of Multipliers

Original problem min
w

Ω(w) + Λ(w) where Ω(w) =
M∑

m=1

Ωm(wm) .

ADMM objective min
w,v

Ω(v) + Λ(w) subject to Av + Bw = c

For example, in the overlapping group lasso case, we have A = I and
c = 0. The constraint becomes v = −Bw.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 71 / 128

http://tiny.cc/ssnlp14

Alternating Direction Method of Multipliers

Original problem min
w

Ω(w) + Λ(w) where Ω(w) =
M∑

m=1

Ωm(wm) .

ADMM objective min
w,v

Ω(v) + Λ(w) subject to Av + Bw = c

For example, in the overlapping group lasso case, we have A = I and
c = 0. The constraint becomes v = −Bw.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 71 / 128

http://tiny.cc/ssnlp14

Alternating Direction Method of Multipliers

Original problem min
w

Ω(w) + Λ(w) where Ω(w) =
M∑

m=1

Ωm(wm) .

ADMM objective min
w,v

Ω(v) + Λ(w) subject to Av + Bw = c

For example, in the overlapping group lasso case, we have A = I and
c = 0. The constraint becomes v = −Bw.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 71 / 128

http://tiny.cc/ssnlp14

Alternating Direction Method of Multipliers

Original problem min
w

Ω(w) + Λ(w) where Ω(w) =
M∑

m=1

Ωm(wm) .

ADMM objective min
w,v

Ω(v) + Λ(w) subject to Av + Bw = c

For example, in the overlapping group lasso case, we have A = I and
c = 0. The constraint becomes v = −Bw.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 71 / 128

http://tiny.cc/ssnlp14

Alternating Direction Method of Multipliers

The augmented Lagrangian is:

Ω(v) +Λ(w) + u>(Av + Bw − c) + ρ
2‖Av + Bw − c‖2

2

ADMM iteratively solves:

ŵ = arg minw Λ(w) + u>Bw + ρ
2‖Av + Bw − c‖2

2

v̂ = arg minv Ω(v) + u>Av + ρ
2‖Av + Bw − c‖2

2

u = u + ρ(Av + Bw − c)

Key advantage: the minimization of v can be done in parallel.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 72 / 128

http://tiny.cc/ssnlp14

Alternating Direction Method of Multipliers

The augmented Lagrangian is:

Ω(v) +Λ(w) + u>(Av + Bw − c) + ρ
2‖Av + Bw − c‖2

2

ADMM iteratively solves:

ŵ = arg minw Λ(w) + u>Bw + ρ
2‖Av + Bw − c‖2

2

v̂ = arg minv Ω(v) + u>Av + ρ
2‖Av + Bw − c‖2

2

u = u + ρ(Av + Bw − c)

Key advantage: the minimization of v can be done in parallel.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 72 / 128

http://tiny.cc/ssnlp14

Alternating Direction Method of Multipliers

The augmented Lagrangian is:

Ω(v) +Λ(w) + u>(Av + Bw − c) + ρ
2‖Av + Bw − c‖2

2

ADMM iteratively solves:

ŵ = arg minw Λ(w) + u>Bw + ρ
2‖Av + Bw − c‖2

2

v̂ = arg minv Ω(v) + u>Av + ρ
2‖Av + Bw − c‖2

2

u = u + ρ(Av + Bw − c)

Key advantage: the minimization of v can be done in parallel.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 72 / 128

http://tiny.cc/ssnlp14

Alternating Direction Method of Multipliers

Convergence of ADMM in theory (Boyd et al., 2010)

Assumptions:

Λ and Ω are closed, proper, and convex.

The unaugmented Lagrangian has a saddle point

As t →∞, we have:

Residual convergence: Av + Bw − c→ 0.

Primal convergence: Λ(wt) + Ω(vt)→ p∗ where p∗ is the optimal
value.

Dual convergence: ut → u∗.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 73 / 128

http://tiny.cc/ssnlp14

Alternating Direction Method of Multipliers

Convergence of ADMM in theory (Boyd et al., 2010)

Assumptions:

Λ and Ω are closed, proper, and convex.

The unaugmented Lagrangian has a saddle point

As t →∞, we have:

Residual convergence: Av + Bw − c→ 0.

Primal convergence: Λ(wt) + Ω(vt)→ p∗ where p∗ is the optimal
value.

Dual convergence: ut → u∗.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 73 / 128

http://tiny.cc/ssnlp14

Alternating Direction Method of Multipliers

Convergence of ADMM in theory (Boyd et al., 2010)

Assumptions:

Λ and Ω are closed, proper, and convex.

The unaugmented Lagrangian has a saddle point

As t →∞, we have:

Residual convergence: Av + Bw − c→ 0.

Primal convergence: Λ(wt) + Ω(vt)→ p∗ where p∗ is the optimal
value.

Dual convergence: ut → u∗.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 73 / 128

http://tiny.cc/ssnlp14

Alternating Direction Method of Multipliers

ADMM can handle various kinds of regularizers by adapting A and B.

ADMM is well suited for structured sparse models with group overlaps
because we can design A and B such that Ω(v) no longer has overlapping
groups. Hence, we can solve each subproblem separately in parallel.

Practical considerations:

ADMM can be slow to converge in practice, but tens of iterations are
often enough to produce good results.

ADMM only produces weakly sparse solution (we only get sparsity in
the limit).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 74 / 128

http://tiny.cc/ssnlp14

Alternating Direction Method of Multipliers

ADMM can handle various kinds of regularizers by adapting A and B.

ADMM is well suited for structured sparse models with group overlaps
because we can design A and B such that Ω(v) no longer has overlapping
groups. Hence, we can solve each subproblem separately in parallel.

Practical considerations:

ADMM can be slow to converge in practice, but tens of iterations are
often enough to produce good results.

ADMM only produces weakly sparse solution (we only get sparsity in
the limit).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 74 / 128

http://tiny.cc/ssnlp14

Alternating Direction Method of Multipliers

ADMM can handle various kinds of regularizers by adapting A and B.

ADMM is well suited for structured sparse models with group overlaps
because we can design A and B such that Ω(v) no longer has overlapping
groups. Hence, we can solve each subproblem separately in parallel.

Practical considerations:

ADMM can be slow to converge in practice, but tens of iterations are
often enough to produce good results.

ADMM only produces weakly sparse solution (we only get sparsity in
the limit).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 74 / 128

http://tiny.cc/ssnlp14

Alternating Direction Method of Multipliers

Recall that the ADMM objective is:

min
w,v

Ωstruct(v) + Λ(w) subject to Av + Bw = c

We can introduce an additional lasso penalty (sparse group lasso;
Friedman et al., 2010):

min
w,v

Ωstruct(v) + Ωlasso(w) + Λ(w) subject to Av + Bw = c

We get sparse solutions and can still guarantee convergence (Yogatama
and Smith, 2014a).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 75 / 128

http://tiny.cc/ssnlp14

Alternating Direction Method of Multipliers

Recall that the ADMM objective is:

min
w,v

Ωstruct(v) + Λ(w) subject to Av + Bw = c

We can introduce an additional lasso penalty (sparse group lasso;
Friedman et al., 2010):

min
w,v

Ωstruct(v) + Ωlasso(w) + Λ(w) subject to Av + Bw = c

We get sparse solutions and can still guarantee convergence (Yogatama
and Smith, 2014a).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 75 / 128

http://tiny.cc/ssnlp14

Alternating Direction Method of Multipliers

Recall that the ADMM objective is:

min
w,v

Ωstruct(v) + Λ(w) subject to Av + Bw = c

We can introduce an additional lasso penalty (sparse group lasso;
Friedman et al., 2010):

min
w,v

Ωstruct(v) + Ωlasso(w) + Λ(w) subject to Av + Bw = c

We get sparse solutions and can still guarantee convergence (Yogatama
and Smith, 2014a).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 75 / 128

http://tiny.cc/ssnlp14

Summary of Algorithms

Converges? Rate? Sparse? Groups? Overlaps?
Prox-grad (IST) X O(1/ε) X X Not easy
FISTA X O(1/

√
ε) X X Not easy

ADMM X O(1/ε) No X X

Note that we can still get sparsity for ADMM with sparse group lasso
(Yogatama and Smith, 2014a).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 76 / 128

http://tiny.cc/ssnlp14

Summary of Algorithms

Converges? Rate? Sparse? Groups? Overlaps?
Prox-grad (IST) X O(1/ε) X X Not easy
FISTA X O(1/

√
ε) X X Not easy

ADMM X O(1/ε) No X X

Note that we can still get sparsity for ADMM with sparse group lasso
(Yogatama and Smith, 2014a).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 76 / 128

http://tiny.cc/ssnlp14

Some Stuff We Didn’t Talk About

shooting method (Fu, 1998);

grafting (Perkins et al., 2003) and grafting-light (Zhu et al., 2010);
(Afonso et al., 2010; Figueiredo and Bioucas-Dias, 2011).

forward stagewise regression (Hastie et al., 2007).

homotopy/continuation method (Osborne et al., 2000; Efron et al.,
2004; Figueiredo et al., 2007; Hale et al., 2008).

Next: We’ll talk about online algorithms.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 77 / 128

http://tiny.cc/ssnlp14

Some Stuff We Didn’t Talk About

shooting method (Fu, 1998);

grafting (Perkins et al., 2003) and grafting-light (Zhu et al., 2010);
(Afonso et al., 2010; Figueiredo and Bioucas-Dias, 2011).

forward stagewise regression (Hastie et al., 2007).

homotopy/continuation method (Osborne et al., 2000; Efron et al.,
2004; Figueiredo et al., 2007; Hale et al., 2008).

Next: We’ll talk about online algorithms.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 77 / 128

http://tiny.cc/ssnlp14

Outline

1 Introduction

2 Loss Functions and Sparsity

3 Structured Sparsity

4 Algorithms

Batch Algorithms

Online Algorithms

5 Applications

6 Conclusions

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 78 / 128

http://tiny.cc/ssnlp14

Why Online?

1 Suitable for large datasets

2 Suitable for structured prediction

3 Faster to approach a near-optimal region

4 Slower convergence, but this is fine in machine learning

cf. “the tradeoffs of large scale learning” (Bottou and Bousquet, 2007)

What we will say can be straighforwardly extended to the mini-batch case.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 79 / 128

http://tiny.cc/ssnlp14

Why Online?

1 Suitable for large datasets

2 Suitable for structured prediction

3 Faster to approach a near-optimal region

4 Slower convergence, but this is fine in machine learning

cf. “the tradeoffs of large scale learning” (Bottou and Bousquet, 2007)

What we will say can be straighforwardly extended to the mini-batch case.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 79 / 128

http://tiny.cc/ssnlp14

Why Online?

1 Suitable for large datasets

2 Suitable for structured prediction

3 Faster to approach a near-optimal region

4 Slower convergence, but this is fine in machine learning

cf. “the tradeoffs of large scale learning” (Bottou and Bousquet, 2007)

What we will say can be straighforwardly extended to the mini-batch case.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 79 / 128

http://tiny.cc/ssnlp14

Why Online?

1 Suitable for large datasets

2 Suitable for structured prediction

3 Faster to approach a near-optimal region

4 Slower convergence, but this is fine in machine learning

cf. “the tradeoffs of large scale learning” (Bottou and Bousquet, 2007)

What we will say can be straighforwardly extended to the mini-batch case.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 79 / 128

http://tiny.cc/ssnlp14

Why Online?

1 Suitable for large datasets

2 Suitable for structured prediction

3 Faster to approach a near-optimal region

4 Slower convergence, but this is fine in machine learning

cf. “the tradeoffs of large scale learning” (Bottou and Bousquet, 2007)

What we will say can be straighforwardly extended to the mini-batch case.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 79 / 128

http://tiny.cc/ssnlp14

Why Online?

1 Suitable for large datasets

2 Suitable for structured prediction

3 Faster to approach a near-optimal region

4 Slower convergence, but this is fine in machine learning

cf. “the tradeoffs of large scale learning” (Bottou and Bousquet, 2007)

What we will say can be straighforwardly extended to the mini-batch case.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 79 / 128

http://tiny.cc/ssnlp14

Plain Stochastic (Sub-)Gradient Descent

min
w

Ω(w)︸ ︷︷ ︸
regularizer

+
1

N

N∑
i=1

L(w, xi , yi)︸ ︷︷ ︸
empirical loss

,

input: stepsize sequence (ηt)T
t=1

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
(sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)
end for

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 80 / 128

http://tiny.cc/ssnlp14

Plain Stochastic (Sub-)Gradient Descent

min
w

Ω(w)︸ ︷︷ ︸
regularizer

+
1

N

N∑
i=1

L(w, xi , yi)︸ ︷︷ ︸
empirical loss

,

input: stepsize sequence (ηt)T
t=1

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
(sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)
end for

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 80 / 128

http://tiny.cc/ssnlp14

What’s the Problem with SGD?

(Sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)

`2-regularization Ω(w) = λ
2‖w‖

2
2 =⇒ ∇̃Ω(w) = λw

w ← (1− ηtλ)w︸ ︷︷ ︸
scaling

− ηt∇̃L(w; xt , yt)

`1-regularization Ω(w) = λ‖w‖1 =⇒ ∇̃Ω(w) = λsign(w)

w ← w − ηtλsign(w)︸ ︷︷ ︸
constant penalty

− ηt∇̃L(w; xt , yt)

Problem: iterates are never sparse!

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 81 / 128

http://tiny.cc/ssnlp14

What’s the Problem with SGD?

(Sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)
`2-regularization Ω(w) = λ

2‖w‖
2
2 =⇒ ∇̃Ω(w) = λw

w ← (1− ηtλ)w︸ ︷︷ ︸
scaling

− ηt∇̃L(w; xt , yt)

`1-regularization Ω(w) = λ‖w‖1 =⇒ ∇̃Ω(w) = λsign(w)

w ← w − ηtλsign(w)︸ ︷︷ ︸
constant penalty

− ηt∇̃L(w; xt , yt)

Problem: iterates are never sparse!

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 81 / 128

http://tiny.cc/ssnlp14

What’s the Problem with SGD?

(Sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)
`2-regularization Ω(w) = λ

2‖w‖
2
2 =⇒ ∇̃Ω(w) = λw

w ← (1− ηtλ)w︸ ︷︷ ︸
scaling

− ηt∇̃L(w; xt , yt)

`1-regularization Ω(w) = λ‖w‖1 =⇒ ∇̃Ω(w) = λsign(w)

w ← w − ηtλsign(w)︸ ︷︷ ︸
constant penalty

− ηt∇̃L(w; xt , yt)

Problem: iterates are never sparse!

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 81 / 128

http://tiny.cc/ssnlp14

What’s the Problem with SGD?

(Sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)
`2-regularization Ω(w) = λ

2‖w‖
2
2 =⇒ ∇̃Ω(w) = λw

w ← (1− ηtλ)w︸ ︷︷ ︸
scaling

− ηt∇̃L(w; xt , yt)

`1-regularization Ω(w) = λ‖w‖1 =⇒ ∇̃Ω(w) = λsign(w)

w ← w − ηtλsign(w)︸ ︷︷ ︸
constant penalty

− ηt∇̃L(w; xt , yt)

Problem: iterates are never sparse!

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 81 / 128

http://tiny.cc/ssnlp14

Plain SGD with `2-regularization

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 82 / 128

http://tiny.cc/ssnlp14

Plain SGD with `2-regularization

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 82 / 128

http://tiny.cc/ssnlp14

Plain SGD with `2-regularization

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 82 / 128

http://tiny.cc/ssnlp14

Plain SGD with `2-regularization

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 82 / 128

http://tiny.cc/ssnlp14

Plain SGD with `2-regularization

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 82 / 128

http://tiny.cc/ssnlp14

Plain SGD with `2-regularization

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 82 / 128

http://tiny.cc/ssnlp14

Plain SGD with `2-regularization

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 82 / 128

http://tiny.cc/ssnlp14

Plain SGD with `2-regularization

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 82 / 128

http://tiny.cc/ssnlp14

Plain SGD with `2-regularization

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 82 / 128

http://tiny.cc/ssnlp14

Plain SGD with `2-regularization

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 82 / 128

http://tiny.cc/ssnlp14

Plain SGD with `1-regularization

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 83 / 128

http://tiny.cc/ssnlp14

Plain SGD with `1-regularization

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 83 / 128

http://tiny.cc/ssnlp14

Plain SGD with `1-regularization

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 83 / 128

http://tiny.cc/ssnlp14

Plain SGD with `1-regularization

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 83 / 128

http://tiny.cc/ssnlp14

Plain SGD with `1-regularization

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 83 / 128

http://tiny.cc/ssnlp14

Plain SGD with `1-regularization

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 83 / 128

http://tiny.cc/ssnlp14

Plain SGD with `1-regularization

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 83 / 128

http://tiny.cc/ssnlp14

Plain SGD with `1-regularization

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 83 / 128

http://tiny.cc/ssnlp14

Plain SGD with `1-regularization

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 83 / 128

http://tiny.cc/ssnlp14

Plain SGD with `1-regularization

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 83 / 128

http://tiny.cc/ssnlp14

“Sparse” Online Algorithms

Truncated Gradient (Langford et al., 2009)

Online Forward-Backward Splitting (Duchi and Singer, 2009)

Regularized Dual Averaging (Xiao, 2010)

Online Proximal Gradient (Martins et al., 2011a)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 84 / 128

http://tiny.cc/ssnlp14

“Sparse” Online Algorithms

Truncated Gradient (Langford et al., 2009)

Online Forward-Backward Splitting (Duchi and Singer, 2009)

Regularized Dual Averaging (Xiao, 2010)

Online Proximal Gradient (Martins et al., 2011a)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 84 / 128

http://tiny.cc/ssnlp14

Truncated Gradient (Langford et al., 2009)

input: laziness coefficient K , stepsize sequence (ηt)T
t=1

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
(sub-)gradient step: w ← w − ηt∇̃L(θ; xt , yt)
if t/K is integer then

truncation step: w ← w − sign(w) (|w| − ηtKτ)︸ ︷︷ ︸
soft-thresholding

end if
end for

take gradients only with respect to the loss

every K rounds: a “lazy” soft-thresholding step

Langford et al. (2009) also suggest other forms of truncation

converges to ε-accurate objective after O(1/ε2) iterations

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 85 / 128

http://tiny.cc/ssnlp14

Truncated Gradient (Langford et al., 2009)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 86 / 128

http://tiny.cc/ssnlp14

Truncated Gradient (Langford et al., 2009)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 86 / 128

http://tiny.cc/ssnlp14

Truncated Gradient (Langford et al., 2009)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 86 / 128

http://tiny.cc/ssnlp14

Truncated Gradient (Langford et al., 2009)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 86 / 128

http://tiny.cc/ssnlp14

Truncated Gradient (Langford et al., 2009)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 86 / 128

http://tiny.cc/ssnlp14

Truncated Gradient (Langford et al., 2009)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 86 / 128

http://tiny.cc/ssnlp14

Truncated Gradient (Langford et al., 2009)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 86 / 128

http://tiny.cc/ssnlp14

Truncated Gradient (Langford et al., 2009)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 86 / 128

http://tiny.cc/ssnlp14

Truncated Gradient (Langford et al., 2009)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 86 / 128

http://tiny.cc/ssnlp14

Truncated Gradient (Langford et al., 2009)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 86 / 128

http://tiny.cc/ssnlp14

“Sparse” Online Algorithms

Truncated Gradient (Langford et al., 2009)

Online Forward-Backward Splitting (Duchi and Singer, 2009)

Regularized Dual Averaging (Xiao, 2010)

Online Proximal Gradient (Martins et al., 2011a)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 87 / 128

http://tiny.cc/ssnlp14

Online Forward-Backward Splitting (Duchi and
Singer, 2009)

input: stepsize sequences (ηt)T
t=1, (ρt)T

t=1

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
gradient step: w ← w − ηt∇L(w; xt , yt)
proximal step: w ← proxρt Ω(w)

end for

generalizes truncated gradient to arbitrary regularizers Ω
can tackle non-overlapping or hierarchical group-Lasso, but arbitrary
overlaps are difficult to handle (more later)

practical drawback: without a laziness parameter, iterates are
usually not very sparse

converges to ε-accurate objective after O(1/ε2) iterations

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 88 / 128

http://tiny.cc/ssnlp14

“Sparse” Online Algorithms

Truncated Gradient (Langford et al., 2009)

Online Forward-Backward Splitting (Duchi and Singer, 2009)

Regularized Dual Averaging (Xiao, 2010)

Online Proximal Gradient (Martins et al., 2011a)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 89 / 128

http://tiny.cc/ssnlp14

Regularized Dual Averaging (Xiao, 2010)

input: coefficient η0

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
gradient step: s ← s +∇L(w; xt , yt)
proximal step: w ← η0

√
t × proxΩ(−s/t)

end for

based on the dual averaging technique (Nesterov, 2009)

in practice: quite effective at getting sparse iterates (the proximal
steps are not vanishing)

O(C1/ε
2 + C2/

√
ε) convergence, where C1 is a Lipschitz constant,

and C2 is the variance of the stochastic gradients

drawback: requires storing two vectors (w and s), and s is not sparse

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 90 / 128

http://tiny.cc/ssnlp14

What About Group Sparsity?

Both online forward-backward splitting (Duchi and Singer, 2009) and
regularized dual averaging (Xiao, 2010) can handle groups

All that is necessary is to compute proxΩ(w)

easy for non-overlapping and tree-structured groups

But what about general overlapping groups?

Martins et al. (2011a): a prox-grad algorithm that can handle arbitrary
overlapping groups

decompose Ω(w) =
∑J

j=1 Ωj (w) where each Ωj is non-overlapping

then apply proxΩj
sequentially

still convergent (Martins et al., 2011a)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 91 / 128

http://tiny.cc/ssnlp14

“Sparse” Online Algorithms

Truncated Gradient (Langford et al., 2009)

Online Forward-Backward Splitting (Duchi and Singer, 2009)

Regularized Dual Averaging (Xiao, 2010)

Online Proximal Gradient (Martins et al., 2011a)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 92 / 128

http://tiny.cc/ssnlp14

Online Proximal Gradient (Martins et al., 2011a)

input: gravity sequence (σt)T
t=1, stepsize sequence (ηt)T

t=1

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
gradient step: w ← w − ηt∇L(θ; xt , yt)
sequential proximal steps:
for j = 1, 2, . . . do

w ← proxηtσt Ωj
(w)

end for
end for

PAC Convergence. ε-accurate solution after T ≤ O(1/ε2) rounds

Computational efficiency. Each gradient step is linear in the
number of features that fire.
Each proximal step is linear in the number of groups M.
Both are independent of D.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 93 / 128

http://tiny.cc/ssnlp14

Online Proximal Gradient (Martins et al., 2011a)

input: gravity sequence (σt)T
t=1, stepsize sequence (ηt)T

t=1

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
gradient step: w ← w − ηt∇L(θ; xt , yt)
sequential proximal steps:
for j = 1, 2, . . . do

w ← proxηtσt Ωj
(w)

end for
end for

PAC Convergence. ε-accurate solution after T ≤ O(1/ε2) rounds

Computational efficiency. Each gradient step is linear in the
number of features that fire.
Each proximal step is linear in the number of groups M.
Both are independent of D.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 93 / 128

http://tiny.cc/ssnlp14

Implementation Tricks (Martins et al., 2011b)

Budget driven shrinkage. Instead of a regularization constant,
specify a budget on the number of selected groups. Each proximal
step sets σt to meet this target.

Sparseptron. Let L(w) = w>(f(x , ŷ)− f(x , y)) be the perceptron
loss. The algorithm becomes perceptron with shrinkage.

Debiasing. Run a few iterations of sparseptron to identify the
relevant groups. Then run a unregularized learner at a second stage.

Memory efficiency. Only a
small active set of features need
to be maintained. Entire groups
can be deleted after each
proximal step.
Many irrelevant features are
never instantiated.

0 5 10 15
0

2

4

6
x 10

6

Epochs

Fe

at
ur

es

MIRA

Sparceptron + MIRA (B=30)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 94 / 128

http://tiny.cc/ssnlp14

Implementation Tricks (Martins et al., 2011b)

Budget driven shrinkage. Instead of a regularization constant,
specify a budget on the number of selected groups. Each proximal
step sets σt to meet this target.

Sparseptron. Let L(w) = w>(f(x , ŷ)− f(x , y)) be the perceptron
loss. The algorithm becomes perceptron with shrinkage.

Debiasing. Run a few iterations of sparseptron to identify the
relevant groups. Then run a unregularized learner at a second stage.

Memory efficiency. Only a
small active set of features need
to be maintained. Entire groups
can be deleted after each
proximal step.
Many irrelevant features are
never instantiated.

0 5 10 15
0

2

4

6
x 10

6

Epochs

Fe

at
ur

es

MIRA

Sparceptron + MIRA (B=30)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 94 / 128

http://tiny.cc/ssnlp14

Summary of Algorithms

Converges? Rate? Sparse? Groups? Overlaps?
Prox-grad (IST) X O(1/ε) X X Not easy
FISTA X O(1/

√
ε) X X Not easy

ADMM X O(1/ε) No X X
Online subgradient X O(1/ε2) No X No
Truncated gradient X O(1/ε2) X No No
FOBOS X O(1/ε2) Sort of X Not easy
RDA X O(1/ε2) X X Not easy
Online prox-grad X O(1/ε2) X X X

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 95 / 128

http://tiny.cc/ssnlp14

Outline

1 Introduction

2 Loss Functions and Sparsity

3 Structured Sparsity

4 Algorithms

Batch Algorithms

Online Algorithms

5 Applications

6 Conclusions

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 96 / 128

http://tiny.cc/ssnlp14

Applications of Structured Sparsity in NLP

1 Non-overlapping groups by feature template

2 Tree-structured groups: coarse-to-fine

3 Arbitrarily overlapping groups

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 97 / 128

http://tiny.cc/ssnlp14

Applications of Structured Sparsity in NLP

1 Non-overlapping groups by feature template

2 Tree-structured groups: coarse-to-fine

3 Arbitrarily overlapping groups

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 97 / 128

http://tiny.cc/ssnlp14

Martins et al. (2011b): Group by Template

Feature templates provide a straightforward way to define non-overlapping
groups.

To achieve group sparsity, we optimize:

min
w

1

N

N∑
n=1

L(w; xn, yn)︸ ︷︷ ︸
empirical loss

+ Ω(w)︸ ︷︷ ︸
regularizer

where we use the `2,1 norm:

Ω(w) = λ

M∑
m=1

λm‖wm‖2

for M groups/templates.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 98 / 128

http://tiny.cc/ssnlp14

Structured Prediction Tasks (Martins et al., 2011b)

Chunking (CoNLL 2000 shared task; Sang and Buchholz, 2000)
+0.5 F1 with 30 groups (out of 96)

NER (CoNLL 2002/3 shared tasks on Spanish, Dutch, English; Sang,
2002; Sang and De Meulder, 2003)
+1–2 F1 with 200 groups (out of 452)

Dependency parsing (CoNLL-X shared task on several languages;
Buchholz and Marsi, 2006), 684 feature templates based on
McDonald et al. (2005)

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 99 / 128

http://tiny.cc/ssnlp14

Which features get selected?

Qualitative analysis of selected templates:

Arabic Danish Japanese Slovene Spanish Turkish
Bilexical ++ + +
Lex. → POS + +
POS → Lex. ++ + + + +
POS → POS ++ +
Middle POS ++ ++ ++ ++ ++ ++
Shape ++ ++ ++ ++
Direction + + + + +
Distance ++ + + + + +

(Empty: none or very few templates selected; +: some templates
selected; ++: most or all templates selected.)

Morphologically-rich languages with small datasets (Turkish and
Slovene) avoid lexical features.

In Japanese, contextual POS appear to be especially relevant.

Take this with a grain of salt: some patterns may be properties of
the datasets, not the languages!

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 100 / 128

http://tiny.cc/ssnlp14

Which features get selected?

Qualitative analysis of selected templates:

Arabic Danish Japanese Slovene Spanish Turkish
Bilexical ++ + +
Lex. → POS + +
POS → Lex. ++ + + + +
POS → POS ++ +
Middle POS ++ ++ ++ ++ ++ ++
Shape ++ ++ ++ ++
Direction + + + + +
Distance ++ + + + + +

(Empty: none or very few templates selected; +: some templates
selected; ++: most or all templates selected.)

Morphologically-rich languages with small datasets (Turkish and
Slovene) avoid lexical features.

In Japanese, contextual POS appear to be especially relevant.

Take this with a grain of salt: some patterns may be properties of
the datasets, not the languages!

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 100 / 128

http://tiny.cc/ssnlp14

Sociolinguistic Association Discovery
(Eisenstein et al., 2011)

Dataset:

geotagged tweets from 9,250 authors
mapping of locations to the U.S. Census’ ZIP code tabulation areas
(ZCTAs)
a ten-dimensional vector of statistics on demographic attributes

Can we learn a compact set of terms used on Twitter that associate
with demographics?

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 101 / 128

http://tiny.cc/ssnlp14

Sociolinguistic Association Discovery
(Eisenstein et al., 2011)

Setup: multi-output regression.

xn is a P-dimensional vector of independent variables; matrix is
X ∈ RN×P

yn is a T -dimensional vector of dependent variables; matrix is
Y ∈ RN×T

wp,t is the regression coefficient for the pth variable in the tth task;
matrix is W ∈ RP×T

Regularized objective with squared error loss typical for regression:

min
W

Ω(W) + ‖Y − XW‖2
F

Regressions are run in both directions.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 102 / 128

http://tiny.cc/ssnlp14

Structured Sparsity with `∞,1

Drive entire rows of W to zero (Turlach et al., 2005): “some
predictors are useless for any task”

Ω(W) = λ

T∑
t=1

max
p

wp,t

Optimization with blockwise coordinate ascent (Liu et al., 2009) and
some tricks to maintain sparsity (Eisenstein et al., 2011)

See also: Duh et al. (2010) used multitask regression and `2,1 to
select features useful for reranking across many instances (application
in machine translation).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 103 / 128

http://tiny.cc/ssnlp14

Predicting Demographics from Text
(Eisenstein et al., 2011)

Predict 10-dimensional ZCTA characterization from words tweeted in
that region (vocabulary is P = 5, 418)
Measure Pearson’s correlation between prediction and correct value
(average over tasks, cross-validated test sets)
Compare with truncated SVD, greatest variance across authors, most
frequent words

10
2

10
3

0.16

0.18

0.2

0.22

0.24

0.26

0.28

number of features

a
ve

ra
g

e
 c

o
rr

e
la

tio
n

multi−output lasso
SVD
highest variance
most frequent

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 104 / 128

http://tiny.cc/ssnlp14

Predictive Words (Eisenstein et al., 2011)

w
h

it
e

A
fr

.
A

m
.

H
is

p
.

E
n

g
.

la
n

g
.

S
p

a
n

.
la

n
g

.

o
th

er
la

n
g

.

u
rb

a
n

fa
m

il
y

re
n

te
r

m
ed

.
in

c.

- - - + - + + +
;) - + - +
:(-
:) -
:d + - + - +
as - + -
awesome + - - - +
break - + - -
campus - + - -
dead - + - + + +
hell - + - -
shit - +
train - + +
will - + -
would + -
atlanta - + - -
famu + - + - - -
harlem - +
bbm - + - + + +
lls + - + - -
lmaoo - + + - + + + +
lmaooo - + + - + + + +
lmaoooo - + + - + + +
lmfaoo - + - + + +
lmfaooo - + - + + +
lml - + + - + + + + -
odee - + - + + +

w
h

it
e

A
fr

.
A

m
.

H
is

p
.

E
n

g
.

la
n

g
.

S
p

a
n

.
la

n
g

.

o
th

er
la

n
g

.

u
rb

a
n

fa
m

il
y

re
n

te
r

m
ed

.
in

c.

omw - + + - + + + +
smfh - + + - + + + +
smh - + + +
w| - + - + + + +

con + - + +
la - + - +
si - + - +
dats - + - + -
deadass - + + - + + + +
haha + - -
hahah + -
hahaha + - - +
ima - + - + +
madd - - + +
nah - + - + + +
ova - + - +
sis - + +
skool - + - + + + -
wassup - + + - + + + + -
wat - + + - + + + + -
ya - + +
yall - +
yep - + - - - -
yoo - + + - + + + +
yooo - + - + +

Table: Demographically-indicative terms discovered by multi-output sparse
regression. Statistically significant (p < .05) associations are marked (+/-).

Significant p < 0.05 positive (+) and negative (-) associations in a
69-feature model (see the paper for the rest).

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 105 / 128

http://tiny.cc/ssnlp14

Non-overlapping Groups for “Some” Ambiguity

Learning mappings from word types to labels (POS or semantic predicates)

Semisupervised lexicon expansion with graph-based learning (Das and
Smith, 2012)

Elitist lasso (squared `1,2; Kowalski and Torrésani, 2009) for per-word
sparsity

λ
∑

v

(∑
y

|wv ,y |

)2

where v is a word and y is a label.
+3% accuracy on unknown-word frame prediction, with 35% as many
lexicon entries

Unsupervised POS tagging with posterior regularization (Graça et al.,
2009)

Incorporates `∞,1 norm
+2–7% accuracy on 1-many POS evaluation

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 106 / 128

http://tiny.cc/ssnlp14

Applications of Structured Sparsity in NLP

1 Non-overlapping groups by feature template

2 Tree-structured groups: coarse-to-fine

3 Arbitrarily overlapping groups

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 107 / 128

http://tiny.cc/ssnlp14

Log-Linear Language Models
(Nelakanti et al., 2013)

Setup: multinomial logistic regression (Della Pietra et al., 1997)

p(y | x) =
exp(w>y f(x))∑

v∈V exp(w>v f(x))

Regularized objective with logistic loss:

min
w
−

N∑
i=1

log p(yi | x1:k ; w) + Ω(w)

There are many choices for Ω(w). A key consideration is that the size of
w increases rapidly as k gets bigger.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 108 / 128

http://tiny.cc/ssnlp14

Log-Linear Language Models
(Nelakanti et al., 2013)

Setup: multinomial logistic regression (Della Pietra et al., 1997)

p(y | x) =
exp(w>y f(x))∑

v∈V exp(w>v f(x))

Regularized objective with logistic loss:

min
w
−

N∑
i=1

log p(yi | x1:k ; w) + Ω(w)

There are many choices for Ω(w). A key consideration is that the size of
w increases rapidly as k gets bigger.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 108 / 128

http://tiny.cc/ssnlp14

Log-Linear Language Models
(Nelakanti et al., 2013)

Setup: multinomial logistic regression (Della Pietra et al., 1997)

p(y | x) =
exp(w>y f(x))∑

v∈V exp(w>v f(x))

Regularized objective with logistic loss:

min
w
−

N∑
i=1

log p(yi | x1:k ; w) + Ω(w)

There are many choices for Ω(w). A key consideration is that the size of
w increases rapidly as k gets bigger.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 108 / 128

http://tiny.cc/ssnlp14

Log-Linear Language Models
(Nelakanti et al., 2013)

Encode history suffixes from length 0 to k in a tree; each is a feature.

Tree-structured penalty: a longer suffix can only be included if all its
shorter suffixes are included.

Can use `2,1 or `∞,1 norm

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 109 / 128

http://tiny.cc/ssnlp14

Experimental Results: AP-news

Good generalization results (perplexity):

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 110 / 128

http://tiny.cc/ssnlp14

Experimental Results: AP-news

Small model size:

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 111 / 128

http://tiny.cc/ssnlp14

Groups from Word Clusters
(Yogatama and Smith, 2014a)

Task: text classification

Model: bag-of-words logistic regression

Hierarchical clusters from Brown et al. (1992): include the words in a
cluster only if its parent cluster is included.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 112 / 128

http://tiny.cc/ssnlp14

Brown et al. (1992) Clusters

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 113 / 128

http://tiny.cc/ssnlp14

Regularize or Add Features?

20-newsgroups binary tasks:

+ Brown features Brown
dataset baseline lasso ridge elastic group lasso
science 91.90 (ridge) 86.96 90.51 91.14 93.04
sports 93.71 (elastic) 82.66 88.94 85.43 93.71
religion 92.47 (ridge) 94.98 96.93 96.93 92.89
computer 87.13 (elastic) 55.72 96.65 67.57 86.36

Caveat: we ought to use more data to learn the clusters!

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 114 / 128

http://tiny.cc/ssnlp14

Applications of Structured Sparsity in NLP

1 Non-overlapping groups by feature template

2 Tree-structured groups: coarse-to-fine

3 Arbitrarily overlapping groups

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 115 / 128

http://tiny.cc/ssnlp14

Groups from Data
(Yogatama and Smith, 2014b)

Task: text classification

Model: bag-of-words logistic regression

Groups: one group for every sentence in every training-set document

Intuition: only some sentences are relevant
Past work used latent “relevance” variables (Yessenalina et al., 2010;
Tackstrom and McDonald, 2011)

Use ADMM to handle thousands/millions of overlapping groups.

Copy weights allow inspection to see which training sentences are
“selected”
Additional `1 penalty for strong sparsity

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 116 / 128

http://tiny.cc/ssnlp14

Topic Classification (IBM vs. Mac)

Bars show log-odds effect of removing the sentence: sentence, elastic,
ridge, lasso.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 117 / 128

http://tiny.cc/ssnlp14

Sentiment Analysis
(Amazon DVDs; Blitzer et al., 2007)

Bars show log-odds effect of removing the sentence: sentence, elastic,
ridge, lasso.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 118 / 128

http://tiny.cc/ssnlp14

Outline

1 Introduction

2 Loss Functions and Sparsity

3 Structured Sparsity

4 Algorithms

Batch Algorithms

Online Algorithms

5 Applications

6 Conclusions

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 119 / 128

http://tiny.cc/ssnlp14

Summary

Sparsity is desirable in NLP: feature selection, runtime, memory
footprint, interpretability

Beyond plain sparsity: structured sparsity can be promoted through
group-Lasso regularization

Choice of groups reflects prior knowledge about the desired sparsity
patterns.

We have seen examples for feature template selection, tree structures,
and data-driven groups, but many more are possible!

Small/medium scale: many batch algorithms available, with fast
convergence (IST, FISTA, SpaRSA, ...)

Large scale: distributed optimization algorithms (ADMM) or online
proximal-gradient algorithms suitable to explore large feature spaces

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 120 / 128

http://tiny.cc/ssnlp14

Thank you!

Questions?

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 121 / 128

http://tiny.cc/ssnlp14

Acknowledgments

National Science Foundation (USA), CAREER grant IIS-1054319

Fundação para a Ciência e Tecnologia (Portugal), grants
PEst-OE/EEI/LA0008/2011 and PTDC/EEI-SII/2312/2012.

Fundação para a Ciência e Tecnologia and Information and
Communication Technologies Institute (Portugal/USA), through the
CMU-Portugal Program.

Priberam: QREN/POR Lisboa (Portugal), EU/FEDER programme,
Intelligo project, contract 2012/24803.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 122 / 128

http://tiny.cc/ssnlp14

References I

Afonso, M., Bioucas-Dias, J., and Figueiredo, M. (2010). Fast image recovery using variable splitting and constrained
optimization. IEEE Transactions on Image Processing, 19:2345–2356.

Amaldi, E. and Kann, V. (1998). On the approximation of minimizing non zero variables or unsatisfied relations in linear
systems. Theoretical Computer Science, 209:237–260.

Bakin, S. (1999). Adaptive regression and model selection in data mining problems. PhD thesis, Australian National University.

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal
on Imaging Sciences, 2(1):183–202.

Bioucas-Dias, J. and Figueiredo, M. (2007). A new twist: two-step iterativeshrinkage/thresholding algorithms for image
restoration. IEEE Transactions on Image Processing, 16:2992–3004.

Blitzer, J., Dredze, M., and Pereira, F. (2007). Biographies, bollywood, boom-boxes and blenders: Domain adaptation for
sentiment classification. In Proc. of ACL.

Bottou, L. and Bousquet, O. (2007). The tradeoffs of large scale learning. NIPS, 20.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2010). Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1):1–122.

Brown, P. F., deSouza, P. V., Mercer, R. L., Pietra, V. J. D., and Lai, J. C. (1992). Class-based n-gram models of natural
language. Computational Linguistics, 18(4):467–479.

Buchholz, S. and Marsi, E. (2006). CoNLL-X shared task on multilingual dependency parsing. In Proc. of CoNLL.

Candès, E., Romberg, J., and Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete
frequency information. IEEE Transactions on Information Theory, 52:489–509.

Caruana, R. (1997). Multitask learning. Machine Learning, 28(1):41–75.

Cessie, S. L. and Houwelingen, J. C. V. (1992). Ridge estimators in logistic regression. Journal of the Royal Statistical Society;
Series C, 41:191–201.

Chen, S. and Rosenfeld, R. (1999). A Gaussian prior for smoothing maximum entropy models. Technical report,
CMU-CS-99-108.

Claerbout, J. and Muir, F. (1973). Robust modelling of erratic data. Geophysics, 38:826–844.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 123 / 128

http://tiny.cc/ssnlp14

References II
Combettes, P. and Wajs, V. (2006). Signal recovery by proximal forward-backward splitting. Multiscale Modeling and

Simulation, 4:1168–1200.

Das, D. and Smith, N. A. (2012). Graph-based lexicon expansion with sparsity-inducing penalties. In Proceedings of NAACL.

Daubechies, I., Defrise, M., and De Mol, C. (2004). An iterative thresholding algorithm for linear inverse problems with a
sparsity constraint. Communications on Pure and Applied Mathematics, 11:1413–1457.

Davis, G., Mallat, S., and Avellaneda, M. (1997). Greedy adaptive approximation. Journal of Constructive Approximation,
13:57–98.

Della Pietra, S., Della Pietra, V., and Lafferty, J. (1997). Inducing features of random fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19:380–393.

Donoho, D. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52:1289–1306.

Duchi, J. and Singer, Y. (2009). Efficient online and batch learning using forward backward splitting. JMLR, 10:2873–2908.

Duh, K., Sudoh, K., Tsukada, H., Isozaki, H., and Nagata, M. (2010). n-best reranking by multitask learning. In Proceedings of
the Joint Fifth Workshop on Statistical Machine Translation and Metrics.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. Annals of Statistics, 32:407–499.

Eisenstein, J., Smith, N. A., and Xing, E. P. (2011). Discovering sociolinguistic associations with structured sparsity. In Proc. of
ACL.

Figueiredo, M. and Bioucas-Dias, J. (2011). An alternating direction algorithm for (overlapping) group regularization. In Signal
processing with adaptive sparse structured representations–SPARS11. Edinburgh, UK.

Figueiredo, M. and Nowak, R. (2003). An EM algorithm for wavelet-based image restoration. IEEE Transactions on Image
Processing, 12:986–916.

Figueiredo, M., Nowak, R., and Wright, S. (2007). Gradient projection for sparse reconstruction: application to compressed
sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing: Special Issue on Convex
Optimization Methods for Signal Processing, 1:586–598.

Friedman, J., Hastie, T., Rosset, S., Tibshirani, R., and Zhu, J. (2004). Discussion of three boosting papers. Annals of
Statistics, 32(1):102–107.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). A note on the group lasso and a sparse group lasso. Technical report,
Stanford University.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 124 / 128

http://tiny.cc/ssnlp14

References III
Fu, W. (1998). Penalized regressions: the bridge versus the lasso. Journal of computational and graphical statistics, pages

397–416.

Goodman, J. (2004). Exponential priors for maximum entropy models. In Proc. of NAACL.

Graça, J., Ganchev, K., Taskar, B., and Pereira, F. (2009). Posterior vs. parameter sparsity in latent variable models. Advances
in Neural Information Processing Systems.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research,
3:1157–1182.

Hale, E., Yin, W., and Zhang, Y. (2008). Fixed-point continuation for l1-minimization: Methodology and convergence. SIAM
Journal on Optimization, 19:1107–1130.

Hastie, T., Taylor, J., Tibshirani, R., and Walther, G. (2007). Forward stagewise regression and the monotone lasso. Electronic
Journal of Statistics, 1:1–29.

Hestenes, M. R. (1969). Multiplier and gradient methods. Journal of Optimization Theory and Applications, 4:303–320.

Jenatton, R., Audibert, J.-Y., and Bach, F. (2009). Structured variable selection with sparsity-inducing norms. Technical report,
arXiv:0904.3523.

Jenatton, R., Mairal, J., Obozinski, G., and Bach, F. (2011). Proximal methods for hierarchical sparse coding. Journal of
Machine Learning Research, 12:2297–2334.

Kazama, J. and Tsujii, J. (2003). Evaluation and extension of maximum entropy models with inequality constraints. In Proc. of
EMNLP.

Kim, S. and Xing, E. (2010). Tree-guided group lasso for multi-task regression with structured sparsity. In Proc. of ICML.

Kowalski, M. and Torrésani, B. (2009). Sparsity and persistence: mixed norms provide simple signal models with dependent
coefficients. Signal, Image and Video Processing, 3(3):251–264.

Lanckriet, G. R. G., Cristianini, N., Bartlett, P., Ghaoui, L. E., and Jordan, M. I. (2004). Learning the kernel matrix with
semidefinite programming. JMLR, 5:27–72.

Langford, J., Li, L., and Zhang, T. (2009). Sparse online learning via truncated gradient. JMLR, 10:777–801.

Liu, H., Palatucci, M., and Zhang, J. (2009). Blockwise coordinate descent procedures for the multi-task lasso, with applications
to neural semantic basis discovery. In Proceedings of the 26th Annual International Conference on Machine Learning, pages
649–656. ACM.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 125 / 128

http://tiny.cc/ssnlp14

References IV
Mairal, J., Jenatton, R., Obozinski, G., and Bach, F. (2010). Network flow algorithms for structured sparsity. In Advances in

Neural Information Processing Systems.

Martins, A. F. T., Figueiredo, M. A. T., Aguiar, P. M. Q., Smith, N. A., and Xing, E. P. (2011a). Online learning of structured
predictors with multiple kernels. In Proc. of AISTATS.

Martins, A. F. T., Smith, N. A., Aguiar, P. M. Q., and Figueiredo, M. A. T. (2011b). Structured Sparsity in Structured
Prediction. In Proc. of Empirical Methods for Natural Language Processing.

Martins, A. F. T., Smith, N. A., Xing, E. P., Aguiar, P. M. Q., and Figueiredo, M. A. T. (2010). Turbo parsers: Dependency
parsing by approximate variational inference. In Proc. of EMNLP.

McDonald, R. T., Pereira, F., Ribarov, K., and Hajic, J. (2005). Non-projective dependency parsing using spanning tree
algorithms. In Proc. of HLT-EMNLP.

Muthukrishnan, S. (2005). Data Streams: Algorithms and Applications. Now Publishers, Boston, MA.

Nelakanti, A., Archambeau, C., Mairal, J., Bach, F., and Bouchard, G. (2013). Structured penalties for log-linear language
models. In Proc. of EMNLP.

Nesterov, Y. (2007). Gradient methods for minimizing composite objective function. Technical report, CORE report.

Nesterov, Y. (2009). Primal-dual subgradient methods for convex problems. Mathematical programming, 120(1):221–259.

Obozinski, G., Taskar, B., and Jordan, M. (2010). Joint covariate selection and joint subspace selection for multiple
classification problems. Statistics and Computing, 20(2):231–252.

Osborne, M., Presnell, B., and Turlach, B. (2000). A new approach to variable selection in least squares problems. IMA Journal
of Numerical Analysis, 20:389–403.

Perkins, S., Lacker, K., and Theiler, J. (2003). Grafting: Fast, incremental feature selection by gradient descent in function
space. Journal of Machine Learning Research, 3:1333–1356.

Powell, M. J. D. (1969). A method for nonlinear constraints in minimization problems. In Fletcher, R., editor, Optimization,
pages 283–298. Academic Press.

Quattoni, A., Carreras, X., Collins, M., and Darrell, T. (2009). An efficient projection for l1,∞ regularization. In Proc. of ICML.

Ratnaparkhi, A. (1996). A maximum entropy model for part-of-speech tagging. In Proc. of EMNLP.

Sang, E. (2002). Introduction to the CoNLL-2002 shared task: Language-independent named entity recognition. In Proc. of
CoNLL.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 126 / 128

http://tiny.cc/ssnlp14

References V
Sang, E. and Buchholz, S. (2000). Introduction to the CoNLL-2000 shared task: Chunking. In Proceedings of CoNLL-2000 and

LLL-2000.

Sang, E. and De Meulder, F. (2003). Introduction to the CoNLL-2003 shared task: Language-independent named entity
recognition. In Proc. of CoNLL.

Schaefer, R., Roi, L., and Wolfe, R. (1984). A ridge logistic estimator. Communications in Statistical Theory and Methods,
13:99–113.

Schmidt, M. and Murphy, K. (2010). Convex structure learning in log-linear models: Beyond pairwise potentials. In Proc. of
AISTATS.

Shor, N. (1985). Minimization Methods for Non-differentiable Functions. Springer.

Stojnic, M., Parvaresh, F., and Hassibi, B. (2009). On the reconstruction of block-sparse signals with an optimal number of
measurements. Signal Processing, IEEE Transactions on, 57(8):3075–3085.

Tackstrom, O. and McDonald, R. (2011). Discovering fine-grained sentiment with latent variable structured prediction models.
In Proc. of ECIR.

Taylor, H., Bank, S., and McCoy, J. (1979). Deconvolution with the `1 norm. Geophysics, 44:39–52.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society B., pages
267–288.

Tikhonov, A. (1943). On the stability of inverse problems. In Dokl. Akad. Nauk SSSR, volume 39, pages 195–198.

Turlach, B. A., Venables, W. N., and Wright, S. J. (2005). Simultaneous variable selection. Technometrics, 47(3):349–363.

Wiener, N. (1949). Extrapolation, Interpolation, and Smoothing of Stationary Time Series. Wiley, New York.

Williams, P. (1995). Bayesian regularization and pruning using a Laplace prior. Neural Computation, 7:117–143.

Wright, S., Nowak, R., and Figueiredo, M. (2009). Sparse reconstruction by separable approximation. IEEE Transactions on
Signal Processing, 57:2479–2493.

Xiao, L. (2010). Dual averaging methods for regularized stochastic learning and online optimization. Journal of Machine
Learning Research, 11:2543–2596.

Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling supervised methods. In Proc. of ACL.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 127 / 128

http://tiny.cc/ssnlp14

References VI

Yessenalina, A., Yue, Y., and Cardie, C. (2010). Multi-level structured models for document sentiment classification. In Proc. of
EMNLP.

Yogatama, D. and Smith, N. A. (2014a). Linguistic structured sparsity in text categorization. In Proc. of ACL.

Yogatama, D. and Smith, N. A. (2014b). Making the most of bag of words: Sentence regularization with alternating direction
method of multipliers. In Proc. of ICML.

Yuan, L., Liu, J., and Ye, J. (2011). Efficient methods for overlapping group lasso. In Advances in Neural Information
Processing Systems 24, pages 352–360.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal
Statistical Society (B), 68(1):49.

Zhao, P., Rocha, G., and Yu, B. (2009). Grouped and hierarchical model selection through composite absolute penalties. Annals
of Statistics, 37(6A):3468–3497.

Zhu, J., Lao, N., and Xing, E. (2010). Grafting-light: fast, incremental feature selection and structure learning of markov
random fields. In Proc. of International Conference on Knowledge Discovery and Data Mining, pages 303–312.

Martins, Yogatama, Smith, Figueiredo (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp14 128 / 128

http://tiny.cc/ssnlp14

	Introduction
	Loss Functions and Sparsity
	Structured Sparsity
	Algorithms
	Batch Algorithms
	Online Algorithms

	Applications
	Conclusions

