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Structured Prediction and NLP

Structured prediction: a machine learning framework for predicting
structured, constrained, and interdependent outputs

NLP deals with structured and ambiguous textual data (Smith, 2011):

machine translation
speech recognition
syntactic parsing
semantic parsing
information extraction
...
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Dependency Parsing

Map sentences to their syntactic structure.

* Logic plays a minimal role here

A lexicalized syntactic formalism
Grammar functions represented as lexical relationships (dependencies)

(Eisner, 1996; McDonald et al., 2005; Nivre et al., 2006; Koo et al., 2007)
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Multi-Document Summarization

Map a set of related documents to a brief summary.
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Current State of Affairs

1 Greedy algorithms can deal with rich histories, but they are
suboptimal and suffer from error propagation

2 Simple, tractable models permit exact decoding, but they make too
stringent factorization assumptions

We’d like fast predictors with global features and constraints, but how?
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Related Recent Tutorials

Dual Decomposition and Lagrangian Relaxation for Inference in NLP
(Rush & Collins ACL 2011)
Structured Predictions in NLP: Constrained Conditional Models and
Integer Linear Programming (Srikumar, Goldwasser & Roth NAACL
2012)
Variational Inference in Structured NLP Models (Burkett & Klein
NAACL 2012)
Structured Belief Propagation for NLP (Gromley & Eisner ACL 2014)
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This Tutorial: Linear Programming Decoders

We’ll provide a unified view over these approaches (ILPs, message-passing,
dual decomposition)
We’ll focus on MAP decoding, but touch briefly on marginal decoding

We’ll illustrate with three applications:

1 Turbo Parsing
2 Compressive Summarization
3 Joint Coreference Resolution and Quote Attribution

(Companion software: AD3 toolkit)
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Outline

1 Structured Prediction and Factor Graphs

2 Integer Linear Programming

3 Message-Passing Algorithms
Sum-Product
Max-Product

4 Dual Decomposition

5 Applications

6 Conclusions
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Structured Prediction

Input set X

For each x ∈ X: a large set of candidate outputs Y(x)

A compatibility function Fw (x , y) induced by a model w
(Linear model: Fw (x , y) = w>f (x , y))

Training problem: learn the model w from data {〈xi , yi〉}M
i=1

Decoding problem (our focus):

ŷ = arg max
y∈Y(x)

Fw (x , y)

Key assumption: Fw decomposes into (overlapping) parts
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Three Important Questions

Representation?
Decoding/Inference?
Learning the parameters?
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Recap: Hidden Markov Models
Fw is a log-probability, factoring over emissions and transitions.

P(x , y) =
∏

i
P(xi |yi )︸ ︷︷ ︸
emissions

P(yi |yi−1)︸ ︷︷ ︸
transitions

=
∏

i
ψi (yi )

∏
i
ψi ,i−1(yi , yi−1)
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Recap: Hidden Markov Models

Representation? Directed sequence model.
Decoding/Inference? Viterbi/forward-backward algorithms.
Learning the parameters? Maximum likelihood (count and
normalize).
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Recap: Conditional Random Fields
Same factorization, but globally normalized.

P(y |x) =
1

Z (w , x)
exp

(∑
i w>f i (x , yi )︸ ︷︷ ︸

nodes

+
∑

i w>f i ,i−1(x , yi , yi−1)︸ ︷︷ ︸
edges

)

∝
∏

i
ψi (yi )

∏
i
ψi ,i−1(yi , yi−1)
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André Martins (Priberam/IT) LP Decoders in NLP http://tiny.cc/lpdnlp 14 / 149

http://tiny.cc/lpdnlp


Recap: Conditional Random Fields
Same factorization, but globally normalized.

P(y |x) =
1

Z (w , x)
exp

(∑
i w>f i (x , yi )︸ ︷︷ ︸

nodes

+
∑

i w>f i ,i−1(x , yi , yi−1)︸ ︷︷ ︸
edges

)

∝
∏

i
ψi (yi )

∏
i
ψi ,i−1(yi , yi−1)
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Recap: Conditional Random Fields

Representation? Undirected sequence model.
Decoding/Inference? Viterbi/forward-backward algorithms.
Learning the parameters? Maximum conditional likelihood
(convex optimization).
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Graphical Models

HMMs and CRFs are two instances of graphical models.
In general, graphical models come in two flavours:

Directed (Bayesian Networks)
Undirected (Markov Networks)

André Martins (Priberam/IT) LP Decoders in NLP http://tiny.cc/lpdnlp 16 / 149

http://tiny.cc/lpdnlp


Bayesian Networks
Useful to express causality relations.
Factors are conditional probability tables.

P(y) =
∏

i
P(yi |parents(yi ))
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Markov Networks
Useful to express correlations between variables.
Factors correspond to cliques of the graph.

P(y) ∝
∏

s∈cliques(G)

ψs(y s)
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Conditional Independence

Graphical models are a great tool for modeling conditional independence
They link properties of the probability distribution with properties of the
graph (reachability, D-separation, etc.)
Lots of literature about this: Pearl (1988); Lauritzen (1996); Koller and
Friedman (2009)
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An Intermediate Representation: Factor Graph

A bipartite graph with variable nodes and factor nodes
It makes explicit the factors of the distribution

P(y) ∝
∏

i
ψi (yi )︸ ︷︷ ︸

unary potentials

×
∏

s
ψs(y s)︸ ︷︷ ︸

higher-order potentials

With unary potentials only, all variables would be independent
Higher-order potentials can model correlations, impose soft/hard
constraints, etc.
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Example: Low-Density Parity Check Codes
A message is transmitted through a noisy channel, corrupting some bits
Redundancy can help decoding the message, e.g. via additional parity
check bits that can detect/correct errors (error-correcting codes)
High-level idea: increase redundancy to build more accurate decoders

(Adapted from MacKay 2003.)
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Inference/Decoding

Pψ(y |x) =
1

Z (ψ, x)
×

∏
i
ψi (yi )︸ ︷︷ ︸

unary potentials

×
∏

s
ψs(y s)︸ ︷︷ ︸

higher-order potentials

Two decoding problems:

MAP decoding: compute ŷ = arg max
y

Pψ(y |x)

Marginal decoding: compute every Pψ(yi |x) and Pψ(y s |x); and
evaluate the partition function Z (ψ, x)

Sometimes easy, in general intractable...
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When is Decoding Easy?

independent variables (trivial)
sequence models (Viterbi, forward-backward)
graphical models without cycles (variable elimination, belief
propagation)
graphical models with low treewidth (junction tree algorithm)

In general, for graphs with cycles, MAP decoding is NP-hard and
marginal decoding is #P-hard
Note: tractability depends not only on the topology, but also on the
potentials
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Example: Ising and Potts Models

Ising/Potts grid Ernst Ising, 1900–1998 Ren Potts, 1925–2005

All factors are pairwise, variables are binary (Ising) or multi-class (Potts)

MAP decoding is tractable for attractive Ising models (i.e. Ising models
with supermodular log-potentials):

logψij(1, 1) + logψij(0, 0) ≥ logψij(0, 1) + logψij(1, 0)

Good approximations for attractive Potts models
... but the general case is NP-hard and hard to approximate
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Example: Skip-Chain CRFs

Skip-chain CRFs are useful to model long-range dependencies

Skip-chains introduce cycles, making decoding more expensive
We could write this information in the “state” and still decode with
dynamic programming, but that would blow up the number of states
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Beyond Graphical Models

Some NLP problems (e.g. parsing) require representations beyond
graphical models
Dynamic programming algorithms (CKY, inside-outside) still work for
those representations
Example: case-factor diagrams (McAllester et al., 2008)
Other problems (e.g. matching, spanning trees) can be solved with
combinatorial algorithms not related with dynamic programming
All these can still be represented as GMs by “generalizing” the
notion of factor
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Factors as Machines
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Three Kinds of Factors

Let N(s) denote the set of variables that are neighbors of factor s.
(Its cardinality |N(s)| is called the degree of s.)

1 Dense factors: ψs(y s) has all O(exp(|N(s)|)) degrees of freedom
2 Structured factors: ψs(y s) has internal structure
3 Hard constraint factors:

ψs(y s) :=

{
1, if y s ∈ Ys
0, otherwise.
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Examples of Structured Factors

a factor for bipartite matching (Duchi et al., 2007)
combining a sequential model (POS tagger) with a PCFG (Rush
et al., 2010)
combining CCG parsing and supertagging (Auli and Lopez, 2011)
dependency parsing with head automata (Smith and Eisner, 2008;
Koo et al., 2010)
handling string-valued variables with factors that are finite state
transducers (Dreyer and Eisner, 2009)
inversion transduction grammar constraint (Burkett and Klein, 2012)
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Examples of Hard Constraint Factors

XOR OR OR-OUT
KNAPSACK

Logic factors: can express arbitrary FOL constraints

Applications: Markov logic networks (Richardson and Domingos,
2006), constrained conditional models (Roth and Yih, 2004)

Knapsack factors: can express budget constraints

Applications: summarization, diversity problems,...

(Martins et al., 2011b; Almeida and Martins, 2013; Martins et al., 2014)
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Approximate Decoding

What to do when exact decoding is intractable?

Sampling methods (MCMC, etc.)
Mean field algorithms
LP relaxations
Message-passing
Dual decomposition

We’ll highlight connections between several of these methods.
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Global/Local Decoding

“Local” denotes independent problems within the scope of each factor
“Global” involves a global assignment of variables, consistent across factors
Key idea: “glue” the local evidence at the factors to obtain a global
assignment
Our assumption: local decoding is easy, for every factor
We want to build a good (approximate) global decoder by invoking
the local decoders.
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What Kind of Local Decoding Do We Need?

Algorithm Local Operation
Sum-Prod. BP (Pearl, 1988) marginals
TRBP (Wainwright et al., 2005) marginals
Norm-Product BP (Hazan and Shashua, 2010) marginals
Max-Prod. BP (Pearl, 1988) max-marginals
TRW-S (Kolmogorov, 2006) max-marginals
MPLP (Globerson and Jaakkola, 2008) max-marginals
PSDD (Komodakis et al., 2007) MAP
Accelerated DD (Jojic et al., 2010) marginals
AD3 (Martins et al., 2011a) QP/MAP
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Linear Programming
(Kantorovich, 1940; Dantzig, 1947)

max
z

s>z Linear objective
s.t. ai

>z ≤ bi , i = 1, . . . ,N. Linear constraints
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Linear Programming
(Kantorovich, 1940; Dantzig, 1947)

If feasible and bounded, the solution is always attained at a vertex
Can be solved in polynomial time (Khachiyan, 1980)
Lots of off-the-shelf solvers (CPLEX, Gurobi, GLPK, LP Solve, etc.)
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Integer Linear Programming

max
z

s>z Linear objective
s.t. ai

>z ≤ bi , i = 1, . . . ,N, Linear constraints
z integer.
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Integer Linear Programming

In general, NP-hard (Karp, 1972)
Existing solvers are effective for small instances, but don’t scale
LP relaxation: drops the integer constraints

Gives an upper bound of the solution of the ILP
A common first step in exact algorithms (branch-and-bound, cutting
plane, branch-and-cut)

Here’s a very simple approximate algorithm:

1 Solve the LP relaxation
2 If the solution is integer, then it is the solution of the ILP
3 Otherwise, apply a rounding heuristic (problem-dependent)
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Two Representations of Polytopes

Intersection of half-spaces (H-representation) or convex hull of a set of
vertices (V-representation)

To call a solver, we need to specify a concise H-representation
However, it may be difficult or impossible to obtain one if all we have is a
V-representation
We next show how this relates to MAP decoding...
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Structured Outputs as Bit-Vectors

One indicator pi (yi ) per each variable state
One indicator qs(y s) per each factor configuration
Overall: each global output y ∈ Y(x) is mapped to a bit-vector
Note: not all bit vectors are valid (they must be consistent)
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Marginal Polytope (Wainwright and Jordan, 2008)

Vertices of MARG(G) correspond to outputs Y(x)

Points of MARG(G) correspond to realizable marginals (more later)
This is a V-representation, what about an H-representation?
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H-Representation With Integer Constraints

In general, there’s no concise H-representation for MARG(G)

... but we can represent its vertices if integer constraints are permitted:∑
y s

qs(y s) = 1, qs(y s) ≥ 0, ∀y s ∈ Ys (normalization)

pi (yi ) =
∑

y s∼yi

qs(y s), ∀i ∈ N(s) (marginalization)

q is integer (integer constraints)

This will open the door for formulating MAP decoding as an ILP.
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MAP Decoding as an ILP
Recall the MAP decoding problem:

ŷ = arg max
y∈Y(x)

Pψ(y |x)

= arg max
y∈Y(x)

�
�
�
��1

Z (ψ, x)

∏
i
ψi (yi )

∏
s
ψs(y s)

= arg max
y∈Y(x)

∑
i
θi (yi ) +

∑
s
θs(y s),

where θi (yi ) := logψi (yi ) and θs(y s) := logψs(y s)

We can rewrite this as an ILP:

maximize
∑

i

∑
yi

θi (yi )pi (yi ) +
∑

s

∑
y s

θs(y s)qs(y s)

subject to (p, q) ∈ MARG(G)
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Local Polytope

Obtained by relaxing the integer constraints
Regard pi and qs as probability distributions that must be locally
consistent:∑

y s

qs(y s) = 1, qs(y s) ≥ 0, ∀y s ∈ Ys (normalization)

pi (yi ) =
∑

y s∼yi

qs(y s), ∀i ∈ N(s) (marginalization)

q is integer (integer constraints)

The feasible points are pseudo-marginals (not necessarily valid marginals)
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Local and Marginal Polytopes

LOCAL(G) is an outer bound of MARG(G)

It contains all the integer vertices of MARG(G), plus spurious
fractional vertices
If the graph has no cycles, then LOCAL(G) = MARG(G)
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LP-MAP Decoding

Solves a linear relaxation of MAP decoding, replacing MARG(G) by
LOCAL(G):

maximize
∑

i

∑
yi

θi (yi )pi (yi ) +
∑

s

∑
y s

θs(y s)qs(y s)

subject to (p, q) ∈ LOCAL(G)

If the solution is integer, we solved the problem exactly; otherwise, apply a
rounding heuristic
Runtime is polynomial, but the procedure is only approximate.
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What About Hard Constraint Factors?

XOR OR OR-OUT
KNAPSACK

Logic and knapsack/budget constraints can also be expressed linearly
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Logic/Budget Constraints
Assume z1, z2, . . . ∈ {0, 1} (binary variables)

Condition Statement Constraint
Implication if z1 then z2 z1 ≤ z2
Negation z1 iff ¬z2 z1 = 1− z2
or z1 or z2 or z3 z1 + z2 + z3 ≥ 1
xor z1 xor z2 xor z3 z1 + z2 + z3 = 1
or-out z12 = z1 ∨ z2 z12 ≥ z1, z12 ≥ z2,

z12 ≤ z1 + z2
and-out z12 = z1 ∧ z2 z12 ≤ z1, z12 ≤ z2,

z12 ≥ z1 + z2 − 1
Budget at most B active units

∑
i zi ≤ B

Knapsack at most B total weight
∑

i wi zi ≤ B

More complex expressions via composition and De Morgan’s laws
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Summing Up ILPs

MAP decoding can be expressed as an Integer Linear Program (ILP)
Logic constraints can be incorporated easily
Structured factors are harder (they need to be disassembled)
The ILP can be relaxed for approximate decoding (LP-MAP)
Geometrically: an outer bound of the marginal polytope
The relaxation is tight if the graph G does not have cycles
Disadvantage: an off-the-shelf LP solver won’t exploit the
modularity of the problem
Algorithms that exploit the structure of the LP will be the topic
of the remaining sections
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Outline

1 Structured Prediction and Factor Graphs

2 Integer Linear Programming

3 Message-Passing Algorithms
Sum-Product
Max-Product

4 Dual Decomposition

5 Applications

6 Conclusions
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Motivating Example: Counting Soldiers

(Adapted from MacKay 2003 and Gormley & Eisner ACL’14 tutorial.)
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André Martins (Priberam/IT) LP Decoders in NLP http://tiny.cc/lpdnlp 52 / 149

http://tiny.cc/lpdnlp


Motivating Example: Counting Soldiers

(Adapted from MacKay 2003 and Gormley & Eisner ACL’14 tutorial.)
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Sum-Product Belief Propagation

Recall that Pψ(y |x) :=
1

Z (ψ, x)
×
∏

i
ψi (yi )×

∏
s
ψs(y s)

Alternate between computing two kinds of messages:

Variable-to-factor: mi→s(yi ) = ψi (yi )
∏

s′∈N(i)\{s}
ns′→i (yi )

Factor-to-variable: ns→i (yi ) =
∑

y s∼yi

ψs(y s)
∏

j∈N(s)\{i}
mj→s(yj)
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Beliefs

Given the messages, we compute local beliefs:

Variable beliefs:

pi (yi ) ∝ ψi (yi )
∏

s∈N(i)
ns→i (yi )

Factor beliefs:

qs(y s) ∝ ψs(y s)
∏

i∈N(s)

mi→s(yi )

If the graph has no cycles, these beliefs converge to the true marginals

pi (yi )→ Pψ(yi |x), qs(y s)→ Pψ(y s |x)

Otherwise: loopy BP (later)
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Belief Propagation as Calibration

Variable-to-factor messages:

mi→s(yi ) = ψi (yi )
∏

s′∈N(i)\{s}
ns′→i (yi ) =

pi (yi )

ns→i (yi )

Factor-to-variable messages:

ns→i (yi ) =
∑

y s∼yi

ψs(y s)
∏

j∈N(s)\{i}
mj→s(yj) =

∑
y s∼yi qs(y s)

mi→s(yi )

Calibration equations (attained at convergence):

pi (yi ) =
∑

y s∼yi

qs(y s)

Punchline: to run sum-product BP, we only need local marginals
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What Kind of Local Decoding Do We Need?

Algorithm Local Operation
Sum-Prod. BP (Pearl, 1988) marginals
TRBP (Wainwright et al., 2005) marginals
Norm-Product BP (Hazan and Shashua, 2010) marginals
Max-Prod. BP (Pearl, 1988) max-marginals
TRW-S (Kolmogorov, 2006) max-marginals
MPLP (Globerson and Jaakkola, 2008) max-marginals
PSDD (Komodakis et al., 2007) MAP
Accelerated DD (Jojic et al., 2010) marginals
AD3 (Martins et al., 2011a) QP/MAP
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Loopy Belief Propagation

What if the graph has cycles?

We’ll see that marginal decoding corresponds to optimizing a free energy
objective over the marginal polytope
Sum-product “loopy” BP entails two approximations:

1 Replaces MARG(G) by LOCAL(G)

2 Optimizes a Bethe free energy approximation
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Step #1: Dual Parametrization

For any ψ, there are marginals p,q in MARG(G) that parametrize Pψ
E.g. if the graph has no cycles:

Pψ(y |x) =
1

Z (ψ, x)

∏
i
ψi (yi )×

∏
s
ψs(y s)

=
∏

i
pi (yi )

1−|N(i)| ×
∏

s
qs(y s) (* next slide)

:= Pp,q(y |x)

Therefore: a distribution can be represented as a point in MARG(G)

θ := log(ψ) are called canonical parameters, and (p,q) mean parameters
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(*) Derivation of Dual Parametrization
Assume a tree-shaped Bayes net (each variable i has a single parent πi )

P(y) = P(y0)
∏
i 6=0

P(yi |yπi )

= P(y0)
∏
i 6=0

P(yi , yπi )

P(yπi )

=
P(y0)

∏
s P(ys)∏

j P(yj)|i :j=πi |

=
P(y0)

∏
s P(ys)

P(y0)|N(0)|∏
j 6=0 P(yj)|N(j)−1|

=

∏
s P(ys)∏

j P(yj)|N(j)|−1

=
∏

i
pi (yi )

1−|N(i)| ×
∏

s
qs(y s).
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Step #2: Entropy and Log-Partition Function

Entropy of a probability distribution: H(P) = −
∑

y
P(y) logP(y)

Definition: the Fenchel dual of a convex function f : RD → R ∪ {+∞} is
the convex function f ? : RD → R ∪ {+∞} defined pointwise as
f ?(v) := sup

u

(
v>u − f (u)

)

Theorem (I): the log-partition function log Z (θ) and the negative
entropy −H(Pp,q) are Fenchel dual:

log Z (θ) = max
(p,q)∈MARG(G)

∑
i
θi
>pi +

∑
s
θs
>qs + H(Pp,q)︸ ︷︷ ︸

(negative) variational free energy

,

This underlies the well-known duality between maximum likelihood in
log-linear models and maximum entropy.
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Step #3: Loopy BP as Variational Inference

Theorem (II): The maximizers (p∗,q∗) are the true marginals of Pθ:

(p∗,q∗) = arg max(p,q)∈MARG(G)

∑
i
θi
>pi +

∑
s
θs
>qs + H(Pp,q)

Drawback: in general, MARG(G) and H(Pp,q) are both intractable
Yedidia et al. (2001) showed that loopy BP entails two approximations:

1 Replace MARG(G) by LOCAL(G)

2 Approximate H(Pp,q) by the Bethe entropy HBethe(Pp,q)

Both are exact when the graph does not have cycles
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Bethe Entropy Approximation
Derived by “pretending” the graph has no cycles
We have seen

Pψ(y |x) ≈
∏

i
pi (yi )

1−|N(i)| ×
∏

s
qs(y s)

From which we can derive

H(Pp,q) ≈ HBethe(Pp,q)

=
∑

i
(1− |N(i)|)Hi (pi ) +

∑
s

Hs(qs)
Hans Bethe, 1906–2005

A linear combination of local entropies:

Hi (pi ) = −
∑
yi

pi (yi ) log pi (yi ), Hs(qs) = −
∑
y s

qs(y s) log qs(y s)

Not concave in general!
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Geometric Illustration

If loopy BP converges, it reaches a stationary point of the
approximate variational problem
HBethe(Pp,q) is non-concave in general ⇒ local minima
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André Martins (Priberam/IT) LP Decoders in NLP http://tiny.cc/lpdnlp 64 / 149

http://tiny.cc/lpdnlp


Geometric Illustration

If loopy BP converges, it reaches a stationary point of the
approximate variational problem
HBethe(Pp,q) is non-concave in general ⇒ local minima
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Summary of Loopy BP

Advantages:

Simple to implement
Handles structured and logic factors (only need to compute local
marginals)
Often works well in practice (if cycles are not very influential)
Often yields a reasonable approximation of log Z and H

Disadvantages:

Doesn’t give an upper/lower bound of log Z and H
Entropy approximation is not concave (local minima)
May not converge
The final beliefs may not be realizable marginals
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Tree Reweighted BP (Wainwright et al., 2005)
Key idea: cover the graph with a set of trees

Count the appearance probability cis > 0 of each edge
This results in a convex upper bound of −H and log Z :

HTRBP(Pp,q) =
∑

i
(1−

∑
s∈N(i) cis)Hi (pi ) +

∑
s

Hs(qs)

(Note: if all cis = 1 this would revert to the Bethe approximation)

André Martins (Priberam/IT) LP Decoders in NLP http://tiny.cc/lpdnlp 66 / 149

http://tiny.cc/lpdnlp


Tree Reweighted BP (Wainwright et al., 2005)
Key idea: cover the graph with a set of trees

Count the appearance probability cis > 0 of each edge
This results in a convex upper bound of −H and log Z :

HTRBP(Pp,q) =
∑

i
(1−

∑
s∈N(i) cis)Hi (pi ) +

∑
s

Hs(qs)

(Note: if all cis = 1 this would revert to the Bethe approximation)
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TRBP Messages
Variable-to-factor messages:

mi→s(yi ) =
ψi (yi )

∏
s′∈N(i) ncis′ (yi )

s′→i
ns→i (yi )

Factor-to-variable messages:

ns→i (yi ) =
∑

y s∼yi

ψs(y s)
∏

j∈N(s) mcjs
j→s(yj)

mi→s(yi )

Variable beliefs:

pi (yi ) ∝ ψi (yi )
∏

s∈N(i)
ncis

s→i (yi )

Factor beliefs:

qs(y s) ∝ ψs(y s)
∏

i∈N(s)

mcis
i→s(yi )
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Summary of TRBP

Advantages:

Still simple to implement
Entropy approximation is concave (no local minima)
Gives an upper bound on −H and log Z
Lots of knobs (the appearance probabilities)

Disadvantages:

Lots of knobs (the appearance probabilities)
Typically it’s a very loose bound
May not converge (but in practice always does, with dampening)
The final beliefs may not be realizable marginals
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What Kind of Local Decoding Do We Need?

Algorithm Local Operation
Sum-Prod. BP (Pearl, 1988) marginals
TRBP (Wainwright et al., 2005) marginals
Norm-Product BP (Hazan and Shashua, 2010) marginals
Max-Prod. BP (Pearl, 1988) max-marginals
TRW-S (Kolmogorov, 2006) max-marginals
MPLP (Globerson and Jaakkola, 2008) max-marginals
PSDD (Komodakis et al., 2007) MAP
Accelerated DD (Jojic et al., 2010) marginals
AD3 (Martins et al., 2011a) QP/MAP
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Norm-Product BP (Hazan and Shashua, 2010)

Subsumes loopy BP and TRBP
Relies on a convex approximation to the entropy using counting numbers
ci ≥ 0 and cs > 0 (in its simpler variant)

HNPBP(Pp,q) =
∑

i
ci Hi (pi ) +

∑
s

csHs(qs)

Messages will become norms

Recall the definition of `p-norm: ‖x‖p =

(∑
i
|xi |p

)1/p
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NPBP Messages
Variable-to-factor messages:

mi→s(yi ) =

(
ψi (yi )

∏
s′∈N(i) ns′→i (yi )

)cs/(ci +
∑

s′∈N(i) c′
s )

ns→i (yi )

Factor-to-variable messages:

ns→i (yi ) =

∑
y s∼yi

ψs(y s)
∏

j∈N(s)\{i}
mj→s(yj)

1/cs


cs

Variable beliefs:

pi (yi ) ∝

ψi (yi )
∏

s∈N(i)
ns→i (yi )

1/(ci +
∑

s′∈N(i) c′
s )

Factor beliefs:

qs(y s) ∝

ψs(y s)
∏

i∈N(s)

mi→s(yi )

cs
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Summary of NPBP

Advantages:

Still simple to implement
Entropy approximation is concave (no local minima)
Always converges (primal-dual block ascent)
Lots of knobs (the counting numbers)

Disadvantages:

Lots of knobs (the counting numbers)
Messages are not computed in parallel (otherwise, may not converge)
The final beliefs may not be realizable marginals
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What Kind of Local Decoding Do We Need?

Algorithm Local Operation
Sum-Prod. BP (Pearl, 1988) marginals
TRBP (Wainwright et al., 2005) marginals
Norm-Product BP (Hazan and Shashua, 2010) marginals
Max-Prod. BP (Pearl, 1988) max-marginals
TRW-S (Kolmogorov, 2006) max-marginals
MPLP (Globerson and Jaakkola, 2008) max-marginals
PSDD (Komodakis et al., 2007) MAP
Accelerated DD (Jojic et al., 2010) marginals
AD3 (Martins et al., 2011a) QP/MAP
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Outline

1 Structured Prediction and Factor Graphs

2 Integer Linear Programming

3 Message-Passing Algorithms
Sum-Product
Max-Product

4 Dual Decomposition

5 Applications

6 Conclusions
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Zero-Limit Temperature

Define Zε where ε is a temperature parameter:

Zε(ψ, x) =

 ∑
y∈Y(x)

∏
i
ψi (yi )

1/ε∏
s
ψs(ys)1/ε

ε

If ε = 1, this becomes the partition function Z (ψ, x)

If ε→ 0, this becomes the mode of Pψ(y |x)

Note that Zε(ψ, x) = Z (ψ1/ε, x)ε for any ε, i.e., Zε can be computed by
the same means as the partition function by scaling the potentials
By choosing a small enough ε, any sum-product message-passing
algorithm can be used to approximate the MAP
There is a trade-off between precision and numerical stability
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Max-Product Belief Propagation

For MAP decoding instead of marginal decoding
Only change: factor-to-variable messages (max instead of

∑
)

ns→i (yi ) = max
y s∼yi

ψs(y s)
∏

j∈N(s)\{i}
mj→s(yj)

 =
maxy s∼yi qs(y s)

mi→s(yi )

If the graph has no cycles, beliefs will converge to max-marginals:

pi (yi )→ max
y∼yi

Pψ(y |x), qs(y s)→ max
y∼y s

Pψ(y |x)

Decoding the best max-marginal at each variable node gives the MAP
With cycles: not guaranteed to converge, and even if it does, no
relation with LP-MAP
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What Kind of Local Decoding Do We Need?

Algorithm Local Operation
Sum-Prod. BP (Pearl, 1988) marginals
TRBP (Wainwright et al., 2005) marginals
Norm-Product BP (Hazan and Shashua, 2010) marginals
Max-Prod. BP (Pearl, 1988) max-marginals
TRW-S (Kolmogorov, 2006) max-marginals
MPLP (Globerson and Jaakkola, 2008) max-marginals
PSDD (Komodakis et al., 2007) MAP
Accelerated DD (Jojic et al., 2010) marginals
AD3 (Martins et al., 2011a) QP/MAP
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TRW-S (Kolmogorov, 2006)

Same rationale as sum-product TRBP: cover the graph with spanning
trees, and compute messages using edge appearance probabilities
Only differences:

Replace
∑

with max
Messages need to be computed sequentially for convergence

As max-product loopy BP, all is required is to compute local max-marginals
Under mild assumptions, gives the solution of LP-MAP
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Max-Product LP (Globerson and Jaakkola, 2008)

Derived by writing the dual of LP-MAP, and solving it with a block
coordinate descent algorithm
The message updates need to be computed in a sequential schedule
Progress in the dual objective is monotonic
Drawback: since the dual is non-smooth, we may get stuck at a
suboptimal point

(From Bertsekas et al. (1999))
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MPLP Messages

Variable-to-factor messages:

mi→s(yi ) = ψi (yi )
∏

s′∈N(i)\{s}
ns′→i (yi )

Factor-to-variable messages:

ns→i (yi ) =

max
y s∼yi

ψs(y s)1/|N(s)| ∏
j∈N(s)

mj→s(yj)
1/|N(s)|


mi→s(yi )
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Summary of MPLP

Advantages:

Very simple to implement
Handles structured and logic factors (only need to compute local
max-marginals)
Monotonically improves the dual
No parameters to tune

Disadvantages:

Can get stuck at a suboptimal solution (general problem with
nonsmooth coordinate ascent)
Messages are not computed in parallel (otherwise, may not converge)
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Summing Up Message-Passing

BP algorithms and their variants can be used both for MAP and
marginal decoding
They need to compute local marginals (sum-product) or
max-marginals (max-product)
Always exact if the graph has no cycles; approximate otherwise
They correspond to minimizing an energy approximation over the
local polytope
Some variants do convex approximations or compute upper bounds
Two views of MAP decoding: (1) the near-zero temperature limit of
marginal decoding; (2) a non-smooth optimization problem
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Outline
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Dual Decomposition

Old idea in optimization (Dantzig and Wolfe, 1960; Everett III, 1963)
First proposed by Komodakis et al. (2007) in computer vision
Introduced in NLP by Rush et al. (2010) for model combination
Successful in syntax, semantics, MT: Koo et al. (2010); Chang and
Collins (2011); Martins et al. (2011b); Almeida et al. (2014); Martins
and Almeida (2014), and many others.
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Recap: LP-MAP

Recall the LP-MAP problem:

maximize
∑

i
θi
>pi +

∑
s
θs
>qs

subject to
{

qs ∈ ∆|Ys |, ∀s
pi = Misqs , ∀i , s. (local polytope)

Matrix Mis ∈ {0, 1}|Yi |×|Ys | represents the constraints pi (yi ) =
∑

y s∼yi

qs(y s)

We’ll reformulate this problem by:

1 Introducing copy variables q is = pi

2 Defining θis := θi/|N(i)|
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Reformulation of LP-MAP

The problem becomes:

maximize
∑

s

(
θs
>qs +

∑
i∈N(s) θis

>q is

)

subject to


qs ∈ ∆|Ys |, ∀s
q is = Misqs , ∀i , s
q is = pi , ∀i , s.

(local polytope)

By introducing Lagrange multipliers for the last constraints, we get the
following Lagrangian function:

L(p,q,λ) =
∑

s

(
θs
>qs +

∑
i∈N(s) θis

>q is

)
+
∑

is
λis
>(pi − q is)
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Dual of LP-MAP

The dual problem is

minimize
∑

s
gs(λ) subject to λ ∈ Λ :=

λ
∣∣∣∣ ∑

s∈N(i)
λis = 0


where the gs(λ) are local subproblems,

gs(λ) := max
q̄s∈Qs

(
θs
>qs +

∑
i∈N(s) (θis + λis)>q is

)
= max

y s∈Ys

(
θs(y s) +

∑
i∈N(s)(θis(yi ) + λis(yi ))

)

and q̄s ∈ Qs encodes the constraints
{

qs ∈ ∆|Ys |

q is = Misqs , ∀i ∈ N(s).

A subgradient can be computed by solving these local subproblems
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Projected Subgradient (Komodakis et al., 2007)

initialize penalties λ to zero
repeat

for each factor s do
q̄s ← arg max

q̄s∈Qs
θs
>qs +

∑
i∈N(s)

(θis + λis)>q is

end for
pi ←

1
|N(i)|

∑
s∈N(i)

q is

λis ← λis − η(q is − pi )

until consensus (all q is = pi ) or maximum number of iterations reached

Guaranteed to converge to an ε-accurate solution after at most
O(1/ε2) iterations
Problem: too slow when there are many factors (Martins et al.,
2011b)
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What Kind of Local Decoding Do We Need?
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Accelerating Consensus

Two fundamental problems with the subgradient algorithm:

1 The dual objective
∑

s
gs(λ) is non-smooth

2 Consensus is promoted only through updating λ (no memory about
past updates)

How can dual decomposition be accelerated?

Jojic et al. (2010) smooth the objective and use gradient methods
Martins et al. (2011a): augmented Lagrangian
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Accelerated Gradient (Jojic et al., 2010)

Basic idea: make the dual objective smooth by adding an entropic
perturbation with a near-zero ε temperature (also Johnson (2008))
The subproblems become local marginal computations instead of
maximizations
With Nesterov’s accelerated gradient method (Nesterov, 2005), the
iteration bound goes from O(1/ε2) to O(1/ε)

However: very sensitive to the temperature parameter
With low temperatures, may face numerical issues (in particular for
some hard-constraint factors)
In practice, quite slow to take off (we’ll see some plots later)
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gs(λ) is non-smooth
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past updates)
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Jojic et al. (2010) smooth the objective and use gradient methods X
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Alternating Directions Dual Decomposition (AD3)

Based on the alternating direction method of multipliers (ADMM):

an old method in optimization inspired by augmented Lagrangians
(Gabay and Mercier, 1976; Glowinski and Marroco, 1975)
a natural fit to consensus problems
a natural “upgrade” of the subgradient algorithm (Boyd et al., 2011)
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Augmented Lagrangian and ADMM

Basic idea: augment the Lagrangian function with a quadratic penalty

Lη(p,q,λ) =
∑

s

(
θs
>qs +

∑
i∈N(s) θis

>q is

)
+
∑

is
λis
>(pi − q is)

−η2
∑

is
‖q is − pi‖2

Method of multipliers (super-linear convergence):

1 Maximize Lη(p,q,λ) jointly w.r.t. p and q (challenging)
2 Multiplier update: λis ← λis − η(q is − pi )

Alternating direction method of multipliers: replace step 1 by separate
maximizations (first w.r.t. q, then p)
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From Subgradient to AD3 (Martins et al., 2011a)

initialize penalties λ to zero
repeat

for each factor s = 1, . . . ,S do
q̄s ← arg max

q̄s∈Qs
θs
>qs +

∑
i∈N(s)

(θis + λis)>q is

end for
pi ←

1
|N(i)|

∑
s∈N(i)

q is

λis ← λis − η(q is − pi )
until consensus (all q is = pi ) or maximum number of iterations reached

faster consensus: regularize q-step towards average votes in p
better stopping conditions: keeps track of primal and dual residuals
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André Martins (Priberam/IT) LP Decoders in NLP http://tiny.cc/lpdnlp 98 / 149

http://tiny.cc/lpdnlp


From Subgradient to AD3 (Martins et al., 2011a)

initialize penalties λ to zero
repeat

for each factor s = 1, . . . ,S do
q̄s ← arg max

q̄s∈Qs
θs
>qs +

∑
i∈N(s)

(θis + λis)>q is−
η

2
∑

i∈N(s)

‖q is−pi‖2

end for
pi ←

1
|N(i)|

∑
s∈N(i)

q is

λis ← λis − η(q is − pi )
until consensus (all q is = pi ) or maximum number of iterations reached

faster consensus: regularize q-step towards average votes in p
better stopping conditions: keeps track of primal and dual residuals
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Theoretical Guarantees of AD3

Convergent in primal and dual (Glowinski and Le Tallec, 1989)
Iteration bound: O(1/ε) (cf. O(1/ε2) for projected subgradient)
Inexact AD3 subproblems: still convergent if residuals are summable
(Eckstein and Bertsekas, 1992)
Always dual feasible: can compute upper bounds and embed in
branch-and-bound toward exact decoding (Das et al., 2012)

But: AD3 local subproblems are quadratic (more involved than in
projected subgradient)
Still—very easy and efficient for logic and knapsack factors!
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Projecting onto Hard Constraint Polytopes

XOR OR OR-OUT
KNAPSACK

Martins et al. (2011a): logic factors can be solved in O(K ) time
Almeida and Martins (2013): same for knapsack factors!
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Structured Factors

What about structured factors?

Projected subgradient handles these quite well

combinatorial machinery (Viterbi, Chu-Liu-Edmonds, Fulkerson-Ford,
Floyd-Warshall,...)

We cannot solve the AD3 subproblems with that machinery...
Or can we?
Active set method: seek the support of the solution by adding/removing
components; very suitable for warm-starting (Nocedal and Wright, 1999)
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An Active Set Method for the AD3 Subproblem

q̄s ← arg max
q̄s∈Qs

θs
>qs +

∑
i∈N(s)

(θis + λis)>q is −
η

2
∑

i∈N(s)

‖q is − pi‖2



Too many possible assignments: dimension of qs is O(exp(|N(s)|))

Key result: there’s a sparse solution (only O(|N(s)|) nonzeros)
Active set methods: seek the support of the solution by adding/removing
components; very suitable for warm-starting (Nocedal and Wright, 1999)
Only requirement: a local-max oracle (as in projected subgradient)
More info: Martins et al. (2014)

André Martins (Priberam/IT) LP Decoders in NLP http://tiny.cc/lpdnlp 102 / 149

http://tiny.cc/lpdnlp


An Active Set Method for the AD3 Subproblem

q̄s ← arg max
q̄s∈Qs

θs
>qs +

∑
i∈N(s)

(θis + λis)>q is −
η

2
∑

i∈N(s)

‖q is − pi‖2



Too many possible assignments: dimension of qs is O(exp(|N(s)|))

Key result: there’s a sparse solution (only O(|N(s)|) nonzeros)
Active set methods: seek the support of the solution by adding/removing
components; very suitable for warm-starting (Nocedal and Wright, 1999)
Only requirement: a local-max oracle (as in projected subgradient)
More info: Martins et al. (2014)
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Runtime of AD3 vs PSDD (Parsing)
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Caching and warm-starting the subproblems reduces drastically the
number of oracle calls—huge speed-ups!!
AD3 faster to achieve consensus (due to the quadratic penalty)
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What Kind of Local Decoding Do We Need?

Algorithm Local Operation
Sum-Prod. BP (Pearl, 1988) marginals
TRBP (Wainwright et al., 2005) marginals
Norm-Product BP (Hazan and Shashua, 2010) marginals
Max-Prod. BP (Pearl, 1988) max-marginals
TRW-S (Kolmogorov, 2006) max-marginals
MPLP (Globerson and Jaakkola, 2008) max-marginals
PSDD (Komodakis et al., 2007) MAP
Accelerated DD (Jojic et al., 2010) marginals
AD3 (Martins et al., 2011a) QP/MAP
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Example: Potts Grid (20× 20, 8 states)

A. Martins, M. Figueiredo, P. Aguiar, N. Smith, E. Xing (2014).
AD3: Alternating Directions Dual Decomposition for MAP Inference in Graphical Models.
Journal of Machine Learning Research (to appear).
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Example: Frame-Semantic Parsing
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Embedded in a branch-and-bound procedure for exact decoding
D. Das, A. Martins, N. Smith.
“An Exact DD Algorithm for Shallow Semantic Parsing with Constraints.”
*SEM Workshop, 2012.
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Try It Yourself: AD3 Toolkit

Freely available at: http://www.ark.cs.cmu.edu/AD3
Implemented in C++, includes a Python wrapper (thanks to Andy
Mueller)
Implements MPLP, PSDD, AD3 for arbitrary factor graphs
Many built-in factors: logic, knapsack, dense, and some structured
factors
You can implement your own factor (only need to write a local MAP
decoder!)
Toy examples included (parsing, coreference, Potts models)
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Summing Up Dual Decomposition

Dual decomposition is a general optimization technique that splits the
dual into several subproblems (one per factor) that must agree on
overlaps
This can be used to solve LP-MAP
We discussed three variants: subgradient (PSDD), accelerated
gradient (ADD), and alternating directions (AD3)
The algorithms are convergent and retrieve the true MAP if the graph
has no cycles; they also give certificates when the solution of
LP-MAP equals the MAP
For PSDD and AD3 only local maximizations are necessary; ADD
requires computing marginals
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Outline

1 Structured Prediction and Factor Graphs

2 Integer Linear Programming

3 Message-Passing Algorithms
Sum-Product
Max-Product

4 Dual Decomposition

5 Applications

6 Conclusions
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Applications

We’ll discuss three applications:

Turbo Parsing
Compressive Summarization
Joint Coreference Resolution and Quotation Attribution
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What is a Turbo Parser?

A parser that runs inference in factor graphs, ignoring global
effects caused by loops (Martins et al., 2010)
name inspired from turbo decoders (Berrou et al., 1993)
Next: we speed up turbo parsers via AD3 w/ active set
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André Martins (Priberam/IT) LP Decoders in NLP http://tiny.cc/lpdnlp 111 / 149

http://tiny.cc/lpdnlp


What is a Turbo Parser?

A parser that runs inference in factor graphs, ignoring global
effects caused by loops (Martins et al., 2010)
name inspired from turbo decoders (Berrou et al., 1993)
Next: we speed up turbo parsers via AD3 w/ active set
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Recent Paper

André F. T. Martins, Miguel B. Almeida, Noah A. Smith.
“Turning on the Turbo: Fast Third-Order Non-Projective Turbo Parsers.”
ACL 2013 Short Paper.
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An Important Distinction

A projective tree:

* Logic plays a minimal role here

A non-projective tree:

* We learned a lesson in 1987 about volatility

This talk: we allow non-projective trees.
Suitable for languages with flexible word order (Dutch, German, Czech,...)
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First-Order Scores for Arcs

* We learned a lesson in 1987 about volatility

Used by Koo and Collins (2010) for projective parsing.
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Second-Order Scores for Consecutive Siblings

* We learned a lesson in 1987 about volatility

Used by Koo and Collins (2010) for projective parsing.
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Second-Order Scores for Grandparents

* We learned a lesson in 1987 about volatility

Used by Koo and Collins (2010) for projective parsing.

André Martins (Priberam/IT) LP Decoders in NLP http://tiny.cc/lpdnlp 114 / 149

http://tiny.cc/lpdnlp


Scores for Arbitrary Siblings

* We learned a lesson in 1987 about volatility

Used by Koo and Collins (2010) for projective parsing.
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Scores for Head Bigrams

* We learned a lesson in 1987 about volatility

Used by Koo and Collins (2010) for projective parsing.
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Third-Order Scores for Grand-siblings

* We learned a lesson in 1987 about volatility
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Third-Order Scores for Tri-siblings
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Used by Koo and Collins (2010) for projective parsing.
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Decoding

How to deal with all these parts?

Dynamic programming only available for the projective case...

Beyond arc-factored models, non-projective parsing is NP-hard
(McDonald and Satta, 2007)
Need to embrace approximations!
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Approximate Dependency Parsers

arc consecutive siblings grandparent all siblings directed path
head bigram nonprojective arc

grand-siblings tri-siblings

parser AF CS G AS DP HB NPA GS TS
McDonald et al. (2006) projective + greedy X X

Smith et al. (2008) loopy BP X X X X
Martins et al. (2010) LP solver X X X X

Koo et al. (2010) dual decomp. X X
Martins et al. (2011) AD3 X X X X X X X
Martins et al. (2013) AD3 & active set X X X X X X X
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Factor Graph Representation

Variables nodes for dependency arcs, linked to a tree constraint
Head automata for consecutive siblings and grandparents (as in
Smith and Eisner (2008); Koo et al. (2010))
Pairwise factors for arbitrary siblings (as Martins et al. (2011b))
Third-order head automata for grand-siblings and tri-siblings
Sequence model for head bigrams

We solve the LP-MAP relaxation with AD3.

André Martins (Priberam/IT) LP Decoders in NLP http://tiny.cc/lpdnlp 117 / 149

http://tiny.cc/lpdnlp


Factor Graph Representation

Variables nodes for dependency arcs, linked to a tree constraint
Head automata for consecutive siblings and grandparents (as in
Smith and Eisner (2008); Koo et al. (2010))
Pairwise factors for arbitrary siblings (as Martins et al. (2011b))
Third-order head automata for grand-siblings and tri-siblings
Sequence model for head bigrams

We solve the LP-MAP relaxation with AD3.
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Parsing Accuracies/Runtimes

SOTA accuracies for the largest non-projective datasets (CoNLL-2006 and
CoNLL-2008):
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Extension: Broad-Coverage Semantic Parsing

Same idea applied to semantic role labeling.

Best results in the SemEval 2014 shared task:

André F. T. Martins and Mariana S. C. Almeida.
“Priberam: A Turbo Semantic Parser with Second Order Features.”
SemEval 2014.
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Applications

We’ll discuss three applications:

Turbo Parsing
Compressive Summarization
Joint Coreference Resolution and Quotation Attribution
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Recent Paper

Miguel B. Almeida and André F. T. Martins.
“Fast and Robust Compressive Summarization with Dual
Decomposition and Multi-Task Learning.”
ACL 2013.
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Multi-Document Summarization

Map a set of related documents to a brief summary.
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What Makes a Good Summary?

1 conciseness
2 informativeness
3 grammaticality
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Extractive Summarization

Just extract the most salient sentences.
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André Martins (Priberam/IT) LP Decoders in NLP http://tiny.cc/lpdnlp 124 / 149

http://tiny.cc/lpdnlp


Extractive Summarization

Just extract the most salient sentences.
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What We Do: Compressive Summarization
Jointly extract and compress sentences.

For given summary size, easier to be informative, but harder to be
grammatical.
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Compressive Summarization as Global Optimization

Indicator variables for every word of the nth sentence, zn := 〈zn,`〉Ln
`=1

Summary length must not exceed the budget (B words)
Quality function rewards global informativeness (through g(z))...
... but also local grammaticality (through hn(zn)):

maximize g(z) +
N∑

n=1
hn(zn)

s.t.
N∑

n=1

Ln∑
`=1

zn,` ≤ B.
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Grammaticality: Sentence Compression Model

Inspired by Knight and Marcu (2000)’s word deletion model

Our model factors over dependency arcs:

$ The leader of moderate Kashmiri separatists warned Thursday that ...

Goal: maximize sum of arc scores, allowing only deletion of subtrees.
A structured factor, locally decodable with dynamic programming.
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Informativeness: Coverage Model

Inspired by extractive max-coverage models (Filatova and Hatzivassiloglou,
2004; Yih et al., 2007; Gillick et al., 2008; Lin and Bilmes, 2010)

Extract a list of concepts from the original documents
Define relevance scores for each concept (linear feature-based
model)
Define g(z) as sum of scores for each concept in the summary
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Graphical Model for Our Compressive Summarizer

Budget

1 We use dual decomposition (AD3) for solving a linear relaxation
2 We apply a fast rounding procedure to obtain a valid summary

Multi-task learning: user-generated data (Simple English Wikipedia)
along with manual abstracts and compressive summaries
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André Martins (Priberam/IT) LP Decoders in NLP http://tiny.cc/lpdnlp 129 / 149

http://tiny.cc/lpdnlp


Graphical Model for Our Compressive Summarizer

Sentences
$     The      leader    of   moderate  Kashmiri  separatists warned   Thursday   that ...

$     Talks    with   Kashmiri  separatists began    last       year ...

"Kashmiri separatists"

Budget

Concept tokens

Concept type

1 We use dual decomposition (AD3) for solving a linear relaxation
2 We apply a fast rounding procedure to obtain a valid summary

Multi-task learning: user-generated data (Simple English Wikipedia)
along with manual abstracts and compressive summaries
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Results on TAC-2008 Dataset

Better informativeness (without sacrificing grammaticality):
11.03Gillick et al. (2008)

11.71Berg-Kirkpatrick et al. (2011)
11.37Woodsend and Lapata (2012)

11.88Single-task AD3

12.30Multi-task AD3

ROUGE-2 Recall

Averaged runtimes per summarization problem (10 documents):

Solver Runtime (sec.) ROUGE-2
ILP Exact, GLPK 10.394 12.40
LP-Relax., GLPK 2.265 12.38
AD3 (1,000 its.) 0.406 12.30
Extractive (ILP) 0.265 11.16
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Applications

We’ll discuss three applications:

Turbo Parsing
Compressive Summarization
Joint Coreference Resolution and Quotation Attribution
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Recent Paper

Mariana S. C. Almeida, Miguel B. Almeida and André F. T. Martins.
“A Joint Model for Quotation Attribution and Coreference
Resolution.”
EACL 2014.
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Why Jointly?

Coreference resolution and quotation attribution may benefit from
being treated as a joint task.

A speaker doesn’t refer to himself as he:

Rivals carp at “the principle of Pilson,” as NBC’s Arthur Watson once
put it – “he’s always expounding that rights are too high, then he’s
going crazy.” But the 49-year-old Mr. Pilson is hardly a man to ignore
the numbers.

Two consecutive quotes are often from co-referent speakers:

English novelist Dorothy L. Sayers described ringing as a “passion that
finds its satisfaction in mathematical completeness and mechanical
perfection.”
Ringers, she added, are “filled with the solemn intoxication that comes
of intricate ritual faultlessly performed.”
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Coreference Tree (Denis and Baldridge, 2008;
Fernandes et al., 2012; Durrett and Klein, 2013)

Clusters of co-referent mentions (entities) correspond to subtrees
coming out from the root node.
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From Coreference to Quotation-Coreference Trees
(Almeida et al., 2014)

Include mention nodes and quotation nodes
Quotation nodes have to be leaves
Subtrees coming out from the root induce entity clusters along with
their quotes: entity-based quotation attribution
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From Coreference to Quotation-Coreference Trees
(Almeida et al., 2014)
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From Coreference to Quotation-Coreference Trees
(Almeida et al., 2014)
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Beyond Arc Scores

The simplest coreference models (e.g., the surface model of Durrett and
Klein (2013)) are arc-factored

Exact decoding can be performed in a greedy manner

However: in our approach, an arc factored model would be equivalent to
do coreference resolution and quotation attribution independently...

To do things jointly, we add extra scores for:

A speaker being mentioned inside a quotation
Consecutive quotes having the same speakers

These scores require knowing if pairs of nodes are in the same subtree.
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Logic Program

Arc variables: each node (except the root) has exactly one parent

j−1∑
i=0

ai→j = 1, ∀j 6= 0

Path variables: paths propagate through arcs

πi→∗i = 1, ∀i , πi→∗k =
∨

i<j≤k
(ai→j ∧ πj→∗k ), ∀i , k

Pair variables: nodes k and ` are in the same subtree if they have a
common ancestor which is not the root

pk,` =
∨
i 6=0

(πi→∗k ∧ πi→∗`), ∀k, l .
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Experiments

Datasets:

WSJ portion of the Ontonotes (597 documents); same splits as
CoNLL 2011 shared task
Quotation annotations of the PARC dataset (Pareti, 2012; O’Keefe
et al., 2012)

Coreference evaluation metrics: average between MUC, B3, CEAFe

Quotation evaluation metrics:

Representative speaker match (RSM): # matches to
representative (non-pronominal) mention of the gold speaker’s entity
Entity cluster F1 (ECF1): F1 score between the predicted and gold
speaker entity (sets of mentions)
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Results

Coreference Resolution:

MUC F1 BCUB F1 CEAFE F1 Avg.
Durrett and Klein (2013) (surface) 58.87 62.74 45.46 55.7

Quote/Coref independent 57.89 62.50 45.48 55.3
Joint System 58.78 63.79 45.50 56.0

Quotation attribution:

RSM ECF1
QuoteOnly 49.4% 41.2%
QuoteAfterCoref 64.6% 70.0%
Quote/Coref independent 74.7% 73.7%
Joint System 76.6% 74.1%
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Conclusions

Many structured problems in NLP are NP-hard or expensive
(constrained models, diversity, combination of structured models)
Often they can be approximately decoded via Linear Programming
(e.g., by relaxing an ILP)
The structure inherent to these problems can be represented with a
factor graph
Message-passing and dual decomposition algorithms can solve these
LPs efficiently, exploiting the structure of the graph
Conceptually: approximate global decoding by invoking only local
decoders (local maximizations, marginals, max-marginals, QPs, ...)
AD3 is faster than the subgradient algorithm both in theory and in
practice, and requires the same local decoders
SOTA results in several applications (turbo parsing, summarization,
joint coref and quotation attribution)
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Thank you!

The syntactic/semantic parser and AD3 are freely available at:

http://www.ark.cs.cmu.edu/TurboParser
http://www.ark.cs.cmu.edu/AD3

lti
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Nivre, J., Hall, J., Nilsson, J., Eryiǧit, G., and Marinov, S. (2006). Labeled pseudo-projective dependency parsing with support

vector machines. In Procs. of International Conference on Natural Language Learning.
Nocedal, J. and Wright, S. (1999). Numerical optimization. Springer verlag.
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