Linear Programming Decoders in NLP:

Integer Programming, Message Passing, Dual Decomposition

André Martins

88:88*

14instituto de telecomunicações

EMNLP 2014: Tutorials, Doha, Qatar, October 25, 2014 Slides online at http://tiny.cc/lpdnlp.

Structured Prediction and NLP

Structured prediction: a machine learning framework for predicting structured, constrained, and interdependent outputs

NLP deals with structured and ambiguous textual data (Smith, 2011):

- machine translation
- speech recognition
- syntactic parsing
- semantic parsing
- information extraction
- ...

Dependency Parsing

Map sentences to their syntactic structure.

- A lexicalized syntactic formalism

■ Grammar functions represented as lexical relationships (dependencies)
(Eisner, 1996; McDonald et al., 2005; Nivre et al., 2006; Koo et al., 2007)

Multi-Document Summarization

Map a set of related documents to a brief summary.

Obama hopes for 'continued progress' in Myanmar

STORY HIGHLIGHTS
Obama meets with prodemocracy icon Aung San Suu kyi and Myanmar's president
He's the first sitting U.S. president to visit Myanmar, also known as Burma

Obama encourages the country
ocontinue a "remarkable
journey'
He also visits Cambodia to meet the prime minister and attend the East Asia Summit
(CNN) -- Barack Obama met with Nobel Peace Prize winner Aung San Suu Kyi at her home in Myanmar on Monday, praising her "courage and determination" during a historic visit to the once repressive and secretive country.

The first sitting U.S. president to visit Myanmar, Obama urged its leaders, who have embarked on a series of far-reaching political and economic reforms since 2011, not to extinguish the "flickers of progress that we have seen."

Obama said that his visit to the lakeside villa where the prodemocracy icon spent years under house arrest marked a new chapter setween the two countries.
"Here, through so many difficult years, is where she has displayed such unbreakable courage and determination," Obama told reporters, standing next to his fellow Nobel peace laureate. "It is here where she showed that human freedom and human dignity cannot be denied."

The country, which is also known as Burma, was ruled by military leaders until early 2011 and for decades was politically and economically cut off from the rest of the world.

Suu Kyi acknowledged that Myanmar's opening up would be difficult.

The ditu loork Times

YANGON, Myanmar - President Obama journeyed to this storied tropical outpost of pagodas and jungles on Monday to "extend the hand of friendship" as a land long tormented by repression and poverty begins to throw off military rule and emerge from decades of isolation.

The visit was intended to show support for the reforms put in place by Thein Sein's government since the end of military rule in November 2010.

Activists have warned that the visit may be too hasty - political prisoners remain behind bars and ethnic conflicts in border areas are unresolved.

Multi-Document Summarization

Map a set of related documents to a brief summary.

The country, which is also known as Burma, was ruled by military leaders until early 2011 and for decades was politically and economically cut off from the rest of the world.

Suu Kyi acknowledged that Myanmar's opening up would be difficult.

The Alcu llork Times

YANGON, Myanmar - President Obama journeyed to this storied tropical outpost of pagodas and jungles on Monday to "extend the hand of friendship" as a land long tormented by repression and poverty begins to throw off military rule and emerge from decades of isolation.

The visit was intended to show support for the reforms put in place by Thein Sein's government since the end of military rule in November 2010.

Activists have warned that the visit may be too hasty - political prisoners remain behind bars and ethnic conflicts in border areas are unresolved.

Current State of Affairs

1 Greedy algorithms can deal with rich histories, but they are suboptimal and suffer from error propagation
2 Simple, tractable models permit exact decoding, but they make too stringent factorization assumptions

Current State of Affairs

1 Greedy algorithms can deal with rich histories, but they are suboptimal and suffer from error propagation
2 Simple, tractable models permit exact decoding, but they make too stringent factorization assumptions

We'd like fast predictors with global features and constraints, but how?

Related Recent Tutorials

■ Dual Decomposition and Lagrangian Relaxation for Inference in NLP (Rush \& Collins ACL 2011)
■ Structured Predictions in NLP: Constrained Conditional Models and Integer Linear Programming (Srikumar, Goldwasser \& Roth NAACL 2012)

- Variational Inference in Structured NLP Models (Burkett \& Klein NAACL 2012)
■ Structured Belief Propagation for NLP (Gromley \& Eisner ACL 2014)

This Tutorial: Linear Programming Decoders

We'll provide a unified view over these approaches (ILPs, message-passing, dual decomposition)

We'll focus on MAP decoding, but touch briefly on marginal decoding
We'll illustrate with three applications:
1 Turbo Parsing
2 Compressive Summarization
3 Joint Coreference Resolution and Quote Attribution
(Companion software: AD^{3} toolkit)

Outline

1 Structured Prediction and Factor Graphs

2 Integer Linear Programming
3 Message-Passing Algorithms

- Sum-Product

■ Max-Product
4 Dual Decomposition

5 Applications

6 Conclusions

Outline

1 Structured Prediction and Factor Graphs

2 Integer Linear Programming

3 Message-Passing Algorithms

- Sum-Product
- Max-Product

4 Dual Decomposition

5 Applications

6 Conclusions

Structured Prediction

- Input set \mathcal{X}
- For each $x \in \mathcal{X}$: a large set of candidate outputs $y(x)$
- A compatibility function $F_{w}(x, y)$ induced by a model \boldsymbol{w} (Linear model: $F_{\boldsymbol{w}}(x, y)=\boldsymbol{\omega}^{\top} \boldsymbol{f}(x, y)$)

Structured Prediction

■ Input set X

- For each $x \in \mathcal{X}$: a large set of candidate outputs $y(x)$
- A compatibility function $F_{w}(x, y)$ induced by a model \boldsymbol{w} (Linear model: $F_{\boldsymbol{w}}(x, y)=\boldsymbol{\omega}^{\top} \boldsymbol{f}(x, y)$)
- Training problem: learn the model \boldsymbol{w} from data $\left\{\left\langle x_{i}, y_{i}\right\rangle\right\}_{i=1}^{M}$

■ Decoding problem (our focus):

$$
\hat{y}=\arg \max _{y \in y(x)} F_{w}(x, y)
$$

Structured Prediction

■ Input set X

- For each $x \in \mathcal{X}$: a large set of candidate outputs $y(x)$
- A compatibility function $F_{w}(x, y)$ induced by a model \boldsymbol{w} (Linear model: $F_{w}(x, y)=\boldsymbol{\omega}^{\top} \boldsymbol{f}(x, y)$)
- Training problem: learn the model \boldsymbol{w} from data $\left\{\left\langle x_{i}, y_{i}\right\rangle\right\}_{i=1}^{M}$

■ Decoding problem (our focus):

$$
\hat{y}=\arg \max _{y \in y(x)} F_{w}(x, y)
$$

■ Key assumption: F_{w} decomposes into (overlapping) parts

Three Important Questions

■ Representation?
■ Decoding/Inference?
■ Learning the parameters?

Recap: Hidden Markov Models

F_{w} is a log-probability, factoring over emissions and transitions.

$$
\mathbb{P}(x, y)=\prod_{i} \underbrace{\mathbb{P}\left(x_{i} \mid y_{i}\right)}_{\text {emissions }} \underbrace{\mathbb{P}\left(y_{i} \mid y_{i-1}\right)}_{\text {transitions }}
$$

Recap: Hidden Markov Models

F_{w} is a log-probability, factoring over emissions and transitions.

$$
\mathbb{P}(x, y)=\prod_{i} \underbrace{\mathbb{P}\left(x_{i} \mid y_{i}\right)}_{\text {emissions }} \underbrace{\mathbb{P}\left(y_{i} \mid y_{i-1}\right)}_{\text {transitions }}
$$

Recap: Hidden Markov Models

F_{w} is a log-probability, factoring over emissions and transitions.

$$
\mathbb{P}(x, y)=\prod_{i} \underbrace{\mathbb{P}\left(x_{i} \mid y_{i}\right)}_{\text {emissions }} \underbrace{\mathbb{P}\left(y_{i} \mid y_{i-1}\right)}_{\text {transitions }}
$$

Recap: Hidden Markov Models

F_{w} is a log-probability, factoring over emissions and transitions.

$$
\mathbb{P}(x, y)=\prod_{i} \underbrace{\mathbb{P}\left(x_{i} \mid y_{i}\right)}_{\text {emissions }} \underbrace{\mathbb{P}\left(y_{i} \mid y_{i-1}\right)}_{\text {transitions }}=\prod_{i} \psi_{i}\left(y_{i}\right) \prod_{i} \psi_{i, i-1}\left(y_{i}, y_{i-1}\right)
$$

Recap: Hidden Markov Models

■ Representation? Directed sequence model.
■ Decoding/Inference? Viterbi/forward-backward algorithms.
■ Learning the parameters? Maximum likelihood (count and normalize).

Recap: Conditional Random Fields

Same factorization, but globally normalized.

$$
\mathbb{P}(y \mid x)=\frac{1}{Z(\boldsymbol{w}, x)} \exp (\sum_{i} \underbrace{\boldsymbol{w}^{\top} \boldsymbol{f}_{i}\left(x, y_{i}\right)}_{\text {nodes }}+\sum_{i} \underbrace{\boldsymbol{w}^{\top} \boldsymbol{f}_{i, i-1}\left(x, y_{i}, y_{i-1}\right)}_{\text {edges }})
$$

Recap: Conditional Random Fields

Same factorization, but globally normalized.

$$
\mathbb{P}(y \mid x)=\frac{1}{Z(\boldsymbol{w}, x)} \exp (\sum_{i} \underbrace{\boldsymbol{w}^{\top} \boldsymbol{f}_{i}\left(x, y_{i}\right)}_{\text {nodes }}+\sum_{i} \underbrace{\boldsymbol{w}^{\top} \boldsymbol{f}_{i, i-1}\left(x, y_{i}, y_{i-1}\right)}_{\text {edges }})
$$

$$
\psi_{i}\left(y_{i}\right):=\exp \left(\mathbf{w}^{\top} \mathbf{f}\left(x, y_{i}\right)\right) \text { (unary potentials) }
$$

Recap: Conditional Random Fields

Same factorization, but globally normalized.

$$
\mathbb{P}(y \mid x)=\frac{1}{Z(\boldsymbol{w}, x)} \exp (\sum_{i} \underbrace{\boldsymbol{w}^{\top} \boldsymbol{f}_{i}\left(x, y_{i}\right)}_{\text {nodes }}+\sum_{i} \underbrace{\boldsymbol{w}^{\top} \boldsymbol{f}_{i, i-1}\left(x, y_{i}, y_{i-1}\right)}_{\text {edges }})
$$

Recap: Conditional Random Fields

Same factorization, but globally normalized.

$$
\begin{gathered}
\mathbb{P}(y \mid x)=\frac{1}{Z(\boldsymbol{w}, x)} \exp (\sum_{i} \underbrace{\boldsymbol{w}^{\top} \boldsymbol{f}_{i}\left(x, y_{i}\right)}_{\text {nodes }}+\sum_{i} \underbrace{\boldsymbol{w}^{\top} \boldsymbol{f}_{i, i-1}\left(x, y_{i}, y_{i-1}\right)}_{\text {edges }}) \\
\propto \prod_{i} \psi_{i}\left(y_{i}\right) \prod_{i} \psi_{i, i-1}\left(y_{i}, y_{i-1}\right)
\end{gathered} \underbrace{\psi_{i}\left(y_{i}\right):=\exp \left(\mathbf{w}^{\top} \mathbf{f}\left(x, y_{i}\right)\right) \text { (unary potentials) }}_{\begin{array}{l}
\psi_{i, i-1}\left(y_{i}, y_{i-1}\right):=\exp \left(\mathbf{w}^{\top} \mathbf{f}\left(x, y_{i}, y_{i-1}\right)\right) \\
\text { (pairwise potentials) }
\end{array} Y_{i-1}}
$$

Recap: Conditional Random Fields

■ Representation? Undirected sequence model.
■ Decoding/Inference? Viterbi/forward-backward algorithms.
■ Learning the parameters? Maximum conditional likelihood (convex optimization).

Graphical Models

HMMs and CRFs are two instances of graphical models.
In general, graphical models come in two flavours:

- Directed (Bayesian Networks)
- Undirected (Markov Networks)

Bayesian Networks

Useful to express causality relations.
Factors are conditional probability tables.

$$
\mathbb{P}(y)=\mathbb{P}\left(y_{1}\right) \mathbb{P}\left(y_{2} \mid y_{1}, y_{4}\right) \mathbb{P}\left(y_{3} \mid y_{2}, y_{5}\right) \mathbb{P}\left(y_{4} \mid y_{5}\right) \mathbb{P}\left(y_{5}\right)
$$

$$
\mathbb{P}(y)=\prod_{i} \mathbb{P}\left(y_{i} \mid \text { parents }\left(y_{i}\right)\right)
$$

Bayesian Networks

Useful to express causality relations.
Factors are conditional probability tables.

$$
\mathbb{P}(y)=\mathbb{P}\left(y_{1}\right) \mathbb{P}\left(y_{2} \mid y_{1}, y_{4}\right) \mathbb{P}\left(y_{3} \mid y_{2}, y_{5}\right) \mathbb{P}\left(y_{4} \mid y_{5}\right) \mathbb{P}\left(y_{5}\right)
$$

$$
\mathbb{P}(y)=\prod_{i} \mathbb{P}\left(y_{i} \mid \text { parents }\left(y_{i}\right)\right)
$$

Markov Networks

Useful to express correlations between variables.
Factors correspond to cliques of the graph.

$$
\mathbb{P}(y)=\frac{1}{Z} \psi_{124}\left(y_{1}, y_{2}, y_{4}\right) \psi_{235}\left(y_{2}, y_{3}, y_{5}\right) \psi_{245}\left(y_{2}, y_{4}, y_{5}\right)
$$

$$
\mathbb{P}(y) \propto \prod_{s \in \operatorname{cliques}(G)} \psi_{s}\left(\boldsymbol{y}_{s}\right)
$$

Markov Networks

Useful to express correlations between variables.
Factors correspond to cliques of the graph.

$$
\mathbb{P}(y)=\frac{1}{z} \psi_{124}\left(y_{1}, y_{2}, y_{4}\right) \psi_{235}\left(y_{2}, y_{3}, y_{5}\right) \psi_{245}\left(y_{2}, y_{4}, y_{5}\right)
$$

$$
\mathbb{P}(y) \propto \prod_{s \in \operatorname{cliques}(G)} \psi_{s}\left(\boldsymbol{y}_{s}\right)
$$

Conditional Independence

Graphical models are a great tool for modeling conditional independence They link properties of the probability distribution with properties of the graph (reachability, D-separation, etc.)

Lots of literature about this: Pearl (1988); Lauritzen (1996); Koller and Friedman (2009)

An Intermediate Representation: Factor Graph

A bipartite graph with variable nodes and factor nodes
It makes explicit the factors of the distribution

With unary potentials only, all variables would be independent Higher-order potentials can model correlations, impose soft/hard constraints, etc.

Example: Low-Density Parity Check Codes

A message is transmitted through a noisy channel, corrupting some bits Redundancy can help decoding the message, e.g. via additional parity check bits that can detect/correct errors (error-correcting codes)

High-level idea: increase redundancy to build more accurate decoders

(Adapted from MacKay 2003.)

Inference/Decoding

$$
\mathbb{P}_{\psi}(y \mid x)=\frac{1}{Z(\psi, x)} \times \underbrace{\prod_{i} \psi_{i}\left(y_{i}\right)}_{\text {unary potentials }} \times \underbrace{\prod_{s} \psi_{s}\left(y_{s}\right)}_{\text {higher-order potentials }}
$$

Two decoding problems:
■ MAP decoding: compute $\hat{y}=\arg \max _{y} \mathbb{P}_{\psi}(y \mid x)$
■ Marginal decoding: compute every $\mathbb{P}_{\psi}\left(y_{i} \mid x\right)$ and $\mathbb{P}_{\psi}\left(\boldsymbol{y}_{s} \mid x\right)$; and evaluate the partition function $Z(\psi, x)$

Sometimes easy, in general intractable...

When is Decoding Easy?

- independent variables (trivial)
- sequence models (Viterbi, forward-backward)
- graphical models without cycles (variable elimination, belief propagation)
■ graphical models with low treewidth (junction tree algorithm)

When is Decoding Easy?

- independent variables (trivial)
- sequence models (Viterbi, forward-backward)
- graphical models without cycles (variable elimination, belief propagation)
■ graphical models with low treewidth (junction tree algorithm)
In general, for graphs with cycles, MAP decoding is NP-hard and marginal decoding is \#P-hard

When is Decoding Easy?

- independent variables (trivial)
- sequence models (Viterbi, forward-backward)
- graphical models without cycles (variable elimination, belief propagation)
■ graphical models with low treewidth (junction tree algorithm)
In general, for graphs with cycles, MAP decoding is NP-hard and marginal decoding is \#P-hard

Note: tractability depends not only on the topology, but also on the potentials

Example: Ising and Potts Models

Ising/Potts grid

Ernst Ising, 1900-1998

Ren Potts, 1925-2005

All factors are pairwise, variables are binary (Ising) or multi-class (Potts)

Example: Ising and Potts Models

Ising/Potts grid

Ernst Ising, 1900-1998

Ren Potts, 1925-2005

All factors are pairwise, variables are binary (Ising) or multi-class (Potts) MAP decoding is tractable for attractive Ising models (i.e. Ising models with supermodular log-potentials):

$$
\log \psi_{i j}(1,1)+\log \psi_{i j}(0,0) \geq \log \psi_{i j}(0,1)+\log \psi_{i j}(1,0)
$$

Good approximations for attractive Potts models

Example: Ising and Potts Models

Ising/Potts grid

Ernst Ising, 1900-1998

Ren Potts, 1925-2005

All factors are pairwise, variables are binary (Ising) or multi-class (Potts) MAP decoding is tractable for attractive Ising models (i.e. Ising models with supermodular log-potentials):

$$
\log \psi_{i j}(1,1)+\log \psi_{i j}(0,0) \geq \log \psi_{i j}(0,1)+\log \psi_{i j}(1,0)
$$

Good approximations for attractive Potts models
... but the general case is NP-hard and hard to approximate

Example: Skip-Chain CRFs

Skip-chain CRFs are useful to model long-range dependencies

Skip-chains introduce cycles, making decoding more expensive We could write this information in the "state" and still decode with dynamic programming, but that would blow up the number of states

Beyond Graphical Models

Some NLP problems (e.g. parsing) require representations beyond graphical models

Dynamic programming algorithms (CKY, inside-outside) still work for those representations

Example: case-factor diagrams (McAllester et al., 2008)
Other problems (e.g. matching, spanning trees) can be solved with combinatorial algorithms not related with dynamic programming

All these can still be represented as GMs by "generalizing" the notion of factor

Factors as Machines

Factors as Machines

Three Kinds of Factors

Let $N(s)$ denote the set of variables that are neighbors of factor s. (Its cardinality $|N(s)|$ is called the degree of s.)

1 Dense factors: $\boldsymbol{\psi}_{s}\left(\boldsymbol{y}_{s}\right)$ has all $O(\exp (|N(s)|))$ degrees of freedom
2 Structured factors: $\boldsymbol{\psi}_{s}\left(\boldsymbol{y}_{s}\right)$ has internal structure
3 Hard constraint factors:

$$
\psi_{s}\left(\boldsymbol{y}_{s}\right):= \begin{cases}1, & \text { if } \boldsymbol{y}_{s} \in y_{s} \\ 0, & \text { otherwise }\end{cases}
$$

Examples of Structured Factors

- a factor for bipartite matching (Duchi et al., 2007)
- combining a sequential model (POS tagger) with a PCFG (Rush et al., 2010)
■ combining CCG parsing and supertagging (Auli and Lopez, 2011)
■ dependency parsing with head automata (Smith and Eisner, 2008; Koo et al., 2010)
- handling string-valued variables with factors that are finite state transducers (Dreyer and Eisner, 2009)
- inversion transduction grammar constraint (Burkett and Klein, 2012)

Examples of Hard Constraint Factors

Logic factors: can express arbitrary FOL constraints

- Applications: Markov logic networks (Richardson and Domingos, 2006), constrained conditional models (Roth and Yih, 2004)

Knapsack factors: can express budget constraints
■ Applications: summarization, diversity problems,...
(Martins et al., 2011b; Almeida and Martins, 2013; Martins et al., 2014)

Approximate Decoding

What to do when exact decoding is intractable?

- Sampling methods (MCMC, etc.)

■ Mean field algorithms

- LP relaxations
- Message-passing
- Dual decomposition

We'll highlight connections between several of these methods.

Approximate Decoding

What to do when exact decoding is intractable?
■ Sampling methods (MCMC, etc.)
■ Mean field algorithms

- LP relaxations

■ Message-passing
■ Dual decomposition
We'll highlight connections between several of these methods.

Global/Local Decoding

"Local" denotes independent problems within the scope of each factor "Global" involves a global assignment of variables, consistent across factors

Key idea: "glue" the local evidence at the factors to obtain a global assignment
Our assumption: local decoding is easy, for every factor
We want to build a good (approximate) global decoder by invoking the local decoders.

What Kind of Local Decoding Do We Need?

Algorithm	Local Operation
Sum-Prod. BP (Pearl, 1988)	marginals
TRBP (Wainwright et al., 2005)	marginals
Norm-Product BP (Hazan and Shashua, 2010)	marginals
Max-Prod. BP (Pearl, 1988)	max-marginals
TRW-S (Kolmogorov, 2006)	max-marginals
MPLP (Globerson and Jaakkola, 2008)	max-marginals
PSDD (Komodakis et al., 2007)	MAP
Accelerated DD (Jojic et al., 2010)	marginals
AD 3 (Martins et al., 2011a)	QP/MAP

Outline

1 Structured Prediction and Factor Graphs

2 Integer Linear Programming

3 Message-Passing Algorithms

- Sum-Product
- Max-Product

4 Dual Decomposition

5 Applications

6 Conclusions

Linear Programming
 (Kantorovich, 1940; Dantzig, 1947)

$\max _{\boldsymbol{z}} \boldsymbol{s}^{\top} \boldsymbol{z}$
s.t. $\quad \boldsymbol{a}_{i}{ }^{\top} \boldsymbol{z} \leq b_{i}, i=1, \ldots, N$. Linear constraints

Linear Programming
 (Kantorovich, 1940; Dantzig, 1947)

$\max \boldsymbol{s}^{\top} \boldsymbol{z}$
s.t. $\quad \boldsymbol{a}_{i}{ }^{\top} \boldsymbol{z} \leq b_{i}, i=1, \ldots, N$. Linear constraints

Linear Programming
 (Kantorovich, 1940; Dantzig, 1947)

$\max \boldsymbol{s}^{\top} \boldsymbol{z}$
$\begin{aligned} \text { s.t. } & \boldsymbol{a}_{i}{ }^{\top} \boldsymbol{z} \leq b_{i}, i=1, \ldots, N \text {. Linear constraints }\end{aligned}$

Linear Programming
 (Kantorovich, 1940; Dantzig, 1947)

$\max \boldsymbol{s}^{\top} \boldsymbol{z}$
$\begin{aligned} \text { s.t. } & \boldsymbol{a}_{i}{ }^{\top} \boldsymbol{z} \leq b_{i}, i=1, \ldots, N \text {. Linear constraints }\end{aligned}$

Linear Programming
 (Kantorovich, 1940; Dantzig, 1947)

$\max \boldsymbol{s}^{\top} \boldsymbol{z}$
s.t. $\quad \boldsymbol{a}_{i}{ }^{\top} \boldsymbol{z} \leq b_{i}, i=1, \ldots, N$. Linear constraints

Linear Programming (Kantorovich, 1940; Dantzig, 1947)

■ If feasible and bounded, the solution is always attained at a vertex

- Can be solved in polynomial time (Khachiyan, 1980)

■ Lots of off-the-shelf solvers (CPLEX, Gurobi, GLPK, LP_Solve, etc.)

Integer Linear Programming

$\max _{\boldsymbol{z}} \boldsymbol{s}^{\top} \boldsymbol{z}$
s.t. $\quad \boldsymbol{a}_{i}{ }^{\top} \boldsymbol{z} \leq b_{i}, i=1, \ldots, N$, Linear constraints z integer.

Integer Linear Programming

$\max _{\boldsymbol{z}} \boldsymbol{s}^{\top} \boldsymbol{z}$
s.t. $\quad \boldsymbol{a}_{i}{ }^{\top} \boldsymbol{z} \leq b_{i}, i=1, \ldots, N$, Linear constraints z integer.

Integer Linear Programming

$\max _{\boldsymbol{z}} \boldsymbol{s}^{\top} \boldsymbol{z}$
s.t. $\quad \boldsymbol{a}_{i}{ }^{\top} \boldsymbol{z} \leq b_{i}, i=1, \ldots, N$, Linear constraints z integer.

Integer Linear Programming

$\max _{\boldsymbol{z}} \boldsymbol{s}^{\top} \boldsymbol{z}$
s.t. $\quad \boldsymbol{a}_{i}{ }^{\top} \boldsymbol{z} \leq b_{i}, i=1, \ldots, N$, Linear constraints z integer.

Integer Linear Programming

$\max _{\boldsymbol{z}} \boldsymbol{s}^{\top} \boldsymbol{z}$
s.t. $\quad \boldsymbol{a}_{i}{ }^{\top} \boldsymbol{z} \leq b_{i}, i=1, \ldots, N$, Linear constraints z integer.

Integer Linear Programming

In general, NP-hard (Karp, 1972)
Existing solvers are effective for small instances, but don't scale
LP relaxation: drops the integer constraints
■ Gives an upper bound of the solution of the ILP
■ A common first step in exact algorithms (branch-and-bound, cutting plane, branch-and-cut)

Here's a very simple approximate algorithm:
1 Solve the LP relaxation
2 If the solution is integer, then it is the solution of the ILP
3 Otherwise, apply a rounding heuristic (problem-dependent)

Two Representations of Polytopes

Intersection of half-spaces (H-representation) or convex hull of a set of vertices (V-representation)

To call a solver, we need to specify a concise H-representation However, it may be difficult or impossible to obtain one if all we have is a V -representation

We next show how this relates to MAP decoding...

Structured Outputs as Bit-Vectors

Structured Outputs as Bit-Vectors

■ One indicator $p_{i}\left(y_{i}\right)$ per each variable state

Structured Outputs as Bit-Vectors

■ One indicator $p_{i}\left(y_{i}\right)$ per each variable state

Structured Outputs as Bit-Vectors

■ One indicator $p_{i}\left(y_{i}\right)$ per each variable state
■ One indicator $q_{s}\left(\boldsymbol{y}_{s}\right)$ per each factor configuration

Structured Outputs as Bit-Vectors

■ One indicator $p_{i}\left(y_{i}\right)$ per each variable state
■ One indicator $q_{s}\left(\boldsymbol{y}_{s}\right)$ per each factor configuration

Structured Outputs as Bit-Vectors

■ One indicator $p_{i}\left(y_{i}\right)$ per each variable state
■ One indicator $q_{s}\left(\boldsymbol{y}_{s}\right)$ per each factor configuration

Structured Outputs as Bit-Vectors

■ One indicator $p_{i}\left(y_{i}\right)$ per each variable state
■ One indicator $q_{s}\left(\boldsymbol{y}_{s}\right)$ per each factor configuration
■ Overall: each global output $y \in y(x)$ is mapped to a bit-vector

Structured Outputs as Bit-Vectors

- One indicator $p_{i}\left(y_{i}\right)$ per each variable state

■ One indicator $q_{s}\left(\boldsymbol{y}_{s}\right)$ per each factor configuration
■ Overall: each global output $y \in y(x)$ is mapped to a bit-vector

Structured Outputs as Bit-Vectors

■ One indicator $p_{i}\left(y_{i}\right)$ per each variable state
■ One indicator $q_{s}\left(\boldsymbol{y}_{s}\right)$ per each factor configuration
■ Overall: each global output $y \in y(x)$ is mapped to a bit-vector
■ Note: not all bit vectors are valid (they must be consistent)

Marginal Polytope (Wainwright and Jordan, 2008)

Marginal Polytope (Wainwright and Jordan, 2008)

O

Marginal Polytope (Wainwright and Jordan, 2008)

Marginal Polytope (Wainwright and Jordan, 2008)

■ Vertices of MARG (G) correspond to outputs $y(x)$
■ Points of MARG(G) correspond to realizable marginals (more later)

Marginal Polytope (Wainwright and Jordan, 2008)

- Vertices of MARG (G) correspond to outputs $y(x)$

■ Points of MARG(G) correspond to realizable marginals (more later)

Marginal Polytope (Wainwright and Jordan, 2008)

■ Vertices of MARG (G) correspond to outputs $y(x)$
■ Points of MARG(G) correspond to realizable marginals (more later)

- This is a V-representation, what about an H-representation?

H-Representation With Integer Constraints

In general, there's no concise H-representation for MARG(G)
... but we can represent its vertices if integer constraints are permitted:

$$
\begin{array}{rll}
\sum_{\boldsymbol{y}_{s}} q_{s}\left(\boldsymbol{y}_{s}\right)=1, \quad q_{s}\left(\boldsymbol{y}_{s}\right) \geq \mathbf{0}, & \forall \boldsymbol{y}_{s} \in \boldsymbol{y}_{s} & \text { (normalization) } \\
p_{i}\left(y_{i}\right)=\sum_{\boldsymbol{y}_{s} \sim y_{i}} q_{s}\left(\boldsymbol{y}_{s}\right), & \forall i \in N(s) & \text { (marginalization) } \\
& \boldsymbol{q} \text { is integer } & \text { (integer constraints) }
\end{array}
$$

This will open the door for formulating MAP decoding as an ILP.

MAP Decoding as an ILP

Recall the MAP decoding problem:

$$
\begin{aligned}
\widehat{y} & =\arg \max _{y \in y(x)} P_{\psi}(y \mid x) \\
& =\arg \max _{y \in y(x)} \frac{1}{Z(\boldsymbol{\psi}, x)} \prod_{i} \psi_{i}\left(y_{i}\right) \prod_{s} \psi_{s}\left(\boldsymbol{y}_{s}\right) \\
& =\arg \max _{y \in y(x)} \sum_{i} \boldsymbol{\theta}_{i}\left(y_{i}\right)+\sum_{s} \theta_{s}\left(\boldsymbol{y}_{s}\right),
\end{aligned}
$$

where $\boldsymbol{\theta}_{i}\left(y_{i}\right):=\log \boldsymbol{\psi}_{i}\left(y_{i}\right)$ and $\boldsymbol{\theta}_{s}\left(\boldsymbol{y}_{s}\right):=\log \psi_{s}\left(\boldsymbol{y}_{s}\right)$
We can rewrite this as an ILP:

$$
\begin{aligned}
& \text { maximize } \sum_{i} \sum_{y_{i}} \boldsymbol{\theta}_{i}\left(y_{i}\right) p_{i}\left(y_{i}\right)+\sum_{s} \sum_{\boldsymbol{y}_{s}} \boldsymbol{\theta}_{s}\left(\boldsymbol{y}_{s}\right) q_{s}\left(\boldsymbol{y}_{s}\right) \\
& \text { subject to }(p, q) \in \operatorname{MARG}(G)
\end{aligned}
$$

Local Polytope

Obtained by relaxing the integer constraints
Regard \boldsymbol{p}_{i} and \boldsymbol{q}_{s} as probability distributions that must be locally consistent:

$$
\begin{array}{rll}
\sum_{\boldsymbol{y}_{s}} q_{s}\left(\boldsymbol{y}_{s}\right)=1, \quad q_{s}\left(\boldsymbol{y}_{s}\right) \geq \mathbf{0}, \quad \forall \boldsymbol{y}_{s} \in \boldsymbol{y}_{s} & \text { (normalization) } \\
p_{i}\left(y_{i}\right)=\sum_{\boldsymbol{y}_{s} \sim y_{i}} q_{s}\left(\boldsymbol{y}_{s}\right), \quad \forall i \in N(s) & \text { (marginalization) } \\
\quad \boldsymbol{q} \text { is integer } & \text { (integer constraints) }
\end{array}
$$

The feasible points are pseudo-marginals (not necessarily valid marginals)

Local and Marginal Polytopes

Local and Marginal Polytopes

- $\operatorname{LOCAL}(G)$ is an outer bound of $\operatorname{MARG}(G)$
- It contains all the integer vertices of $\operatorname{MARG}(G)$, plus spurious fractional vertices
■ If the graph has no cycles, then $\operatorname{LOCAL}(G)=\operatorname{MARG}(G)$

LP-MAP Decoding

Solves a linear relaxation of MAP decoding, replacing $\operatorname{MARG}(G)$ by LOCAL(G):

$$
\begin{aligned}
& \text { maximize } \sum_{i} \sum_{y_{i}} \boldsymbol{\theta}_{i}\left(y_{i}\right) p_{i}\left(y_{i}\right)+\sum_{s} \sum_{\boldsymbol{y}_{s}} \boldsymbol{\theta}_{s}\left(\boldsymbol{y}_{s}\right) q_{s}\left(\boldsymbol{y}_{s}\right) \\
& \text { subject to }(p, q) \in \operatorname{LOCAL}(G)
\end{aligned}
$$

If the solution is integer, we solved the problem exactly; otherwise, apply a rounding heuristic

Runtime is polynomial, but the procedure is only approximate.

What About Hard Constraint Factors?

Logic and knapsack/budget constraints can also be expressed linearly

Logic/Budget Constraints

Assume $z_{1}, z_{2}, \ldots \in\{0,1\}$ (binary variables)

Condition	Statement	Constraint
Implication	if z_{1} then z_{2}	$z_{1} \leq z_{2}$
Negation	z_{1} iff $\neg z_{2}$	$z_{1}=1-z_{2}$
OR	z_{1} or z_{2} or z_{3}	$z_{1}+z_{2}+z_{3} \geq 1$
XOR	z_{1} xor z_{2} xor z_{3}	$z_{1}+z_{2}+z_{3}=1$
OR-OUT	$z_{12}=z_{1} \vee z_{2}$	$z_{12} \geq z_{1}, z_{12} \geq z_{2}$, $z_{12} \leq z_{1}+z_{2}$
AND-OUT	$z_{12}=z_{1} \wedge z_{2}$	$z_{12} \leq z_{1}, z_{12} \leq z_{2}$, $z_{12} \geq z_{1}+z_{2}-1$
Budget	at most B active units	$\sum_{i} z_{i} \leq B$
Knapsack	at most B total weight	$\sum_{i} w_{i} z_{i} \leq B$

More complex expressions via composition and De Morgan's laws

Summing Up ILPs

■ MAP decoding can be expressed as an Integer Linear Program (ILP)
■ Logic constraints can be incorporated easily
■ Structured factors are harder (they need to be disassembled)

- The ILP can be relaxed for approximate decoding (LP-MAP)

■ Geometrically: an outer bound of the marginal polytope

- The relaxation is tight if the graph G does not have cycles

■ Disadvantage: an off-the-shelf LP solver won't exploit the modularity of the problem
■ Algorithms that exploit the structure of the LP will be the topic of the remaining sections

Outline

1 Structured Prediction and Factor Graphs
 2 Integer Linear Programming

3 Message-Passing Algorithms

- Sum-Product

■ Max-Product
4 Dual Decomposition

5 Applications

6 Conclusions

Motivating Example: Counting Soldiers

(Adapted from MacKay 2003 and Gormley \& Eisner ACL'14 tutorial.)

Motivating Example: Counting Soldiers

(Adapted from MacKay 2003 and Gormley \& Eisner ACL'14 tutorial.)

Motivating Example: Counting Soldiers

(Adapted from MacKay 2003 and Gormley \& Eisner ACL'14 tutorial.)

Motivating Example: Counting Soldiers

(Adapted from MacKay 2003 and Gormley \& Eisner ACL'14 tutorial.)

Motivating Example: Counting Soldiers

(Adapted from MacKay 2003 and Gormley \& Eisner ACL'14 tutorial.)

Motivating Example: Counting Soldiers

(Adapted from MacKay 2003 and Gormley \& Eisner ACL'14 tutorial.)

Motivating Example: Counting Soldiers

(Adapted from MacKay 2003 and Gormley \& Eisner ACL'14 tutorial.)

Outline

1 Structured Prediction and Factor Graphs
 2 Integer Linear Programming

3 Message-Passing Algorithms

- Sum-Product

■ Max-Product

4 Dual Decomposition

5 Applications

6 Conclusions

Sum-Product Belief Propagation

Recall that $\mathbb{P}_{\psi}(y \mid x):=\frac{1}{Z(\psi, x)} \times \prod_{i} \psi_{i}\left(y_{i}\right) \times \prod_{s} \psi_{s}\left(y_{s}\right)$
Alternate between computing two kinds of messages:
$■$ Variable-to-factor: $m_{i \rightarrow s}\left(y_{i}\right)=\psi_{i}\left(y_{i}\right) \prod_{s^{\prime} \in N(i) \backslash\{s\}} n_{s^{\prime} \rightarrow i}\left(y_{i}\right)$
■ Factor-to-variable: $n_{s \rightarrow i}\left(y_{i}\right)=\sum_{\boldsymbol{y}_{s} \sim y_{i}} \psi_{s}\left(\boldsymbol{y}_{s}\right) \prod_{j \in N(s) \backslash\{i\}} m_{j \rightarrow s}\left(y_{j}\right)$

Beliefs

Given the messages, we compute local beliefs:

- Variable beliefs:

$$
p_{i}\left(y_{i}\right) \propto \psi_{i}\left(y_{i}\right) \prod_{s \in N(i)} n_{s \rightarrow i}\left(y_{i}\right)
$$

■ Factor beliefs:

$$
q_{s}\left(\boldsymbol{y}_{s}\right) \propto \psi_{s}\left(\boldsymbol{y}_{s}\right) \prod_{i \in N(s)} m_{i \rightarrow s}\left(y_{i}\right)
$$

If the graph has no cycles, these beliefs converge to the true marginals

$$
p_{i}\left(y_{i}\right) \rightarrow \mathbb{P}_{\psi}\left(y_{i} \mid x\right), \quad q_{s}\left(\boldsymbol{y}_{s}\right) \rightarrow \mathbb{P}_{\psi}\left(\boldsymbol{y}_{s} \mid x\right)
$$

Otherwise: loopy BP (later)

Belief Propagation as Calibration

■ Variable-to-factor messages:

$$
m_{i \rightarrow s}\left(y_{i}\right)=\psi_{i}\left(y_{i}\right) \prod_{s^{\prime} \in N(i) \backslash\{s\}} n_{s^{\prime} \rightarrow i}\left(y_{i}\right)=\frac{p_{i}\left(y_{i}\right)}{n_{s \rightarrow i}\left(y_{i}\right)}
$$

■ Factor-to-variable messages:

$$
n_{s \rightarrow i}\left(y_{i}\right)=\sum_{\boldsymbol{y}_{s} \sim y_{i}} \boldsymbol{\psi}_{s}\left(\boldsymbol{y}_{s}\right) \prod_{j \in N(s) \backslash\{i\}} m_{j \rightarrow s}\left(y_{j}\right)=\frac{\sum_{\boldsymbol{y}_{s} \sim y_{i}} q_{s}\left(\boldsymbol{y}_{s}\right)}{m_{i \rightarrow s}\left(y_{i}\right)}
$$

- Calibration equations (attained at convergence):

$$
p_{i}\left(y_{i}\right)=\sum_{\boldsymbol{y}_{s} \sim y_{i}} q_{s}\left(\boldsymbol{y}_{s}\right)
$$

Punchline: to run sum-product BP, we only need local marginals

What Kind of Local Decoding Do We Need?

Algorithm	Local Operation
Sum-Prod. BP (Pearl, 1988)	marginals
TRBP (Wainwright et al., 2005)	marginals
Norm-Product BP (Hazan and Shashua, 2010)	marginals
Max-Prod. BP (Pearl, 1988)	max-marginals
TRW-S (Kolmogorov, 2006)	max-marginals
MPLP (Globerson and Jaakkola, 2008)	max-marginals
PSDD (Komodakis et al., 2007)	MAP
Accelerated DD (Jojic et al., 2010)	marginals
AD 3 (Martins et al., 2011a)	QP/MAP

Loopy Belief Propagation

What if the graph has cycles?

Loopy Belief Propagation

What if the graph has cycles?

We'll see that marginal decoding corresponds to optimizing a free energy objective over the marginal polytope

Sum-product "loopy" BP entails two approximations:
1 Replaces $\operatorname{MARG}(G)$ by $\operatorname{LOCAL}(G)$
2 Optimizes a Bethe free energy approximation

Step \#1: Dual Parametrization

For any $\boldsymbol{\psi}$, there are marginals $\boldsymbol{p}, \boldsymbol{q}$ in $\operatorname{MARG}(G)$ that parametrize $\mathbb{P}_{\boldsymbol{\psi}}$ E.g. if the graph has no cycles:

$$
\begin{aligned}
\mathbb{P}_{\psi}(y \mid x) & =\frac{1}{Z(\psi, x)} \prod_{i} \psi_{i}\left(y_{i}\right) \times \prod_{s} \psi_{s}\left(\boldsymbol{y}_{s}\right) \\
& =\prod_{i} p_{i}\left(y_{i}\right)^{1-|N(i)|} \times \prod_{s} q_{s}\left(\boldsymbol{y}_{s}\right) \quad \quad \text { (* next slide) } \\
& :=\mathbb{P}_{\boldsymbol{p}, q}(y \mid x)
\end{aligned}
$$

Therefore: a distribution can be represented as a point in MARG(G) $\boldsymbol{\theta}:=\log (\boldsymbol{\psi})$ are called canonical parameters, and $(\boldsymbol{p}, \boldsymbol{q})$ mean parameters

(*) Derivation of Dual Parametrization

Assume a tree-shaped Bayes net (each variable i has a single parent π_{i})

$$
\begin{aligned}
\mathbb{P}(y) & =\mathbb{P}\left(y_{0}\right) \prod_{i \neq 0} \mathbb{P}\left(y_{i} \mid y_{\pi_{i}}\right) \\
& =\mathbb{P}\left(y_{0}\right) \prod_{i \neq 0} \frac{\mathbb{P}\left(y_{i}, y_{\pi_{i}}\right)}{\mathbb{P}\left(y_{\pi_{i}}\right)} \\
& =\frac{\mathbb{P}\left(y_{0}\right) \prod_{s} \mathbb{P}\left(\boldsymbol{y}_{s}\right)}{\prod_{j} \mathbb{P}\left(y_{j}\right)^{\left|i: j=\pi_{i}\right|}} \\
& =\frac{\mathbb{P}\left(y_{0}\right) \prod_{s} \mathbb{P}\left(\boldsymbol{y}_{s}\right)}{\mathbb{P}\left(y_{0}\right)^{|N(0)|} \prod_{j \neq 0} \mathbb{P}\left(y_{j}\right)^{|N(j)-1|}} \\
& =\frac{\prod_{s} \mathbb{P}\left(\boldsymbol{y}_{s}\right)}{\prod_{j} \mathbb{P}\left(y_{j}\right)^{|N(j)|-1}} \\
& =\prod_{i} p_{i}\left(y_{i}\right)^{1-|N(i)|} \times \prod_{s} q_{s}\left(\boldsymbol{y}_{s}\right) .
\end{aligned}
$$

Step \#2: Entropy and Log-Partition Function

 Entropy of a probability distribution: $H(\mathbb{P})=-\sum_{y} \mathbb{P}(y) \log \mathbb{P}(y)$Definition: the Fenchel dual of a convex function $f: \mathbb{R}^{D} \rightarrow \mathbb{R} \cup\{+\infty\}$ is the convex function $f^{\star}: \mathbb{R}^{D} \rightarrow \mathbb{R} \cup\{+\infty\}$ defined pointwise as $f^{\star}(\boldsymbol{v}):=\sup _{\boldsymbol{u}}\left(\boldsymbol{v}^{\top} \boldsymbol{u}-f(\boldsymbol{u})\right)$

Step \#2: Entropy and Log-Partition Function

 Entropy of a probability distribution: $H(\mathbb{P})=-\sum_{y} \mathbb{P}(y) \log \mathbb{P}(y)$Definition: the Fenchel dual of a convex function $f: \mathbb{R}^{D} \rightarrow \mathbb{R} \cup\{+\infty\}$ is the convex function $f^{\star}: \mathbb{R}^{D} \rightarrow \mathbb{R} \cup\{+\infty\}$ defined pointwise as $f^{\star}(\boldsymbol{v}):=\sup _{\boldsymbol{u}}\left(\boldsymbol{v}^{\top} \boldsymbol{u}-f(\boldsymbol{u})\right)$
Theorem (I): the log-partition function $\log Z(\boldsymbol{\theta})$ and the negative entropy $-H\left(\mathbb{P}_{\boldsymbol{p}, \boldsymbol{q}}\right)$ are Fenchel dual:

$$
\log Z(\boldsymbol{\theta})=\max _{(\boldsymbol{p}, \boldsymbol{q}) \in \operatorname{MARG}(G)} \underbrace{\sum_{i} \boldsymbol{\theta}_{i}^{\top} \boldsymbol{p}_{i}+\sum_{s} \boldsymbol{\theta}_{s}^{\top} \boldsymbol{q}_{s}+H\left(\mathbb{P}_{\boldsymbol{p}, \boldsymbol{q}}\right)}_{\text {(negative) variational free energy }},
$$

This underlies the well-known duality between maximum likelihood in log-linear models and maximum entropy.

Step \#3: Loopy BP as Variational Inference

Theorem (II): The maximizers $\left(\boldsymbol{p}^{*}, \boldsymbol{q}^{*}\right)$ are the true marginals of $\mathbb{P}_{\boldsymbol{\theta}}$:

$$
\left(\boldsymbol{p}^{*}, \boldsymbol{q}^{*}\right)=\arg \max _{(\boldsymbol{p}, \boldsymbol{q}) \in \operatorname{MARG}(G)} \sum_{i} \boldsymbol{\theta}_{i}^{\top} \boldsymbol{p}_{i}+\sum_{s} \boldsymbol{\theta}_{s}^{\top} \boldsymbol{q}_{s}+H\left(\mathbb{P}_{\boldsymbol{p}, \boldsymbol{q}}\right)
$$

Step \#3: Loopy BP as Variational Inference

Theorem (II): The maximizers $\left(\boldsymbol{p}^{*}, \boldsymbol{q}^{*}\right)$ are the true marginals of $\mathbb{P}_{\boldsymbol{\theta}}$:

$$
\left(\boldsymbol{p}^{*}, \boldsymbol{q}^{*}\right)=\arg \max _{(\boldsymbol{p}, \boldsymbol{q}) \in \operatorname{MARG}(G)} \sum_{i} \boldsymbol{\theta}_{i}^{\top} \boldsymbol{p}_{i}+\sum_{s} \boldsymbol{\theta}_{s}^{\top} \boldsymbol{q}_{s}+H\left(\mathbb{P}_{\boldsymbol{p}, \boldsymbol{q}}\right)
$$

Drawback: in general, $\operatorname{MARG}(G)$ and $H\left(\mathbb{P}_{\boldsymbol{p}, \boldsymbol{q}}\right)$ are both intractable

Step \#3: Loopy BP as Variational Inference

Theorem (II): The maximizers $\left(\boldsymbol{p}^{*}, \boldsymbol{q}^{*}\right)$ are the true marginals of $\mathbb{P}_{\boldsymbol{\theta}}$:

$$
\left(\boldsymbol{p}^{*}, \boldsymbol{q}^{*}\right)=\arg \max _{(\boldsymbol{p}, \boldsymbol{q}) \in \operatorname{MARG}(G)} \sum_{i} \boldsymbol{\theta}_{i}^{\top} \boldsymbol{p}_{i}+\sum_{s} \theta_{s}^{\top} \boldsymbol{q}_{s}+H\left(\mathbb{P}_{\boldsymbol{p}, \boldsymbol{q}}\right)
$$

Drawback: in general, $\operatorname{MARG}(G)$ and $H\left(\mathbb{P}_{\boldsymbol{p}, \boldsymbol{q}}\right)$ are both intractable Yedidia et al. (2001) showed that loopy BP entails two approximations:

1 Replace $\operatorname{MARG}(G)$ by $\operatorname{LOCAL}(G)$
2 Approximate $H\left(\mathbb{P}_{\boldsymbol{p}, \boldsymbol{q}}\right)$ by the Bethe entropy $H_{\text {Bethe }}\left(\mathbb{P}_{\boldsymbol{p}, \boldsymbol{q}}\right)$
Both are exact when the graph does not have cycles

Bethe Entropy Approximation

Derived by "pretending" the graph has no cycles We have seen

$$
\mathbb{P}_{\psi}(y \mid x) \approx \prod_{i} p_{i}\left(y_{i}\right)^{1-|N(i)|} \times \prod_{s} q_{s}\left(y_{s}\right)
$$

From which we can derive

$$
\begin{aligned}
H\left(\mathbb{P}_{\boldsymbol{p}, \boldsymbol{q}}\right) & \approx H_{\text {Bethe }}\left(\mathbb{P}_{\boldsymbol{p}, \boldsymbol{q}}\right) \\
& =\sum_{i}(1-|N(i)|) H_{i}\left(\boldsymbol{p}_{i}\right)+\sum_{s} H_{s}\left(\boldsymbol{q}_{s}\right)
\end{aligned}
$$

Hans Bethe, 1906-2005
A linear combination of local entropies:

$$
H_{i}\left(\boldsymbol{p}_{i}\right)=-\sum_{y_{i}} p_{i}\left(y_{i}\right) \log p_{i}\left(y_{i}\right), \quad H_{s}\left(\boldsymbol{q}_{s}\right)=-\sum_{\boldsymbol{y}_{s}} q_{s}\left(\boldsymbol{y}_{s}\right) \log q_{s}\left(\boldsymbol{y}_{s}\right)
$$

Not concave in general!

Geometric Illustration

If loopy BP converges, it reaches a stationary point of the approximate variational problem
$H_{\text {Bethe }}\left(\mathbb{P}_{\boldsymbol{p}, \boldsymbol{q}}\right)$ is non-concave in general \Rightarrow local minima

Summary of Loopy BP

Advantages:

- Simple to implement

■ Handles structured and logic factors (only need to compute local marginals)

- Often works well in practice (if cycles are not very influential)

■ Often yields a reasonable approximation of $\log Z$ and H

Disadvantages:

■ Doesn't give an upper/lower bound of $\log Z$ and H

- Entropy approximation is not concave (local minima)

■ May not converge
■ The final beliefs may not be realizable marginals

Tree Reweighted BP (Wainwright et al., 2005)

Key idea: cover the graph with a set of trees

Tree Reweighted BP (Wainwright et al., 2005)

Key idea: cover the graph with a set of trees

Tree Reweighted BP (Wainwright et al., 2005)

Key idea: cover the graph with a set of trees

Tree Reweighted BP (Wainwright et al., 2005)

Key idea: cover the graph with a set of trees

Count the appearance probability $c_{i s}>0$ of each edge

Tree Reweighted BP (Wainwright et al., 2005)

Key idea: cover the graph with a set of trees

Count the appearance probability $c_{i s}>0$ of each edge

Tree Reweighted BP (Wainwright et al., 2005)

Key idea: cover the graph with a set of trees

Count the appearance probability $c_{i s}>0$ of each edge
This results in a convex upper bound of $-H$ and $\log Z$:

$$
H_{\mathrm{TRBP}}\left(\mathbb{P}_{\boldsymbol{p}, \boldsymbol{q}}\right)=\sum_{i}\left(1-\sum_{s \in N(i)} c_{i s}\right) H_{i}\left(\boldsymbol{p}_{i}\right)+\sum_{s} H_{s}\left(\boldsymbol{q}_{s}\right)
$$

(Note: if all $c_{i s}=1$ this would revert to the Bethe approximation)

TRBP Messages

■ Variable-to-factor messages:

$$
m_{i \rightarrow s}\left(y_{i}\right)=\frac{\psi_{i}\left(y_{i}\right) \prod_{s^{\prime} \in N(i)} n_{s^{\prime} \rightarrow i}^{c_{i s^{\prime}}\left(y_{i}\right)}}{n_{s \rightarrow i}\left(y_{i}\right)}
$$

■ Factor-to-variable messages:

$$
n_{s \rightarrow i}\left(y_{i}\right)=\sum_{y_{s} \sim y_{i}} \frac{\psi_{s}\left(\boldsymbol{y}_{s}\right) \prod_{j \in N(s)} m_{j \rightarrow s}^{j_{j s}}\left(y_{j}\right)}{m_{i \rightarrow s}\left(y_{i}\right)}
$$

■ Variable beliefs:

$$
p_{i}\left(y_{i}\right) \propto \boldsymbol{\psi}_{i}\left(y_{i}\right) \prod_{s \in N(i)} n_{s \rightarrow i}^{c_{i s}}\left(y_{i}\right)
$$

■ Factor beliefs:

$$
q_{s}\left(\boldsymbol{y}_{s}\right) \propto \boldsymbol{\psi}_{s}\left(\boldsymbol{y}_{s}\right) \prod_{i \in N(s)} m_{i \rightarrow s}^{c_{i s}}\left(y_{i}\right)
$$

Summary of TRBP

Advantages:

■ Still simple to implement

- Entropy approximation is concave (no local minima)

■ Gives an upper bound on $-H$ and $\log Z$

- Lots of knobs (the appearance probabilities)

Disadvantages:

■ Lots of knobs (the appearance probabilities)

- Typically it's a very loose bound

■ May not converge (but in practice always does, with dampening)

- The final beliefs may not be realizable marginals

What Kind of Local Decoding Do We Need?

Algorithm	Local Operation
Sum-Prod. BP (Pearl, 1988)	marginals
TRBP (Wainwright et al., 2005)	marginals
Norm-Product BP (Hazan and Shashua, 2010)	marginals
Max-Prod. BP (Pearl, 1988)	max-marginals
TRW-S (Kolmogorov, 2006)	max-marginals
MPLP (Globerson and Jaakkola, 2008)	max-marginals
PSDD (Komodakis et al., 2007)	MAP
Accelerated DD (Jojic et al., 2010)	marginals
AD 3 (Martins et al., 2011a)	QP/MAP

Norm-Product BP (Hazan and Shashua, 2010)

Subsumes loopy BP and TRBP
Relies on a convex approximation to the entropy using counting numbers $c_{i} \geq 0$ and $c_{s}>0$ (in its simpler variant)

$$
H_{\mathrm{NPBP}}\left(\mathbb{P}_{\boldsymbol{p}, \boldsymbol{q}}\right)=\sum_{i} c_{i} H_{i}\left(\boldsymbol{p}_{i}\right)+\sum_{s} c_{s} H_{s}\left(\boldsymbol{q}_{s}\right)
$$

Messages will become norms
Recall the definition of ℓ_{p}-norm: $\|\boldsymbol{x}\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}$

NPBP Messages

■ Variable-to-factor messages:

$$
m_{i \rightarrow s}\left(y_{i}\right)=\frac{\left(\psi_{i}\left(y_{i}\right) \prod_{s^{\prime} \in N(i)} n_{s^{\prime} \rightarrow i}\left(y_{i}\right)\right)^{c_{s} /\left(c_{i}+\sum_{s^{\prime} \in N(i)} c_{s}^{\prime}\right)}}{n_{s \rightarrow i}\left(y_{i}\right)}
$$

■ Factor-to-variable messages:

$$
n_{s \rightarrow i}\left(y_{i}\right)=\left(\sum_{y_{s} \sim y_{i}}\left(\psi_{s}\left(\boldsymbol{y}_{s}\right) \prod_{j \in N(s) \backslash\{i\}} m_{j \rightarrow s}\left(y_{j}\right)\right)^{1 / c_{s}}\right)^{c_{s}}
$$

■ Variable beliefs:

$$
p_{i}\left(y_{i}\right) \propto\left(\psi_{i}\left(y_{i}\right) \prod_{s \in N(i)} n_{s \rightarrow i}\left(y_{i}\right)\right)^{1 /\left(c_{i}+\sum_{s^{\prime} \in N(i)} c_{s}^{\prime}\right)}
$$

■ Factor beliefs:

$$
q_{s}\left(\boldsymbol{y}_{s}\right) \propto\left(\boldsymbol{\psi}_{s}\left(\boldsymbol{y}_{s}\right) \prod_{i \in N(s)} m_{i \rightarrow s}\left(y_{i}\right)\right)^{c_{s}}
$$

Summary of NPBP

Advantages:

■ Still simple to implement

- Entropy approximation is concave (no local minima)

■ Always converges (primal-dual block ascent)
■ Lots of knobs (the counting numbers)

Disadvantages:

■ Lots of knobs (the counting numbers)
■ Messages are not computed in parallel (otherwise, may not converge)
■ The final beliefs may not be realizable marginals

What Kind of Local Decoding Do We Need?

Algorithm	Local Operation
Sum-Prod. BP (Pearl, 1988)	marginals
TRBP (Wainwright et al., 2005)	marginals
Norm-Product BP (Hazan and Shashua, 2010)	marginals
Max-Prod. BP (Pearl, 1988)	max-marginals
TRW-S (Kolmogorov, 2006)	max-marginals
MPLP (Globerson and Jaakkola, 2008)	max-marginals
PSDD (Komodakis et al., 2007)	MAP
Accelerated DD (Jojic et al., 2010)	marginals
AD 3 (Martins et al., 2011a)	QP/MAP

Outline

1 Structured Prediction and Factor Graphs

2 Integer Linear Programming

3 Message-Passing Algorithms
■ Sum-Product
■ Max-Product

4 Dual Decomposition

5 Applications

6 Conclusions

Zero-Limit Temperature

Define Z_{ϵ} where ϵ is a temperature parameter:

$$
Z_{\epsilon}(\psi, x)=\left(\sum_{y \in y(x)} \prod_{i} \psi_{i}\left(y_{i}\right)^{1 / \epsilon} \prod_{s} \psi_{s}\left(y_{s}\right)^{1 / \epsilon}\right)^{\epsilon}
$$

If $\epsilon=1$, this becomes the partition function $Z(\psi, x)$
If $\epsilon \rightarrow 0$, this becomes the mode of $\mathbb{P}_{\psi}(y \mid x)$
Note that $Z_{\epsilon}(\psi, x)=Z\left(\psi^{1 / \epsilon}, x\right)^{\epsilon}$ for any ϵ, i.e., Z_{ϵ} can be computed by the same means as the partition function by scaling the potentials

By choosing a small enough ϵ, any sum-product message-passing algorithm can be used to approximate the MAP

There is a trade-off between precision and numerical stability

Max-Product Belief Propagation

■ For MAP decoding instead of marginal decoding

- Only change: factor-to-variable messages (max instead of \sum)

$$
n_{s \rightarrow i}\left(y_{i}\right)=\max _{\boldsymbol{y}_{s} \sim y_{i}}\left(\psi_{s}\left(\boldsymbol{y}_{s}\right) \prod_{j \in N(s) \backslash\{i\}} m_{j \rightarrow s}\left(y_{j}\right)\right)=\frac{\max _{\boldsymbol{y}_{s} \sim y_{i}} q_{s}\left(\boldsymbol{y}_{s}\right)}{m_{i \rightarrow s}\left(y_{i}\right)}
$$

- If the graph has no cycles, beliefs will converge to max-marginals:

$$
p_{i}\left(y_{i}\right) \rightarrow \max _{y \sim y_{i}} \mathbb{P}_{\psi}(y \mid x), \quad q_{s}\left(y_{s}\right) \rightarrow \max _{y \sim y_{s}} \mathbb{P}_{\psi}(y \mid x)
$$

- Decoding the best max-marginal at each variable node gives the MAP
- With cycles: not guaranteed to converge, and even if it does, no relation with LP-MAP

What Kind of Local Decoding Do We Need?

Algorithm	Local Operation
Sum-Prod. BP (Pearl, 1988)	marginals
TRBP (Wainwright et al., 2005)	marginals
Norm-Product BP (Hazan and Shashua, 2010)	marginals
Max-Prod. BP (Pearl, 1988)	max-marginals
TRW-S (Kolmogorov, 2006)	max-marginals
MPLP (Globerson and Jaakkola, 2008)	max-marginals
PSDD (Komodakis et al., 2007)	MAP
Accelerated DD (Jojic et al., 2010)	marginals
AD 3 (Martins et al., 2011a)	QP/MAP

TRW-S (Kolmogorov, 2006)

Same rationale as sum-product TRBP: cover the graph with spanning trees, and compute messages using edge appearance probabilities

Only differences:

- Replace \sum with max
- Messages need to be computed sequentially for convergence

As max-product loopy BP, all is required is to compute local max-marginals Under mild assumptions, gives the solution of LP-MAP

What Kind of Local Decoding Do We Need?

Algorithm	Local Operation
Sum-Prod. BP (Pearl, 1988)	marginals
TRBP (Wainwright et al., 2005)	marginals
Norm-Product BP (Hazan and Shashua, 2010)	marginals
Max-Prod. BP (Pearl, 1988)	max-marginals
TRW-S (Kolmogorov, 2006)	max-marginals
MPLP (Globerson and Jaakkola, 2008)	max-marginals
PSDD (Komodakis et al., 2007)	MAP
Accelerated DD (Jojic et al., 2010)	marginals
AD 3 (Martins et al., 2011a)	QP/MAP

Max-Product LP (Globerson and Jaakkola, 2008)

Derived by writing the dual of LP-MAP, and solving it with a block coordinate descent algorithm

The message updates need to be computed in a sequential schedule Progress in the dual objective is monotonic

Drawback: since the dual is non-smooth, we may get stuck at a suboptimal point

Figure 6.3.6. The basic difficulty with coordinate ascent for a nondifferentiable dual function. At some points it may be impossible to improve the dual function along any coordinate direction.
(From Bertsekas et al. (1999))

MPLP Messages

■ Variable-to-factor messages:

$$
m_{i \rightarrow s}\left(y_{i}\right)=\psi_{i}\left(y_{i}\right) \prod_{s^{\prime} \in N(i) \backslash\{s\}} n_{s^{\prime} \rightarrow i}\left(y_{i}\right)
$$

■ Factor-to-variable messages:

$$
n_{s \rightarrow i}\left(y_{i}\right)=\frac{\max _{\boldsymbol{y}_{s} \sim y_{i}}\left(\psi_{s}\left(\boldsymbol{y}_{s}\right)^{1 /|N(s)|} \prod_{j \in N(s)} m_{j \rightarrow s}\left(y_{j}\right)^{1 /|N(s)|}\right)}{m_{i \rightarrow s}\left(y_{i}\right)}
$$

Summary of MPLP

Advantages:

■ Very simple to implement

- Handles structured and logic factors (only need to compute local max-marginals)
- Monotonically improves the dual

■ No parameters to tune

Disadvantages:

- Can get stuck at a suboptimal solution (general problem with nonsmooth coordinate ascent)
■ Messages are not computed in parallel (otherwise, may not converge)

What Kind of Local Decoding Do We Need?

Algorithm	Local Operation
Sum-Prod. BP (Pearl, 1988)	marginals
TRBP (Wainwright et al., 2005)	marginals
Norm-Product BP (Hazan and Shashua, 2010)	marginals
Max-Prod. BP (Pearl, 1988)	max-marginals
TRW-S (Kolmogorov, 2006)	max-marginals
MPLP (Globerson and Jaakkola, 2008)	max-marginals
PSDD (Komodakis et al., 2007)	MAP
Accelerated DD (Jojic et al., 2010)	marginals
AD 3 (Martins et al., 2011a)	QP/MAP

Summing Up Message-Passing

- BP algorithms and their variants can be used both for MAP and marginal decoding
- They need to compute local marginals (sum-product) or max-marginals (max-product)
■ Always exact if the graph has no cycles; approximate otherwise
■ They correspond to minimizing an energy approximation over the local polytope
- Some variants do convex approximations or compute upper bounds

■ Two views of MAP decoding: (1) the near-zero temperature limit of marginal decoding; (2) a non-smooth optimization problem

Outline

1 Structured Prediction and Factor Graphs

2 Integer Linear Programming

3 Message-Passing Algorithms

- Sum-Product

■ Max-Product
4 Dual Decomposition

5 Applications

6 Conclusions

Dual Decomposition

- Old idea in optimization (Dantzig and Wolfe, 1960; Everett III, 1963)

■ First proposed by Komodakis et al. (2007) in computer vision
■ Introduced in NLP by Rush et al. (2010) for model combination
■ Successful in syntax, semantics, MT: Koo et al. (2010); Chang and Collins (2011); Martins et al. (2011b); Almeida et al. (2014); Martins and Almeida (2014), and many others.

Dual Decomposition

■ Old idea in optimization (Dantzig and Wolfe, 1960; Everett III, 1963)
■ First proposed by Komodakis et al. (2007) in computer vision
■ Introduced in NLP by Rush et al. (2010) for model combination
■ Successful in syntax, semantics, MT: Koo et al. (2010); Chang and Collins (2011); Martins et al. (2011b); Almeida et al. (2014); Martins and Almeida (2014), and many others.

Dual Decomposition

■ Old idea in optimization (Dantzig and Wolfe, 1960; Everett III, 1963)
■ First proposed by Komodakis et al. (2007) in computer vision
■ Introduced in NLP by Rush et al. (2010) for model combination
■ Successful in syntax, semantics, MT: Koo et al. (2010); Chang and Collins (2011); Martins et al. (2011b); Almeida et al. (2014); Martins and Almeida (2014), and many others.

Dual Decomposition

- Old idea in optimization (Dantzig and Wolfe, 1960; Everett III, 1963)

■ First proposed by Komodakis et al. (2007) in computer vision
■ Introduced in NLP by Rush et al. (2010) for model combination
■ Successful in syntax, semantics, MT: Koo et al. (2010); Chang and Collins (2011); Martins et al. (2011b); Almeida et al. (2014); Martins and Almeida (2014), and many others.

Recap: LP-MAP

Recall the LP-MAP problem:

$$
\begin{aligned}
& \operatorname{maximize} \sum_{i} \boldsymbol{\theta}_{i}^{\top} \boldsymbol{p}_{i}+\sum_{s} \boldsymbol{\theta}_{s}^{\top} \boldsymbol{q}_{s} \\
& \text { subject to }\left\{\begin{array}{l}
\boldsymbol{q}_{s} \in \Delta^{\left|y_{s}\right|}, \forall s \\
\boldsymbol{p}_{i}=\mathbf{M}_{i s} \boldsymbol{q}_{s}, \forall i, s .
\end{array}\right.
\end{aligned}
$$

(local polytope)

Matrix $\mathbf{M}_{i s} \in\{0,1\}^{\left|\boldsymbol{y}_{i}\right| \times\left|y_{s}\right|}$ represents the constraints $p_{i}\left(y_{i}\right)=\sum_{\boldsymbol{y}_{s} \sim y_{i}} q_{s}\left(\boldsymbol{y}_{s}\right)$
We'll reformulate this problem by:
1 Introducing copy variables $\boldsymbol{q}_{\text {is }}=\boldsymbol{p}_{i}$
2 Defining $\boldsymbol{\theta}_{i s}:=\boldsymbol{\theta}_{\boldsymbol{i}} /|N(i)|$

Reformulation of LP-MAP

The problem becomes:

$$
\begin{aligned}
\operatorname{maximize} & \sum_{s}\left(\boldsymbol{\theta}_{s}^{\top} \boldsymbol{q}_{s}+\sum_{i \in N(s)} \boldsymbol{\theta}_{i s}^{\top} \boldsymbol{q}_{i s}\right) \\
\text { subject to } & \left\{\begin{array}{l}
\boldsymbol{q}_{s} \in \Delta^{\left|y_{s}\right|}, \forall s \\
\boldsymbol{q}_{i s}=\mathbf{M}_{i s} \boldsymbol{q}_{s}, \forall i, s \\
\boldsymbol{q}_{i s}=\boldsymbol{p}_{i}, \forall i, s .
\end{array} \quad\right. \text { (local polytope) }
\end{aligned}
$$

By introducing Lagrange multipliers for the last constraints, we get the following Lagrangian function:

$$
\mathcal{L}(\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{\lambda})=\sum_{s}\left(\boldsymbol{\theta}_{s}^{\top} \boldsymbol{q}_{s}+\sum_{i \in N(s)} \boldsymbol{\theta}_{i s}^{\top} \boldsymbol{q}_{i s}\right)+\sum_{i s} \boldsymbol{\lambda}_{i s}^{\top}\left(\boldsymbol{p}_{i}-\boldsymbol{q}_{i s}\right)
$$

Dual of LP-MAP

The dual problem is

$$
\text { minimize } \sum_{s} g_{s}(\boldsymbol{\lambda}) \quad \text { subject to } \boldsymbol{\lambda} \in \Lambda:=\left\{\boldsymbol{\lambda} \mid \sum_{s \in N(i)} \boldsymbol{\lambda}_{i s}=\mathbf{0}\right\}
$$

where the $g_{s}(\lambda)$ are local subproblems,

$$
\begin{aligned}
g_{s}(\lambda) & :=\max _{\overline{\boldsymbol{q}}_{s} \in Q_{s}}\left(\boldsymbol{\theta}_{s}^{\top} \boldsymbol{q}_{s}+\sum_{i \in N(s)}\left(\boldsymbol{\theta}_{i s}+\lambda_{i s}\right)^{\top} \boldsymbol{q}_{i s}\right) \\
& =\max _{\boldsymbol{y}_{s} \in y_{s}}\left(\boldsymbol{\theta}_{s}\left(\boldsymbol{y}_{s}\right)+\sum_{i \in N(s)}\left(\boldsymbol{\theta}_{i s}\left(y_{i}\right)+\boldsymbol{\lambda}_{i s}\left(y_{i}\right)\right)\right)
\end{aligned}
$$

and $\overline{\boldsymbol{q}}_{s} \in Q_{s}$ encodes the constraints $\left\{\begin{array}{l}\boldsymbol{q}_{s} \in \Delta^{\left|y_{s}\right|} \\ \boldsymbol{q}_{i s}=\mathbf{M}_{i s} \boldsymbol{q}_{s}, \forall i \in N(s) \text {. }\end{array}\right.$
A subgradient can be computed by solving these local subproblems

Projected Subgradient (Komodakis et al., 2007)

initialize penalties $\boldsymbol{\lambda}$ to zero
repeat
until consensus (all $\boldsymbol{q}_{i s}=\boldsymbol{p}_{i}$) or maximum number of iterations reached

Projected Subgradient (Komodakis et al., 2007)

initialize penalties λ to zero
repeat
for each factor s do

$$
\overline{\boldsymbol{q}}_{s} \leftarrow \arg \max _{\overline{\boldsymbol{q}}_{s} \in Q_{s}} \boldsymbol{\theta}_{s}^{\top} \boldsymbol{q}_{s}+\sum_{i \in N(s)}\left(\boldsymbol{\theta}_{i s}+\lambda_{i s}\right)^{\top} \boldsymbol{q}_{i s}
$$

end for
until consensus (all $\boldsymbol{q}_{i s}=\boldsymbol{p}_{i}$) or maximum number of iterations reached

Projected Subgradient (Komodakis et al., 2007)

initialize penalties $\boldsymbol{\lambda}$ to zero
repeat
for each factor s do

$$
\overline{\boldsymbol{q}}_{s} \leftarrow \arg \max _{\overline{\boldsymbol{q}}_{s} \in \mathcal{Q}_{s}} \boldsymbol{\theta}_{s}^{\top} \boldsymbol{q}_{s}+\sum_{i \in N(s)}\left(\boldsymbol{\theta}_{i s}+\lambda_{i s}\right)^{\top} \boldsymbol{q}_{i s}
$$

end for
$\boldsymbol{p}_{i} \leftarrow \frac{1}{|N(i)|} \sum_{s \in N(i)} \boldsymbol{q}_{i s}$
until consensus (all $\boldsymbol{q}_{i s}=\boldsymbol{p}_{i}$) or maximum number of iterations reached

Projected Subgradient (Komodakis et al., 2007)

initialize penalties λ to zero
repeat
for each factor s do

$$
\overline{\boldsymbol{q}}_{s} \leftarrow \arg \max _{\overline{\boldsymbol{q}}_{s} \in \mathcal{Q}_{s}} \boldsymbol{\theta}_{s}^{\top} \boldsymbol{q}_{s}+\sum_{i \in N(s)}\left(\boldsymbol{\theta}_{i s}+\lambda_{i s}\right)^{\top} \boldsymbol{q}_{i s}
$$

end for
$\boldsymbol{p}_{i} \leftarrow \frac{1}{|N(i)|} \sum_{s \in N(i)} \boldsymbol{q}_{i s}$
$\boldsymbol{\lambda}_{i s} \leftarrow \boldsymbol{\lambda}_{\text {is }}-\eta\left(\boldsymbol{q}_{i s}-\boldsymbol{p}_{i}\right)$
until consensus (all $\boldsymbol{q}_{\text {is }}=\boldsymbol{p}_{i}$) or maximum number of iterations reached

Projected Subgradient (Komodakis et al., 2007)

initialize penalties λ to zero
repeat
for each factor s do

$$
\overline{\boldsymbol{q}}_{s} \leftarrow \arg \max _{\overline{\boldsymbol{q}}_{s} \in \mathcal{Q}_{s}} \boldsymbol{\theta}_{s}^{\top} \boldsymbol{q}_{s}+\sum_{i \in N(s)}\left(\boldsymbol{\theta}_{i s}+\lambda_{i s}\right)^{\top} \boldsymbol{q}_{i s}
$$

end for
$\boldsymbol{p}_{i} \leftarrow \frac{1}{|N(i)|} \sum_{s \in N(i)} \boldsymbol{q}_{i s}$
$\boldsymbol{\lambda}_{i s} \leftarrow \boldsymbol{\lambda}_{\text {is }}-\eta\left(\boldsymbol{q}_{i s}-\boldsymbol{p}_{i}\right)$
until consensus (all $\boldsymbol{q}_{\text {is }}=\boldsymbol{p}_{i}$) or maximum number of iterations reached

■ Guaranteed to converge to an ϵ-accurate solution after at most $O\left(1 / \epsilon^{2}\right)$ iterations
■ Problem: too slow when there are many factors (Martins et al., 2011b)

What Kind of Local Decoding Do We Need?

Algorithm	Local Operation
Sum-Prod. BP (Pearl, 1988)	marginals
TRBP (Wainwright et al., 2005)	marginals
Norm-Product BP (Hazan and Shashua, 2010)	marginals
Max-Prod. BP (Pearl, 1988)	max-marginals
TRW-S (Kolmogorov, 2006)	max-marginals
MPLP (Globerson and Jaakkola, 2008)	max-marginals
PSDD (Komodakis et al., 2007)	MAP
Accelerated DD (Jojic et al., 2010)	marginals
AD 3 (Martins et al., 2011a)	QP/MAP

Accelerating Consensus

Two fundamental problems with the subgradient algorithm:
1 The dual objective $\sum_{s} g_{s}(\boldsymbol{\lambda})$ is non-smooth
2 Consensus is promoted only through updating $\boldsymbol{\lambda}$ (no memory about past updates)

Accelerating Consensus

Two fundamental problems with the subgradient algorithm:
1 The dual objective $\sum_{s} g_{s}(\boldsymbol{\lambda})$ is non-smooth
2 Consensus is promoted only through updating $\boldsymbol{\lambda}$ (no memory about past updates)

How can dual decomposition be accelerated?

Accelerating Consensus

Two fundamental problems with the subgradient algorithm:
1 The dual objective $\sum_{s} g_{s}(\boldsymbol{\lambda})$ is non-smooth
2 Consensus is promoted only through updating $\boldsymbol{\lambda}$ (no memory about past updates)

How can dual decomposition be accelerated?
■ Jojic et al. (2010) smooth the objective and use gradient methods
■ Martins et al. (2011a): augmented Lagrangian

Accelerating Consensus

Two fundamental problems with the subgradient algorithm:
1 The dual objective $\sum_{s} g_{s}(\boldsymbol{\lambda})$ is non-smooth
2 Consensus is promoted only through updating $\boldsymbol{\lambda}$ (no memory about past updates)

How can dual decomposition be accelerated?
■ Jojic et al. (2010) smooth the objective and use gradient methods
■ Martins et al. (2011a): augmented Lagrangian

Accelerated Gradient (Jojic et al., 2010)

Basic idea: make the dual objective smooth by adding an entropic perturbation with a near-zero ϵ temperature (also Johnson (2008)) The subproblems become local marginal computations instead of maximizations

With Nesterov's accelerated gradient method (Nesterov, 2005), the iteration bound goes from $O\left(1 / \epsilon^{2}\right)$ to $O(1 / \epsilon)$

Accelerated Gradient (Jojic et al., 2010)

Basic idea: make the dual objective smooth by adding an entropic perturbation with a near-zero ϵ temperature (also Johnson (2008))
The subproblems become local marginal computations instead of maximizations

With Nesterov's accelerated gradient method (Nesterov, 2005), the iteration bound goes from $O\left(1 / \epsilon^{2}\right)$ to $O(1 / \epsilon)$

However: very sensitive to the temperature parameter
With low temperatures, may face numerical issues (in particular for some hard-constraint factors)

In practice, quite slow to take off (we'll see some plots later)

What Kind of Local Decoding Do We Need?

Algorithm	Local Operation
Sum-Prod. BP (Pearl, 1988)	marginals
TRBP (Wainwright et al., 2005)	marginals
Norm-Product BP (Hazan and Shashua, 2010)	marginals
Max-Prod. BP (Pearl, 1988)	max-marginals
TRW-S (Kolmogorov, 2006)	max-marginals
MPLP (Globerson and Jaakkola, 2008)	max-marginals
PSDD (Komodakis et al., 2007)	MAP
Accelerated DD (Jojic et al., 2010)	marginals
AD 3 (Martins et al., 2011a)	QP/MAP

Accelerating Consensus

Two fundamental problems with the subgradient algorithm:
1 The dual objective $\sum_{s} g_{s}(\boldsymbol{\lambda})$ is non-smooth
2 Consensus is promoted only through updating $\boldsymbol{\lambda}$ (no memory about past updates)

How can dual decomposition be accelerated?
■ Jojic et al. (2010) smooth the objective and use gradient methods \checkmark
■ Martins et al. (2011a): augmented Lagrangian

Accelerating Consensus

Two fundamental problems with the subgradient algorithm:
1 The dual objective $\sum_{s} g_{s}(\boldsymbol{\lambda})$ is non-smooth
2 Consensus is promoted only through updating $\boldsymbol{\lambda}$ (no memory about past updates)

How can dual decomposition be accelerated?
■ Jojic et al. (2010) smooth the objective and use gradient methods \checkmark
■ Martins et al. (2011a): augmented Lagrangian

Alternating Directions Dual Decomposition (AD^{3})

Based on the alternating direction method of multipliers (ADMM):
■ an old method in optimization inspired by augmented Lagrangians (Gabay and Mercier, 1976; Glowinski and Marroco, 1975)

- a natural fit to consensus problems

■ a natural "upgrade" of the subgradient algorithm (Boyd et al., 2011)

Augmented Lagrangian and ADMM

Basic idea: augment the Lagrangian function with a quadratic penalty

$$
\begin{aligned}
\mathcal{L}_{\eta}(\boldsymbol{p}, \boldsymbol{q}, \lambda)= & \sum_{s}\left(\boldsymbol{\theta}_{s}^{\top} \boldsymbol{q}_{s}+\sum_{i \in N(s)} \boldsymbol{\theta}_{i s}^{\top} \boldsymbol{q}_{i s}\right)+\sum_{i s} \boldsymbol{\lambda}_{i s}^{\top}\left(\boldsymbol{p}_{i}-\boldsymbol{q}_{i s}\right) \\
& -\frac{\eta}{2} \sum_{i s}\left\|\boldsymbol{q}_{i s}-\boldsymbol{p}_{i}\right\|^{2}
\end{aligned}
$$

Method of multipliers (super-linear convergence):
1 Maximize $\mathcal{L}_{\eta}(\boldsymbol{p}, \boldsymbol{q}, \lambda)$ jointly w.r.t. \boldsymbol{p} and \boldsymbol{q} (challenging)
2 Multiplier update: $\boldsymbol{\lambda}_{\text {is }} \leftarrow \boldsymbol{\lambda}_{\text {is }}-\eta\left(\boldsymbol{q}_{\text {is }}-\boldsymbol{p}_{i}\right)$
Alternating direction method of multipliers: replace step 1 by separate maximizations (first w.r.t. \boldsymbol{q}, then \boldsymbol{p})

From Subgradient to $A D^{3}$ (Martins et al., 2011a)

initialize penalties $\boldsymbol{\lambda}$ to zero
repeat
for each factor $s=1, \ldots, S$ do

$$
\overline{\boldsymbol{q}}_{s} \leftarrow \arg \max _{\overline{\boldsymbol{q}}_{s} \in Q_{s}} \boldsymbol{\theta}_{s}^{\top} \boldsymbol{q}_{s}+\sum_{i \in N(s)}\left(\boldsymbol{\theta}_{i s}+\boldsymbol{\lambda}_{i s}\right)^{\top} \boldsymbol{q}_{i s}
$$

end for
$\boldsymbol{p}_{i} \leftarrow \frac{1}{|N(i)|} \sum_{s \in N(i)} \boldsymbol{q}_{i s}$
$\boldsymbol{\lambda}_{i s} \leftarrow \boldsymbol{\lambda}_{\text {is }}-\eta\left(\boldsymbol{q}_{\text {is }}-\boldsymbol{p}_{i}\right)$
until consensus (all $\boldsymbol{q}_{i s}=\boldsymbol{p}_{i}$) or maximum number of iterations reached

From Subgradient to $A D^{3}$ (Martins et al., 2011a)

initialize penalties $\boldsymbol{\lambda}$ to zero
repeat
for each factor $s=1, \ldots, S$ do

$$
\overline{\boldsymbol{q}}_{s} \leftarrow \arg \max _{\overline{\boldsymbol{q}}_{s} \in Q_{s}} \boldsymbol{\theta}_{s}^{\top} \boldsymbol{q}_{s}+\sum_{i \in N(s)}\left(\boldsymbol{\theta}_{i s}+\boldsymbol{\lambda}_{i s}\right)^{\top} \boldsymbol{q}_{i s}-\frac{\eta}{2} \sum_{i \in N(s)}\left\|\boldsymbol{q}_{i s}-\boldsymbol{p}_{i}\right\|^{2}
$$

end for
$\boldsymbol{p}_{i} \leftarrow \frac{1}{|N(i)|} \sum_{s \in N(i)} \boldsymbol{q}_{i s}$
$\boldsymbol{\lambda}_{\text {is }} \leftarrow \boldsymbol{\lambda}_{\text {is }}-\eta\left(\boldsymbol{q}_{\text {is }}-\boldsymbol{p}_{i}\right)$
until consensus (all $\boldsymbol{q}_{i s}=\boldsymbol{p}_{i}$) or maximum number of iterations reached

From Subgradient to ${A D^{3}}^{(M a r t i n s ~ e t ~ a l ., ~ 2011 a) ~}$

initialize penalties $\boldsymbol{\lambda}$ to zero
repeat
for each factor $s=1, \ldots, S$ do

$$
\overline{\boldsymbol{q}}_{s} \leftarrow \arg \max _{\overline{\boldsymbol{q}}_{s} \in Q_{s}} \boldsymbol{\theta}_{s}^{\top} \boldsymbol{q}_{s}+\sum_{i \in N(s)}\left(\boldsymbol{\theta}_{i s}+\boldsymbol{\lambda}_{i s}\right)^{\top} \boldsymbol{q}_{i s}-\frac{\eta}{2} \sum_{i \in N(s)}\left\|\boldsymbol{q}_{i s}-\boldsymbol{p}_{i}\right\|^{2}
$$

end for
$\boldsymbol{p}_{i} \leftarrow \frac{1}{|N(i)|} \sum_{s \in N(i)} \boldsymbol{q}_{i s}$
$\boldsymbol{\lambda}_{\text {is }} \leftarrow \boldsymbol{\lambda}_{\text {is }}-\eta\left(\boldsymbol{q}_{\text {is }}-\boldsymbol{p}_{i}\right)$
until consensus (all $\boldsymbol{q}_{i s}=\boldsymbol{p}_{i}$) or maximum number of iterations reached

■ faster consensus: regularize \boldsymbol{q}-step towards average votes in \boldsymbol{p}

From Subgradient to ${A D^{3}}^{(M a r t i n s ~ e t ~ a l ., ~ 2011 a) ~}$

initialize penalties $\boldsymbol{\lambda}$ to zero
repeat
for each factor $s=1, \ldots, S$ do

$$
\overline{\boldsymbol{q}}_{s} \leftarrow \arg \max _{\overline{\boldsymbol{q}}_{s} \in Q_{s}} \boldsymbol{\theta}_{s}^{\top} \boldsymbol{q}_{s}+\sum_{i \in N(s)}\left(\boldsymbol{\theta}_{i s}+\boldsymbol{\lambda}_{i s}\right)^{\top} \boldsymbol{q}_{i s}-\frac{\eta}{2} \sum_{i \in N(s)}\left\|\boldsymbol{q}_{i s}-\boldsymbol{p}_{i}\right\|^{2}
$$

end for
$\boldsymbol{p}_{i} \leftarrow \frac{1}{|N(i)|} \sum_{s \in N(i)} \boldsymbol{q}_{i s}$
$\boldsymbol{\lambda}_{\text {is }} \leftarrow \boldsymbol{\lambda}_{\text {is }}-\eta\left(\boldsymbol{q}_{\text {is }}-\boldsymbol{p}_{i}\right)$
until consensus (all $\boldsymbol{q}_{i s}=\boldsymbol{p}_{i}$) or maximum number of iterations reached

■ faster consensus: regularize \boldsymbol{q}-step towards average votes in \boldsymbol{p}
■ better stopping conditions: keeps track of primal and dual residuals

Theoretical Guarantees of $A D^{3}$

Convergent in primal and dual (Glowinski and Le Tallec, 1989) Iteration bound: $O(1 / \epsilon)$ (cf. $O\left(1 / \epsilon^{2}\right)$ for projected subgradient) Inexact AD 3 subproblems: still convergent if residuals are summable (Eckstein and Bertsekas, 1992)

Always dual feasible: can compute upper bounds and embed in branch-and-bound toward exact decoding (Das et al., 2012)

Theoretical Guarantees of $A D^{3}$

Convergent in primal and dual (Glowinski and Le Tallec, 1989) Iteration bound: $O(1 / \epsilon)$ (cf. $O\left(1 / \epsilon^{2}\right)$ for projected subgradient) Inexact AD 3 subproblems: still convergent if residuals are summable (Eckstein and Bertsekas, 1992)

Always dual feasible: can compute upper bounds and embed in branch-and-bound toward exact decoding (Das et al., 2012)

But: $A D^{3}$ local subproblems are quadratic (more involved than in projected subgradient)

Theoretical Guarantees of $A D^{3}$

Convergent in primal and dual (Glowinski and Le Tallec, 1989) Iteration bound: $O(1 / \epsilon)$ (cf. $O\left(1 / \epsilon^{2}\right)$ for projected subgradient) Inexact AD 3 subproblems: still convergent if residuals are summable (Eckstein and Bertsekas, 1992)

Always dual feasible: can compute upper bounds and embed in branch-and-bound toward exact decoding (Das et al., 2012)

But: $A D^{3}$ local subproblems are quadratic (more involved than in projected subgradient)
Still—very easy and efficient for logic and knapsack factors!

Projecting onto Hard Constraint Polytopes

■ Martins et al. (2011a): logic factors can be solved in $O(K)$ time
■ Almeida and Martins (2013): same for knapsack factors!

Structured Factors

What about structured factors?

Structured Factors

What about structured factors?

Projected subgradient handles these quite well

- combinatorial machinery (Viterbi, Chu-Liu-Edmonds, Fulkerson-Ford, Floyd-Warshall,...)

We cannot solve the $A D^{3}$ subproblems with that machinery...

Structured Factors

What about structured factors?

Projected subgradient handles these quite well

- combinatorial machinery (Viterbi, Chu-Liu-Edmonds, Fulkerson-Ford, Floyd-Warshall,...)

We cannot solve the $A D^{3}$ subproblems with that machinery... Or can we?

Structured Factors

What about structured factors?

Projected subgradient handles these quite well

- combinatorial machinery (Viterbi, Chu-Liu-Edmonds, Fulkerson-Ford, Floyd-Warshall,...)

We cannot solve the $A D^{3}$ subproblems with that machinery...

Or can we?

Active set method: seek the support of the solution by adding/removing components; very suitable for warm-starting (Nocedal and Wright, 1999)

An Active Set Method for the AD 3 Subproblem

$$
\overline{\boldsymbol{q}}_{s} \leftarrow \arg \max _{\overline{\boldsymbol{q}}_{s} \in \Omega_{s}}\left(\boldsymbol{\theta}_{s}^{\top} \boldsymbol{q}_{s}+\sum_{i \in N(s)}\left(\boldsymbol{\theta}_{i s}+\lambda_{i s}\right)^{\top} \boldsymbol{q}_{i s}-\frac{\eta}{2} \sum_{i \in N(s)}\left\|\boldsymbol{q}_{i s}-\boldsymbol{p}_{i}\right\|^{2}\right)
$$

An Active Set Method for the AD 3 Subproblem

$$
\overline{\boldsymbol{q}}_{s} \leftarrow \arg \max _{\overline{\boldsymbol{q}}_{s} \in Q_{s}}\left(\boldsymbol{\theta}_{s}^{\top} \boldsymbol{q}_{s}+\sum_{i \in N(s)}\left(\boldsymbol{\theta}_{i s}+\boldsymbol{\lambda}_{i s}\right)^{\top} \boldsymbol{q}_{i s}-\frac{\eta}{2} \sum_{i \in N(s)}\left\|\boldsymbol{q}_{i s}-\boldsymbol{p}_{i}\right\|^{2}\right)
$$

Too many possible assignments: dimension of \boldsymbol{q}_{s} is $O(\exp (|N(s)|))$

An Active Set Method for the AD 3 Subproblem

$$
\overline{\boldsymbol{q}}_{s} \leftarrow \arg \max _{\overline{\boldsymbol{q}}_{s} \in Q_{s}}\left(\boldsymbol{\theta}_{s}^{\top} \boldsymbol{q}_{s}+\sum_{i \in N(s)}\left(\boldsymbol{\theta}_{i s}+\boldsymbol{\lambda}_{i s}\right)^{\top} \boldsymbol{q}_{i s}-\frac{\eta}{2} \sum_{i \in N(s)}\left\|\boldsymbol{q}_{i s}-\boldsymbol{p}_{i}\right\|^{2}\right)
$$

Too many possible assignments: dimension of \boldsymbol{q}_{s} is $O(\exp (|N(s)|))$ Key result: there's a sparse solution (only $O(|N(s)|)$ nonzeros)

An Active Set Method for the AD 3 Subproblem

$$
\overline{\boldsymbol{q}}_{s} \leftarrow \arg \max _{\overline{\boldsymbol{q}}_{s} \in Q_{s}}\left(\boldsymbol{\theta}_{s}^{\top} \boldsymbol{q}_{s}+\sum_{i \in N(s)}\left(\boldsymbol{\theta}_{i s}+\lambda_{i s}\right)^{\top} \boldsymbol{q}_{i s}-\frac{\eta}{2} \sum_{i \in N(s)}\left\|\boldsymbol{q}_{i s}-\boldsymbol{p}_{i}\right\|^{2}\right)
$$

Too many possible assignments: dimension of \boldsymbol{q}_{s} is $O(\exp (|N(s)|))$
Key result: there's a sparse solution (only $O(|N(s)|)$ nonzeros)
Active set methods: seek the support of the solution by adding/removing components; very suitable for warm-starting (Nocedal and Wright, 1999)
Only requirement: a local-max oracle (as in projected subgradient)

An Active Set Method for the AD 3 Subproblem

$$
\overline{\boldsymbol{q}}_{s} \leftarrow \arg \max _{\overline{\boldsymbol{q}}_{s} \in Q_{s}}\left(\boldsymbol{\theta}_{s}^{\top} \boldsymbol{q}_{s}+\sum_{i \in N(s)}\left(\boldsymbol{\theta}_{i s}+\lambda_{i s}\right)^{\top} \boldsymbol{q}_{i s}-\frac{\eta}{2} \sum_{i \in N(s)}\left\|\boldsymbol{q}_{i s}-\boldsymbol{p}_{i}\right\|^{2}\right)
$$

Too many possible assignments: dimension of \boldsymbol{q}_{s} is $O(\exp (|N(s)|))$ Key result: there's a sparse solution (only $O(|N(s)|)$ nonzeros)
Active set methods: seek the support of the solution by adding/removing components; very suitable for warm-starting (Nocedal and Wright, 1999)
Only requirement: a local-max oracle (as in projected subgradient) More info: Martins et al. (2014)

Runtime of AD^{3} vs PSDD (Parsing)

- Caching and warm-starting the subproblems reduces drastically the number of oracle calls-huge speed-ups!!
- AD^{3} faster to achieve consensus (due to the quadratic penalty)

What Kind of Local Decoding Do We Need?

Algorithm	Local Operation
Sum-Prod. BP (Pearl, 1988)	marginals
TRBP (Wainwright et al., 2005)	marginals
Norm-Product BP (Hazan and Shashua, 2010)	marginals
Max-Prod. BP (Pearl, 1988)	max-marginals
TRW-S (Kolmogorov, 2006)	max-marginals
MPLP (Globerson and Jaakkola, 2008)	max-marginals
PSDD (Komodakis et al., 2007)	MAP
Accelerated DD (Jojic et al., 2010)	marginals
AD 3 (Martins et al., 2011a)	QP/MAP

Example: Potts Grid (20 $\times 20,8$ states)

- A. Martins, M. Figueiredo, P. Aguiar, N. Smith, E. Xing (2014). AD^{3} : Alternating Directions Dual Decomposition for MAP Inference in Graphical Models. Journal of Machine Learning Research (to appear).

Example: Frame-Semantic Parsing

- Embedded in a branch-and-bound procedure for exact decoding
- D. Das, A. Martins, N. Smith.
"An Exact DD Algorithm for Shallow Semantic Parsing with Constraints." *SEM Workshop, 2012.

Try It Yourself: AD 3 Toolkit

■ Freely available at: http://www.ark.cs.cmu.edu/AD3

- Implemented in $\mathrm{C}++$, includes a Python wrapper (thanks to Andy Mueller)
- Implements MPLP, PSDD, A^{3} for arbitrary factor graphs

■ Many built-in factors: logic, knapsack, dense, and some structured factors

■ You can implement your own factor (only need to write a local MAP decoder!)
■ Toy examples included (parsing, coreference, Potts models)

Summing Up Dual Decomposition

- Dual decomposition is a general optimization technique that splits the dual into several subproblems (one per factor) that must agree on overlaps
■ This can be used to solve LP-MAP
- We discussed three variants: subgradient (PSDD), accelerated gradient (ADD), and alternating directions (AD^{3})
■ The algorithms are convergent and retrieve the true MAP if the graph has no cycles; they also give certificates when the solution of LP-MAP equals the MAP
- For PSDD and $A D^{3}$ only local maximizations are necessary; ADD requires computing marginals

Outline

1 Structured Prediction and Factor Graphs

2 Integer Linear Programming

3 Message-Passing Algorithms

- Sum-Product
- Max-Product

4 Dual Decomposition

5 Applications

6 Conclusions

Applications

We'll discuss three applications:

- Turbo Parsing

■ Compressive Summarization
■ Joint Coreference Resolution and Quotation Attribution

Applications

We'll discuss three applications:

- Turbo Parsing

■ Compressive Summarization
■ Joint Coreference Resolution and Quotation Attribution

What is a Turbo Parser?

What is a Turbo Parser?

■ A parser that runs inference in factor graphs, ignoring global effects caused by loops (Martins et al., 2010)
■ name inspired from turbo decoders (Berrou et al., 1993)

What is a Turbo Parser?

■ A parser that runs inference in factor graphs, ignoring global effects caused by loops (Martins et al., 2010)
■ name inspired from turbo decoders (Berrou et al., 1993)
■ Next: we speed up turbo parsers via $A D^{3}$ w/ active set

Recent Paper

- André F. T. Martins, Miguel B. Almeida, Noah A. Smith. "Turning on the Turbo: Fast Third-Order Non-Projective Turbo Parsers." ACL 2013 Short Paper.

An Important Distinction

■ A projective tree:

- A non-projective tree:

An Important Distinction

- A projective tree:

- A non-projective tree:

This talk: we allow non-projective trees.
Suitable for languages with flexible word order (Dutch, German, Czech,...)

First-Order Scores for Arcs

\author{

* We learned a lesson in 1987 about volatility
}

Second-Order Scores for Consecutive Siblings

Second-Order Scores for Grandparents

Scores for Arbitrary Siblings

Scores for Head Bigrams

Third-Order Scores for Grand-siblings

Used by Koo and Collins (2010) for projective parsing.

Third-Order Scores for Tri-siblings

Used by Koo and Collins (2010) for projective parsing.

Decoding

How to deal with all these parts?
■ Dynamic programming only available for the projective case...

Decoding

How to deal with all these parts?
■ Dynamic programming only available for the projective case...
■ Beyond arc-factored models, non-projective parsing is NP-hard (McDonald and Satta, 2007)
■ Need to embrace approximations!

Approximate Dependency Parsers

Factor Graph Representation

■ Variables nodes for dependency arcs, linked to a tree constraint

- Head automata for consecutive siblings and grandparents (as in Smith and Eisner (2008); Koo et al. (2010))
■ Pairwise factors for arbitrary siblings (as Martins et al. (2011b))
■ Third-order head automata for grand-siblings and tri-siblings
■ Sequence model for head bigrams

Factor Graph Representation

■ Variables nodes for dependency arcs, linked to a tree constraint

- Head automata for consecutive siblings and grandparents (as in Smith and Eisner (2008); Koo et al. (2010))
■ Pairwise factors for arbitrary siblings (as Martins et al. (2011b))
■ Third-order head automata for grand-siblings and tri-siblings
■ Sequence model for head bigrams

We solve the LP-MAP relaxation with $A D^{3}$.

Parsing Accuracies/Runtimes

SOTA accuracies for the largest non-projective datasets (CoNLL-2006 and CoNLL-2008):

Extension: Broad-Coverage Semantic Parsing

Same idea applied to semantic role labeling.

Best results in the SemEval 2014 shared task:

- André F. T. Martins and Mariana S. C. Almeida.
"Priberam: A Turbo Semantic Parser with Second Order Features." SemEval 2014.

Applications

We'll discuss three applications:

- Turbo Parsing

■ Compressive Summarization
■ Joint Coreference Resolution and Quotation Attribution

Applications

We'll discuss three applications:

- Turbo Parsing

■ Compressive Summarization
■ Joint Coreference Resolution and Quotation Attribution

Recent Paper

- Miguel B. Almeida and André F. T. Martins.
"Fast and Robust Compressive Summarization with Dual Decomposition and Multi-Task Learning." ACL 2013.

Multi-Document Summarization

Map a set of related documents to a brief summary.

Obama hopes for 'continued progress' in Myanmar

STORY HIGHLIGHTS
Obama meets with prodemocracy icon Aung San Suu kyi and Myanmar's president
He's the first sitting U.S. president to visit Myanmar, also known as Burma

Obama encourages the country
ocontinue a "remarkable
journey'
He also visits Cambodia to meet the prime minister and attend the East Asia Summit
(CNN) -- Barack Obama met with Nobel Peace Prize winner Aung San Suu Kyi at her home in Myanmar on Monday, praising her "courage and determination" during a historic visit to the once repressive and secretive country.

The first sitting U.S. president to visit Myanmar, Obama urged its leaders, who have embarked on a series of far-reaching political and economic reforms since 2011, not to extinguish the "flickers of progress that we have seen."

Obama said that his visit to the lakeside villa where the prodemocracy icon spent years under house arrest marked a new chapter setween the two countries.
"Here, through so many difficult years, is where she has displayed such unbreakable courage and determination," Obama told reporters, standing next to his fellow Nobel peace laureate. "It is here where she showed that human freedom and human dignity cannot be denied."

The country, which is also known as Burma, was ruled by military leaders until early 2011 and for decades was politically and economically cut off from the rest of the world.

Suu Kyi acknowledged that Myanmar's opening up would be difficult.

The ditu loork Times

YANGON, Myanmar - President Obama journeyed to this storied tropical outpost of pagodas and jungles on Monday to "extend the hand of friendship" as a land long tormented by repression and poverty begins to throw off military rule and emerge from decades of isolation.

The visit was intended to show support for the reforms put in place by Thein Sein's government since the end of military rule in November 2010.

Activists have warned that the visit may be too hasty - political prisoners remain behind bars and ethnic conflicts in border areas are unresolved.

Multi-Document Summarization

Map a set of related documents to a brief summary.

The country, which is also known as Burma, was ruled by military leaders until early 2011 and for decades was politically and economically cut off from the rest of the world.

Suu Kyi acknowledged that Myanmar's opening up would be difficult.
"Here, through so many difficult years, is where she has displayed such unbreakable courage and determination," Obama told reporters, standing next to his fellow Nobel peace laureate. "It is here where she showed that human freedom and human dignity cannot be denied."
(CNN) - Barack Obama met with Nobel Peace Prize winner Aung Sn Suu Kyi at her home in Myanmar on Monday, praising her co rage and determination" during a historic visit to the once repr ssive and secretive country.

The fist sitting U.S. president to visit Myanmar, Obama urged its leade s, who have embarked on a series of far-reaching political and fonomic reforms since 2011, not to extinguish the "flickers of prog ess that we have seen."
oama said that his visit to the lakeside villa where the prodemocracy icon spent years under house arrest marked a new chapter thetween the two countries.

The Alcu llork Times

YANGON, Myanmar - President Obama journeyed to this storied tropical outpost of pagodas and jungles on Monday to "extend the hand of friendship" as a land long tormented by repression and poverty begins to throw off military rule and emerge from decades of isolation.

The visit was intended to show support for the reforms put in place by Thein Sein's government since the end of military rule in November 2010.

Activists have warned that the visit may be too hasty - political prisoners remain behind bars and ethnic conflicts in border areas are unresolved.

What Makes a Good Summary?

STORY HIGHLIGHTS

- Obama meets with prodemocracy icon Aung San Suu Kyi and Myanmar's president
- He's the first sitting U.S. president to visit Myanmar, also known as Burma
- Obama encourages the country to continue a "remarkable journey"
- He also visits Cambodia to meet the prime minister and attend the East Asia Summit

What Makes a Good Summary?

STORY HIGHLIGHTS

- Obama meets with prodemocracy icon Aung San Suu Kyi and Myanmar's president
- He's the first sitting U.S. president to visit Myanmar, also

1 conciseness known as Burma

- Obama encourages the country to continue a "remarkable journey"
- He also visits Cambodia to meet the prime minister and attend the East Asia Summit

What Makes a Good Summary?

STORY HIGHLIGHTS

- Obama meets with prodemocracy icon Aung San Suu Kyi and Myanmar's president
- He's the first sitting U.S. president to visit Myanmar, also known as Burma

1 conciseness
2 informativeness

- Obama encourages the country to continue a "remarkable journey"
- He also visits Cambodia to meet the prime minister and attend the East Asia Summit

What Makes a Good Summary?

STORY HIGHLIGHTS

- Obama meets with prodemocracy icon Aung San Suu Kyi and Myanmar's president
- He's the first sitting U.S. president to visit Myanmar, also known as Burma
- Obama encourages the country to continue a "remarkable journey"
- He also visits Cambodia to meet the prime minister and attend the East Asia Summit

Extractive Summarization

Just extract the most salient sentences.

Extractive Summarization

Just extract the most salient sentences.

Obama hopes for 'continued progress' in Myanmar

STORY HIGHLIGHTS

- Obama meets with prodemocracy icon Aung San Suu Kyi and Myanmar's president.
- Hes the first sitting U.S.
\qquad known as Burma
Obama encourages the country
to continue a "remarkable journey ${ }^{-1}$
- He also visits Cambodia to
meet the prime minister and meet the prime minister and
ettend the East Asia Summit
(CNN) - Barack Obama met with Nobel Peace Prize winner Aung San Suu Kyi at her home in Myanmar on Monday, praising her "courage and determination" during a historic visit to the once repressive and secretive country.

The first sitting U.S. president to visit Myanmar, Obama urged its leaders, who have embarked on a series of far-reaching political and economic reforms since 2011, not to extinguish the "flickers of progress that we have seen."

Obama said that his visit to the lakeside villa where the prodemocracy icon spent years under house arrest marked a new chapter setween the two countries.
"Here, through so many difficult years, is where she has displayed such unbreakable courage and determination," Obama told reporters, standing next to his fellow Nobel peace laureate. "It is here where she showed that human freedom and human dignity cannot be denied."

The country, which is also known as Burma, was ruled by military leaders until early 2011 and for decades was politically and economically cut off from the rest of the world.

Suu Kyi acknowledged that Myanmar's opening up would be difficult.

The Altu Hork Eimes

YANGON, Myanmar - President Obama journeyed to this storied tropical outpost of pagodas and jungles on Monday to "extend the hand of friendship" as a land long tormented by repression and poverty begins to throw off military rule and emerge from decades of isolation.

The visit was intended to show support for the reforms put in place by Thein Sein's government since the end of military rule in November 2010.

Activists have warned that the visit may be too hasty - political prisoners remain behind bars and ethnic conflicts in border areas are unresolved.

B|B|C

NEWS

Extractive Summarization

Just extract the most salient sentences.

Obama hopes for 'continued progress' in Myanmar

STORY HIGHLIGHTS

- Obama meets with prodemocracy icon Aung San Suu Kyi and Myanmar's president
- He's the first sitting U.S.
\qquad known as Burma
- Obama encourages the country
to continue a "remarkable
journey
- He also visits Cambodia to meet the prime minister and attend the East Asia Summit repressive and secretive country. progress that we have seen."
(CNN) - Barack Obama met with Nobel Peace Prize winner Aung San Suu Kyi at her home in Myanmar on Monday, praising her "courage and determination" during a historic visit to the once

The first sitting U.S. president to visit Myanmar, Obama urged its leaders, who have embarked on a series of far-reaching political and economic reforms since 2011, not to extinguish the "flickers of

Obama said that his visit to the lakeside villa where the prodemocracy icon spent years under house arrest marked a new chapter setween the two countries.
"Here, through so many difficult years, is where she has displayed such unbreakable courage and determination," Obama told reporters, standing next to his fellow Nobel peace laureate. "It is here where she showed that human freedom and human dignity cannot be denied."

> The country, which is also known as Burma, was ruled by military leaders until early 2011 and for decades was politically and economically cut off from the rest of the world.

Suu Kyi acknowledged that Myanmar's opening up would be difficult.

The Alcu llork Times

YANGON, Myanmar - President Obama journeyed to this storied

 tropical outpost of pagodas and jungles on Monday to "extend the hand of friendship" as a land long tormented by repression and poverty begins to throw off military rule and emerge from decades of isolation.The visit was intended to show support for the reforms put in place by Thein Sein's government since the end of miltary rule in November 2010.

Activists have warned that the visit may be too hasty - political prisoners remain behind bars and ethnic conflicts in border areas are unresolved.

B|B|C

NEWS

What We Do: Compressive Summarization

 Jointly extract and compress sentences.
What We Do: Compressive Summarization

Jointly extract and compress sentences.

Obama hopes for 'continued progress' in Myanmar

STORY HIGHLIGHTS

- Obama meets with prodemocracy icon Aung San Suu Kyi and Myanmar's president
- He's the first sitting U.S. president to visit Myanmar, also known as Burma
Obama encourages the country
to continue a "remarkable journey ${ }^{\prime}$
- He also visits Cambodia to meet the prime minister and ettend the East Asia Summit repressive and secretive country. progress that we have seen."

Obama said that his visit to the lakeside villa where the pro-
(CNN) - Barack Obama met with Nobel Peace Prize winner Aung San Suu Kyi at her home in Myanmar on Monday, praising her "courage and determination" during a historic visit to the once

The first sitting U.S. president to visit Myanmar, Obama urged its leaders, who have embarked on a series of far-reaching political and economic reforms since 2011, not to extinguish the "flickers of democracy icon spent years under house arrest marked a new chapter setween the two countries.
"Here, through so many difficult years, is where she has displayed such unbreakable courage and determination," Obama told reporters, standing next to his fellow Nobel peace laureate. "It is here where she showed that human freedom and human dignity cannot be denied."

The country, which is also known as Burma, was ruled by military leaders until early 2011 and for decades was politically and economically cut off from the rest of the world.

Suu Kyi acknowledged that Myanmar's opening up would be difficult.

The Alcu llork Eimes

> YANGON, Myanmar - President Obama journeyed to this storied tropical outpost of pagodas and jungles on Monday to "extend the hand of friendship" as a land long tormented by repression and poverty begins to throw off military rule and emerge from decades of isolation.

The visit was intended to show support for the reforms put in place by Thein Sein's government since the end of military rule in November 2010.

Activists have warned that the visit may be too hasty - political prisoners remain behind bars and ethnic conflicts in border areas are unresolved.

What We Do: Compressive Summarization

Jointly extract and compress sentences.

Obama hopes for 'continued progress' in Myanmar

STORY HIGHLIGHTS

- Obama meets with prodemocracy icon Aung San Suu Kyi and Myanmar's president
- He's the first sitting U.S. president to visit Myanmar, also known as Burma
Obama encourages the country
to continue a "remarkable
journey ${ }^{-1}$
He also visits Cambodia to meet the prime minister and attend the East Asia Summit
(CNN) - Barack Obama met with Nobel Peace Prize winner Aung San Suu Kyi at her home in Myanmar on Monday, praising her "courage and determination" during a historic visit to the once repressive and secretive country.

The first sitting U.S. president to visit Myanmar, Obama urged its leaders, who have embarked on a series of far-reaching political and economic reforms since 2011, not to extinguish the "flickers of progress that we have seen."

Obama said that his visit to the lakeside villa where the prodemocracy icon spent years under house arrest marked a new chapter setween the two countries.
"Here, through so many difficult years, is where she has displayed such unbreakable courage and determination," Obama told reporters, standing next to his fellow Nobel peace laureate. "It is here where she showed that human freedom and human dignity cannot be denied."

The country, which is also known as Burma, was ruled by military leaders until early 2011 and for decades was politically and economically cut off from the rest of the world.

Suu Kyi acknowledged that Myanmar's opening up would be difficult.

The Alcu jork Times

> YANGON, Myanmar - President Obama journeyed to this storied tropical outpost of pagodas and jungles on Monday to "extend the hand of friendship" as a land long tormented by repression and poverty begins to throw off military rule and emerge from decades of isolation.

The visit was intended to show support for the reforms put in place by Thein Sein's government since the end of miltary rule in November 2010.

Activists have warned that the visit may be too hasty - political prisoners remain behind bars and ethnic conflicts in border areas are unresolved.

B|BC NEWS

For given summary size, easier to be informative, but harder to be grammatical.
André Martins (Priberam/IT) LP Decoders in NLP http://tiny.cc/lpdnlp $125 / 149$

Compressive Summarization as Global Optimization

- Indicator variables for every word of the nth sentence, $\boldsymbol{z}_{n}:=\left\langle z_{n, \ell}\right\rangle_{\ell=1}^{L_{n}}$

Compressive Summarization as Global Optimization

- Indicator variables for every word of the nth sentence, $\boldsymbol{z}_{n}:=\left\langle z_{n, \ell}\right\rangle_{\ell=1}^{L_{n}}$

■ Summary length must not exceed the budget (B words)
■ Quality function rewards global informativeness (through $g(z)$)...
■ ... but also local grammaticality (through $h_{n}\left(z_{n}\right)$):

$$
\begin{aligned}
\text { maximize } & g(z)+\sum_{n=1}^{N} h_{n}\left(z_{n}\right) \\
\text { s.t. } & \sum_{n=1}^{N} \sum_{\ell=1}^{L_{n}} z_{n, \ell} \leq B
\end{aligned}
$$

Grammaticality: Sentence Compression Model

Inspired by Knight and Marcu (2000)'s word deletion model

Grammaticality: Sentence Compression Model

Inspired by Knight and Marcu (2000)'s word deletion model Our model factors over dependency arcs:

Grammaticality: Sentence Compression Model

Inspired by Knight and Marcu (2000)'s word deletion model
Our model factors over dependency arcs:

Goal: maximize sum of arc scores, allowing only deletion of subtrees.

Grammaticality: Sentence Compression Model

Inspired by Knight and Marcu (2000)'s word deletion model
Our model factors over dependency arcs:

Goal: maximize sum of arc scores, allowing only deletion of subtrees.
A structured factor, locally decodable with dynamic programming.

Informativeness: Coverage Model

Inspired by extractive max-coverage models (Filatova and Hatzivassiloglou, 2004; Yih et al., 2007; Gillick et al., 2008; Lin and Bilmes, 2010)

Informativeness: Coverage Model

Inspired by extractive max-coverage models (Filatova and Hatzivassiloglou, 2004; Yih et al., 2007; Gillick et al., 2008; Lin and Bilmes, 2010)

- Extract a list of concepts from the original documents

■ Define relevance scores for each concept (linear feature-based model)

Informativeness: Coverage Model

Inspired by extractive max-coverage models (Filatova and Hatzivassiloglou, 2004; Yih et al., 2007; Gillick et al., 2008; Lin and Bilmes, 2010)

- Extract a list of concepts from the original documents

■ Define relevance scores for each concept (linear feature-based model)
■ Define $g(z)$ as sum of scores for each concept in the summary

Graphical Model for Our Compressive Summarizer

Budget

Graphical Model for Our Compressive Summarizer

1 We use dual decomposition $\left(\mathrm{AD}^{3}\right)$ for solving a linear relaxation
2 We apply a fast rounding procedure to obtain a valid summary

Graphical Model for Our Compressive Summarizer

1 We use dual decomposition $\left(\mathrm{AD}^{3}\right)$ for solving a linear relaxation
2 We apply a fast rounding procedure to obtain a valid summary
Multi-task learning: user-generated data (Simple English Wikipedia) along with manual abstracts and compressive summaries

Results on TAC-2008 Dataset

■ Better informativeness (without sacrificing grammaticality):

- Averaged runtimes per summarization problem (10 documents):

Solver	Runtime (sec.)	ROUGE-2
ILP Exact, GLPK	10.394	12.40
LP-Relax., GLPK	2.265	12.38
AD 3 (1,000 its.)	$\mathbf{0 . 4 0 6}$	$\mathbf{1 2 . 3 0}$
Extractive (ILP)	0.265	11.16

Applications

We'll discuss three applications:

- Turbo Parsing

■ Compressive Summarization
■ Joint Coreference Resolution and Quotation Attribution

Applications

We'll discuss three applications:

- Turbo Parsing

■ Compressive Summarization
■ Joint Coreference Resolution and Quotation Attribution

Recent Paper

- Mariana S. C. Almeida, Miguel B. Almeida and André F. T. Martins. "A Joint Model for Quotation Attribution and Coreference Resolution."
EACL 2014.

Why Jointly?

Coreference resolution and quotation attribution may benefit from being treated as a joint task.

Why Jointly?

Coreference resolution and quotation attribution may benefit from being treated as a joint task.

A speaker doesn't refer to himself as he:
Rivals carp at "the principle of Pilson," as NBC's Arthur Watson once put it - "he's always expounding that rights are too high, then he's going crazy." But the 49-year-old Mr. Pilson is hardly a man to ignore the numbers.

Why Jointly?

Coreference resolution and quotation attribution may benefit from being treated as a joint task.

A speaker doesn't refer to himself as he:
Rivals carp at "the principle of Pilson," as NBC's Arthur Watson once put it - "he's always expounding that rights are too high, then he's going crazy." But the 49-year-old Mr. Pilson is hardly a man to ignore the numbers.

Why Jointly?

Coreference resolution and quotation attribution may benefit from being treated as a joint task.

A speaker doesn't refer to himself as he:
Rivals carp at "the principle of Pilson," as NBC's Arthur Watson once put it - "he's always expounding that rights are too high, then he's going crazy." But the 49-year-old Mr. Pilson is hardly a man to ignore the numbers.

Two consecutive quotes are often from co-referent speakers:
English novelist Dorothy L. Sayers described ringing as a "passion that finds its satisfaction in mathematical completeness and mechanical perfection."
Ringers, she added, are "filled with the solemn intoxication that comes of intricate ritual faultlessly performed."

Why Jointly?

Coreference resolution and quotation attribution may benefit from being treated as a joint task.

A speaker doesn't refer to himself as he:
Rivals carp at "the principle of Pilson," as NBC's Arthur Watson once put it - "he's always expounding that rights are too high, then he's going crazy." But the 49-year-old Mr. Pilson is hardly a man to ignore the numbers.

Two consecutive quotes are often from co-referent speakers:
English novelist Dorothy L. Sayers described ringing as a "passion that finds its satisfaction in mathematical completeness and mechanical perfection."
Ringers, she added, are "filled with the solemn intoxication that comes of intricate ritual faultlessly performed."

Coreference Tree (Denis and Baldridge, 2008;

 Fernandes et al., 2012; Durrett and Klein, 2013)

■ Clusters of co-referent mentions (entities) correspond to subtrees coming out from the root node.

Coreference Tree (Denis and Baldridge, 2008; Fernandes et al., 2012; Durrett and Klein, 2013)

■ Clusters of co-referent mentions (entities) correspond to subtrees coming out from the root node.

From Coreference to Quotation-Coreference Trees (Almeida et al., 2014)

■ Include mention nodes and quotation nodes

- Quotation nodes have to be leaves

■ Subtrees coming out from the root induce entity clusters along with their quotes: entity-based quotation attribution

From Coreference to Quotation-Coreference Trees (Almeida et al., 2014)

From Coreference to Quotation-Coreference Trees (Almeida et al., 2014)

Beyond Arc Scores

The simplest coreference models (e.g., the Surface model of Durrett and Klein (2013)) are arc-factored

■ Exact decoding can be performed in a greedy manner

Beyond Arc Scores

The simplest coreference models (e.g., the Surface model of Durrett and Klein (2013)) are arc-factored

- Exact decoding can be performed in a greedy manner

However: in our approach, an arc factored model would be equivalent to do coreference resolution and quotation attribution independently...

Beyond Arc Scores

The simplest coreference models (e.g., the Surface model of Durrett and Klein (2013)) are arc-factored

- Exact decoding can be performed in a greedy manner

However: in our approach, an arc factored model would be equivalent to do coreference resolution and quotation attribution independently...

To do things jointly, we add extra scores for:

- A speaker being mentioned inside a quotation

■ Consecutive quotes having the same speakers

Beyond Arc Scores

The simplest coreference models (e.g., the Surface model of Durrett and Klein (2013)) are arc-factored

- Exact decoding can be performed in a greedy manner

However: in our approach, an arc factored model would be equivalent to do coreference resolution and quotation attribution independently...

To do things jointly, we add extra scores for:

- A speaker being mentioned inside a quotation

■ Consecutive quotes having the same speakers

These scores require knowing if pairs of nodes are in the same subtree.

Logic Program

- Arc variables: each node (except the root) has exactly one parent

$$
\sum_{i=0}^{j-1} a_{i \rightarrow j}=1, \quad \forall j \neq 0
$$

■ Path variables: paths propagate through arcs

$$
\pi_{i \rightarrow *^{*} i}=1, \quad \forall i, \quad \pi_{i \rightarrow \rightarrow^{*} k}=\bigvee_{i<j \leq k}\left(a_{i \rightarrow j} \wedge \pi_{j \rightarrow * k}\right), \quad \forall i, k
$$

■ Pair variables: nodes k and ℓ are in the same subtree if they have a common ancestor which is not the root

$$
p_{k, \ell}=\bigvee_{i \neq 0}\left(\pi_{i \rightarrow \rightarrow^{*} k} \wedge \pi_{i \rightarrow * \ell}\right), \quad \forall k, l
$$

Experiments

Datasets:

■ WSJ portion of the Ontonotes (597 documents); same splits as CoNLL 2011 shared task

■ Quotation annotations of the PARC dataset (Pareti, 2012; O'Keefe et al., 2012)

Coreference evaluation metrics: average between MUC, $\mathrm{B}^{3}, \mathrm{CEAF}_{e}$ Quotation evaluation metrics:

■ Representative speaker match (RSM): \# matches to representative (non-pronominal) mention of the gold speaker's entity
■ Entity cluster $F_{1}\left(\right.$ ECF $\left._{1}\right): F_{1}$ score between the predicted and gold speaker entity (sets of mentions)

Results

Coreference Resolution:

	MUC F_{1}	BCUB F_{1}	CEAFE F_{1}	Avg.
Durrett and Klein (2013) (SURFACE)	$\mathbf{5 8 . 8 7}$	62.74	45.46	55.7
QUOTE/COREF INDEPENDENT	57.89	62.50	45.48	55.3
JoInT SYSTEM	58.78	$\mathbf{6 3 . 7 9}$	$\mathbf{4 5 . 5 0}$	$\mathbf{5 6 . 0}$

Quotation attribution:

	RSM	ECF_{1}
QUOTEONLY	49.4%	41.2%
QUOTEAFTERCOREF	64.6%	70.0%
QUOTE/COREF INDEPENDENT	74.7%	$\mathbf{7 3 . 7 \%}$
JOINT SYSTEM	$\mathbf{7 6 . 6 \%}$	$\mathbf{7 4 . 1 \%}$

Outline

1 Structured Prediction and Factor Graphs

2 Integer Linear Programming

3 Message-Passing Algorithms

- Sum-Product

■ Max-Product

4 Dual Decomposition

5 Applications

6 Conclusions

Conclusions

■ Many structured problems in NLP are NP-hard or expensive (constrained models, diversity, combination of structured models)

- Often they can be approximately decoded via Linear Programming (e.g., by relaxing an ILP)
- The structure inherent to these problems can be represented with a factor graph
■ Message-passing and dual decomposition algorithms can solve these LPs efficiently, exploiting the structure of the graph
■ Conceptually: approximate global decoding by invoking only local decoders (local maximizations, marginals, max-marginals, QPs, ...)
- AD^{3} is faster than the subgradient algorithm both in theory and in practice, and requires the same local decoders
- SOTA results in several applications (turbo parsing, summarization, joint coref and quotation attribution)

Thank you!

The syntactic/semantic parser and AD^{3} are freely available at:

http://www.ark.cs.cmu.edu/TurboParser http://www.ark.cs.cmu.edu/AD3

ARE 1 ti CarnegieMellon

Acknowledgments

■ Fundação para a Ciência e Tecnologia, grants PEst-OE/EEI/LA0008/2011 and PTDC/EEI-SII/2312/2012.
■ Fundação para a Ciência e Tecnologia and Information and Communication Technologies Institute (Portugal/USA), through the CMU-Portugal Program.
■ Priberam: QREN/POR Lisboa (Portugal), EU/FEDER programme, Discooperio project, contract 2011/18501.
■ Priberam: QREN/POR Lisboa (Portugal), EU/FEDER programme, Intelligo project, contract 2012/24803.
priberom

References I

Almeida, M. B. and Martins, A. F. T. (2013). Fast and robust compressive summarization with dual decomposition and multi-task learning. In Proc. of the Annual Meeting of the Association for Computational Linguistics.

Almeida, M. S. C., Almeida, M. B., and Martins, A. F. T. (2014). A joint model for quotation attribution and coreference resolution. In Proc. of the Annual Meeting of the European Chapter of the Association for Computational Linguistics.
Auli, M. and Lopez, A. (2011). A Comparison of Loopy Belief Propagation and Dual Decomposition for Integrated CCG Supertagging and Parsing. In Proc. of Annual Meeting of the Association for Computational Linguistics.
Berg-Kirkpatrick, T., Gillick, D., and Klein, D. (2011). Jointly learning to extract and compress. In Proc. of Annual Meeting of the Association for Computational Linguistics.
Berrou, C., Glavieux, A., and Thitimajshima, P. (1993). Near Shannon limit error-correcting coding and decoding. In Proc. of International Conference on Communications, volume 93, pages 1064-1070.
Bertsekas, D., Hager, W., and Mangasarian, O. (1999). Nonlinear programming. Athena Scientific.
Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Now Publishers.
Burkett, D. and Klein, D. (2012). Fast inference in phrase extraction models with belief propagation. In Proc. of the North American Chapter of the Association for Computational Linguistics, pages 29-38. Association for Computational Linguistics.
Chang, Y.-W. and Collins, M. (2011). Exact decoding of phrase-based translation models through lagrangian relaxation. In Proc. of Empirical Methods for Natural Language Processing.
Clarke, J. and Lapata, M. (2008). Global Inference for Sentence Compression An Integer Linear Programming Approach. Journal of Artificial Intelligence Research, 31:399-429.
Dantzig, G. and Wolfe, P. (1960). Decomposition principle for linear programs. Operations Research, 8(1):101-111.
Dantzig, G. B. (1947). Maximization of a linear function of variables subject to linear inequalities. Published in T.C. Koopmans (ed.): Activity Analysis of Production and Allocation, New York-London 1951, pages 339-347.
Das, D., Martins, A. F. T., and Smith, N. A. (2012). An Exact Dual Decomposition Algorithm for Shallow Semantic Parsing with Constraints. In Proc. of First Joint Conference on Lexical and Computational Semantics (*SEM).
Denis, P. and Baldridge, J. (2008). Specialized models and ranking for coreference resolution. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 660-669. Association for Computational Linguistics.

References II

Dreyer, M. and Eisner, J. (2009). Graphical models over multiple strings. In Proc. of Empirical Methods in Natural Language Processing, pages 101-110. Association for Computational Linguistics.
Duchi, J., Tarlow, D., Elidan, G., and Koller, D. (2007). Using combinatorial optimization within max-product belief propagation. Advances in Neural Information Processing Systems, 19.
Durrett, G. and Klein, D. (2013). Easy victories and uphill battles in coreference resolution. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing.
Eckstein, J. and Bertsekas, D. (1992). On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming, 55(1):293-318.
Eisner, J. (1996). Three new probabilistic models for dependency parsing: An exploration. In Proc. of International Conference on Computational Linguistics, pages 340-345.
Everett III, H. (1963). Generalized Lagrange multiplier method for solving problems of optimum allocation of resources. Operations Research, 11(3):399-417.
Fernandes, E. R., dos Santos, C. N., and Milidiú, R. L. (2012). Latent structure perceptron with feature induction for unrestricted coreference resolution. In Joint Conference on EMNLP and CoNLL-Shared Task, pages 41-48. Association for Computational Linguistics.
Filatova, E. and Hatzivassiloglou, V. (2004). A formal model for information selection in multi-sentence text extraction. In Proc. of International Conference on Computational Linguistics.
Gabay, D. and Mercier, B. (1976). A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Computers and Mathematics with Applications, 2(1):17-40.
Gillick, D., Favre, B., and Hakkani-Tur, D. (2008). The icsi summarization system at tac 2008. In Proc. of Text Understanding Conference.
Globerson, A. and Jaakkola, T. (2008). Fixing max-product: Convergent message passing algorithms for MAP LP-relaxations. Neural Information Processing Systems, 20.
Glowinski, R. and Le Tallec, P. (1989). Augmented Lagrangian and operator-splitting methods in nonlinear mechanics. Society for Industrial Mathematics.
Glowinski, R. and Marroco, A. (1975). Sur l'approximation, par éléments finis d'ordre un, et la résolution, par penalisation-dualité, d'une classe de problèmes de Dirichlet non linéaires. Rev. Franc. Automat. Inform. Rech. Operat., 9:41-76.

References III

Hazan, T. and Shashua, A. (2010). Norm-product belief propagation: Primal-dual message-passing for approximate inference. IEEE Transactions on Information Theory, 56(12):6294-6316.

Johnson, J. (2008). Equivalence of Entropy Regularization and Relative-Entropy Proximal Method. Unpublished manuscript.
Jojic, V., Gould, S., and Koller, D. (2010). Accelerated dual decomposition for MAP inference. In International Conference of Machine Learning.

Kantorovich, L. V. (1940). A new method of solving of some classes of extremal problems. In Dokl. Akad. Nauk SSSR, volume 28, pages 211-214.
Karp, R. M. (1972). Reducibility among combinatorial problems. Springer.
Khachiyan, L. G. (1980). Polynomial algorithms in linear programming. USSR Computational Mathematics and Mathematical Physics, 20(1):53-72.

Knight, K. and Marcu, D. (2000). Statistics-based summarization—step one: Sentence compression. In AAAI/IAAI.
Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques. The MIT Press.
Kolmogorov, V. (2006). Convergent tree-reweighted message passing for energy minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28:1568-1583.

Komodakis, N., Paragios, N., and Tziritas, G. (2007). MRF optimization via dual decomposition: Message-passing revisited. In Proc. of International Conference on Computer Vision.
Koo, T. and Collins, M. (2010). Efficient third-order dependency parsers. In Proc. of Annual Meeting of the Association for Computational Linguistics, pages 1-11.

Koo, T., Globerson, A., Carreras, X., and Collins, M. (2007). Structured prediction models via the matrix-tree theorem. In Empirical Methods for Natural Language Processing.
Koo, T., Rush, A. M., Collins, M., Jaakkola, T., and Sontag, D. (2010). Dual decomposition for parsing with non-projective head automata. In Proc. of Empirical Methods for Natural Language Processing.
Lauritzen, S. (1996). Graphical Models. Clarendon Press, Oxford.
Lin, H. and Bilmes, J. (2010). Multi-document summarization via budgeted maximization of submodular functions. In Proc. of Annual Meeting of the North American chapter of the Association for Computational Linguistics.
MacKay, D. (2003). Information Theory, Inference, and Learning Algorithms, volume 7. Cambridge University Press.

References IV

Martins, A. F. T. and Almeida, M. S. C. (2014). Priberam: A turbo semantic parser with second order features. In Proc. of the International Workshop on Semantic Evaluations (SemEval); task 8: Broad-Coverage Semantic Dependency Parsing.
Martins, A. F. T., Figueiredo, M. A. T., Aguiar, P. M. Q., Smith, N. A., and Xing, E. P. (2011a). An Augmented Lagrangian Approach to Constrained MAP Inference. In Proc. of International Conference on Machine Learning.
Martins, A. F. T., Figueiredo, M. A. T., Aguiar, P. M. Q., Smith, N. A., and Xing, E. P. (2014). AD ${ }^{3}$: Alternating Directions Dual Decomposition for MAP Inference in Graphical Models. Journal of Machine Learning Research (to appear).
Martins, A. F. T. and Smith, N. A. (2009). Summarization with a Joint Model for Sentence Extraction and Compression. In North American Chapter of the Association for Computational Linguistics: Workshop on Integer Linear Programming for NLP.
Martins, A. F. T., Smith, N. A., Aguiar, P. M. Q., and Figueiredo, M. A. T. (2011b). Dual Decomposition with Many Overlapping Components. In Proc. of Empirical Methods for Natural Language Processing.
Martins, A. F. T., Smith, N. A., Xing, E. P., Figueiredo, M. A. T., and Aguiar, P. M. Q. (2010). Turbo Parsers: Dependency Parsing by Approximate Variational Inference. In Proc. of Empirical Methods for Natural Language Processing.
McAllester, D., Collins, M., and Pereira, F. (2008). Case-factor diagrams for structured probabilistic modeling. Journal of Computer and System Sciences, 74(1):84-96.
McDonald, R. (2006). Discriminative sentence compression with soft syntactic constraints. In Proc. of Annual Meeting of the European Chapter of the Association for Computational Linguistics.
McDonald, R. and Satta, G. (2007). On the complexity of non-projective data-driven dependency parsing. In Proc. of International Conference on Parsing Technologies.
McDonald, R. T., Pereira, F., Ribarov, K., and Hajic, J. (2005). Non-projective dependency parsing using spanning tree algorithms. In Proc. of Empirical Methods for Natural Language Processing.
Nesterov, Y. (2005). Smooth minimization of non-smooth functions. Mathematical Programming, 103(1):127-152.
Nivre, J., Hall, J., Nilsson, J., Eryiǧit, G., and Marinov, S. (2006). Labeled pseudo-projective dependency parsing with support vector machines. In Procs. of International Conference on Natural Language Learning.
Nocedal, J. and Wright, S. (1999). Numerical optimization. Springer verlag.

References V

O'Keefe, T., Pareti, S., Curran, J. R., Koprinska, I., and Honnibal, M. (2012). A sequence labelling approach to quote attribution. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pages 790-799. Association for Computational Linguistics.
Pareti, S. (2012). A database of attribution relations. In LREC, pages 3213-3217.
Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann.
Richardson, M. and Domingos, P. (2006). Markov logic networks. Machine Learning, 62(1):107-136.
Roth, D. and Yih, W. (2004). A linear programming formulation for global inference in natural language tasks. In International Conference on Natural Language Learning.
Rush, A. and Collins, M. (2012). A Tutorial on Dual Decomposition and Lagrangian Relaxation for Inference in Natural Language Processing. Journal of Artificial Intelligence Research, 45:305-362.
Rush, A., Sontag, D., Collins, M., and Jaakkola, T. (2010). On dual decomposition and linear programming relaxations for natural language processing. In Proc. of Empirical Methods for Natural Language Processing.
Rush, A. M. and Collins, M. (2011). Exact decoding of syntactic translation models through lagrangian relaxation. In Proc. of Annual Meeting on Association for Computational Linguistics.
Smith, D. and Eisner, J. (2008). Dependency parsing by belief propagation. In Proc. of Empirical Methods for Natural Language Processing.
Smith, N. A. (2011). Linguistic Structure Prediction, volume 13 of Synthesis Lectures on Human Language Technologies. Morgan and Claypool.
Wainwright, M. and Jordan, M. (2008). Graphical Models, Exponential Families, and Variational Inference. Now Publishers.
Wainwright, M. J., Jaakkola, T., and Willsky, A. (2005). A new class of upper bounds on the log partition function. IEEE Transactions on Information Theory, 51(7):2313-2335.
Woodsend, K. and Lapata, M. (2012). Multiple aspect summarization using integer linear programming. In Proc. of Empirical Methods in Natural Language Processing.
Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2001). Generalized belief propagation. In Neural Information Processing Systems.
Yih, W.-t., Goodman, J., Vanderwende, L., and Suzuki, H. (2007). Multi-document summarization by maximizing informative content-words. In Proc. of International Joint Conference on Artifical Intelligence.

