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Abstract

Recent approaches to learning structured
predictors often require approximate infer-
ence for tractability; yet its effects on the
learned model are unclear. Meanwhile, most
learning algorithms act as if computational
cost was constant within the model class.
This paper sheds some light on the first issue
by establishing risk bounds for max-margin
learning with LP relaxed inference and ad-
dresses the second issue by proposing a new
paradigm that attempts to penalize “time-
consuming” hypotheses. Our analysis relies
on a geometric characterization of the outer
polyhedra associated with the LP relaxation.
We then apply these techniques to the prob-
lem of dependency parsing, for which a con-
cise LP formulation is provided that handles
non-local output features. A significant im-
provement is shown over arc-factored models.

1. Introduction

Structured classification tackles problems character-
ized by strong interdependence among the output vari-
ables, often with a sequential, graphical, or combina-
torial structure. Problems of this kind arise in natural
language processing (NLP), computer vision, robotics,
and computational biology. Considerable progress has
been made lately toward a unified view of these prob-
lems (Lafferty et al., 2001; Collins, 2002; Taskar et al.,
2003; Tsochantaridis et al., 2004).

A typical approach is to capture the problem structure
via a Markov network. Unfortunately, exact inference
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and learning are only tractable for a small class of net-
work topologies. While discriminative learning is able
to handle features that depend globally on the input
variables, the analogous property on the output side is
more difficult to obtain. For tractability, assumptions
about the locality of output variable dependence are
often made at the expense of expressive power. Ex-
ploring non-local output dependencies is not just an
empiricist attempt to produce more accurate models:
indeed, there are instances of structured problems in
which the output variables are known to interact glob-
ally, e.g., by definition of the output space. An ex-
ample is natural language parsing, where the output
variables must “agree” to ensure that they jointly en-
code a valid parse tree. While dynamic programming
sometimes offers a solution to this problem (albeit un-
der locality assumptions), the same does not happen
in many combinatorial problems of interest, like those
involving matchings, permutations, or spanning trees.

When exact inference is intractable, one has to resort
to approximate algorithms; typically, the same algo-
rithms are called as subroutines to train the model.
This has been done, e.g., by Taskar et al. (2004)
and Daumé and Marcu (2005); recently, Kulesza and
Pereira (2007) and Finley and Joachims (2008) pro-
vided some learning approximation guarantees and
empirical analyses. However, a theoretical study of
the actual impact of these approximations in the
learning procedure—when compared with the exact
formulation—is still missing.

This paper aims to fill this gap for the case of outer
approximations when learning large margin classifiers.
Often, the problem of inference can be represented as
an integer linear program (ILP); this is common in
NLP applications like semantic role labeling (Roth &
Yih, 2005), summarization (Clarke & Lapata, 2008),
coreference resolution (Denis & Baldridge, 2007), and
dependency parsing (Riedel & Clarke, 2006; Martins
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et al., 2009). While solving an ILP is NP-hard in
general, fast solvers are available today that make
this a practical solution in some cases. We study
approximate techniques based on LP relaxations ap-
plied to the problem of dependency parsing; our for-
mulation effectively handles global features and con-
straints. The techniques discussed here are also rele-
vant to other applications; in particular, they are able
to exploit expert knowledge in the form of soft or hard
first-order constraints (Richardson & Domingos, 2006;
Chang et al., 2008).

The contributions of this paper are:

• We provide risk bounds for approximate learners, in
a large margin framework, that arise from an LP re-
laxation of the inference problem. We characterize
these bounds in terms of geometric and algorithmic
properties. In particular, we provide sufficient con-
ditions for algorithmic separability.

• We propose a new learning paradigm for approxi-
mate inference that balances accuracy and runtime,
where an additional loss term is included in the
learner objective function to penalize models with
long expected runtime. We formulate and analyze a
new algorithm based on this paradigm.

• We empirically evaluate the performance of such
approximate learners on dependency parsing tasks.
Our parsers are able to handle sibling and grandpar-
ent interactions, word valency, and to softly favor
nearly projective parses.

The paper is organized as follows. Sec. 2 introduces the
framework of ILP formulations for large margin struc-
tured classification; Sec. 3 provides a theoretical anal-
ysis of outer approximations through LP relaxations;
Sec. 4 presents the task; experiments are discussed in
Sec. 5. We conclude in Sec. 6.

2. Structured Classification and LP

Let X and Y denote the input and output sets, re-
spectively, and assume a supervised setting, where we
are given labeled data L , {(x1, y1), . . . , (xm, ym)} ⊆
X ×Y, drawn according to a fixed, unknown distribu-
tion P (X, Y ), and aim to learn a function h : X → Y
with small expected loss E`(h(X);Y ) on unseen data;
here, ` : Y × Y → R+ denotes the loss function.

We are interested in the case where Y is exponentially
large but finite. We assume that there is a bijection ζ
between Y and the set of vertices of a polytope Z ,
{z ∈ Rn | Az ≤ b}, where A is a p-by-n matrix and
b is a vector in Rp, for some integers p and n. In
that case, to carry out structured classification (the
inference problem), one may transform the problem

of optimizing over Y into that of optimizing a linear
function over Z (guaranteed to attain the optimum at
a vertex of Z) and then invert, y∗ = ζ−1(z∗). This
framework was first studied by Taskar et al. (2004) in
the context of associative Markov networks.

Denote by V (Z) the set of vertices of Z. A map
ζ : Y → V (Z) arises naturally whenever the elements
of Y can be represented as collections of “parts” in
a finite set R (i.e., each y ∈ Y satisfies y ⊆ R).1

Indeed, let us consider linear classifiers of the form
hw(x) = arg maxy∈Y w>f(x, y) (here, f(x, y) is a vec-
tor of features and w is the corresponding weight vec-
tor). If the features decompose over the parts through

f(x, y) ,
∑
r∈y

fr(x) =
∑
r∈R

zrfr(x), (1)

where zr , I(r ∈ y), then, by defining the indicator
vector z , (zr)r∈R and the matrix F , (fr(x))r∈R:

hw(x)=arg max
y∈Y

w>f(x, y)=ζ−1

(
arg max

z∈Z
w>Fz

)
,

(2)
where Z is the convex hull of the set of indicator vec-
tors that correspond to elements of Y. Therefore, in
this situation, inference can be cast as an LP; this au-
tomatically enables learning using any algorithm that
only needs to perform inference steps, like the struc-
tured perceptron (Collins, 2002). Furthermore, when-
ever the loss function can be expressed as a linear func-
tion of z—which turns out to be the case in many cases
of interest, e.g. in Hamming-like losses,

`(y′; y) ,
∑
r∈R

(I(r ∈ y′)I(r /∈ y) + I(r /∈ y′)I(r ∈ y))

=
∑
r∈R

z′r(1− zr) + (1− z′r)zr

= p>z′ + q, (3)

where p , 1− 2z, q , 1>z, and we made the variable
changes z , ζ(y) and z′ , ζ(y′)—then this setting
also allows learning the model parameters w using a
max-margin criterion. To see how, define, for each
data point (xt, yt) ∈ L, the non-negative quantity

rt(w) , max
y′

t∈Y
w>f(xt, y

′
t)−w>f(xt, yt) + `(y′t; yt)

=
(

max
z′

t∈Z
(F>t w + pt)>z′t

)
− (F>t w)>zt + qt,

(4)

where zt , ζ(yt); the problem of finding the arg max
in (4) is often referred to as the loss-augmented in-
ference (LAI) problem; observe that it can also be

1The set of parts R can be, e.g., the set of all possible
clique assignments in a Markov network.
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Figure 1. Left: Schematic representation of the outer poly-
tope Z̄ associated with the relaxation (6). Right: The
carved polytope Z̃η implicit in the problem (13).

cast as an LP. The complete learning problem is

min
w

λ

2
‖w‖2 +

1
m

m∑
t=1

rt(w), (5)

where λ ≥ 0 is a regularization parameter. This is
a convex problem for which several algorithms have
been proposed (Taskar et al., 2004; Taskar et al., 2006;
Tsochantaridis et al., 2004; Ratliff et al., 2006).

In what follows, we denote U , [0, 1], and B , {0, 1} =
U ∩ Z. Although in some special cases there exists a
concise polyhedral representation of Z (in terms of the
matrix A and vector b) that does not happen in gen-
eral. Often, what we have is a concise representation
of an outer polytope Z̄ ⊇ Z such that

min
z∈Z

c>z = min
z∈Z̄,z∈Bn

c>z ≥ min
z∈Z̄

c>z (6)

holds for any c with a fairly tight bound. Notice that,
if we assume that Z̄ ⊆ Un, then there are no integer
points in the relative interior of Z̄; consequently, (6)
implies that any vertex of Z is also a vertex of Z̄. The
two polytopes are represented schematically in Fig. 1.

3. Learning with LP Relaxed Inference

We now study the impact of relaxations like (6) in the
learning problem.

3.1. Approximation Bounds

To cope with our approximate learning setting, we
identify Y ' V (Z) through the map ζ; with some
abuse of notation, we write `(z′; z) for the loss function
(3) instead of `(ζ−1(z′); ζ−1(z)). Also, we extend its
domain by defining `(z̄′; z) = p>z̄′ + q for any z̄′ ∈ Z̄.
Observe that, whenever z ∈ V (Z), `(z̄′; z) = ‖z̄′−z‖1.
As a consequence, ` has the triangle inequality prop-
erty, i.e., `(z̄′; z) ≤ `(z̄′; z′) + `(z′; z), for any z̄′ ∈ Z̄
and z, z′ ∈ V (Z). This fact will be exploited below.

Let H , {hw | w ∈ W} be our hypothesis class, where
W ⊆ Rd is a convex set, and hw is the maximum
(over Z) of linear discriminant functions, as in (2).
We consider approximate inference algorithms A, that
accept as input a parameter w ∈ W and a data point
x ∈ X , and output a value A(x;w) in Z̄. Following
Kulesza and Pereira (2007), we say that the dataset
L is separable (w.r.t. H) if there is w ∈ W such
that

∑m
t=1 `(hw(xt); zt) = 0; we say that L is algo-

rithmically separable (w.r.t. A) if there is w ∈ W
such that

∑m
t=1 `(A(xt;w); zt) = 0. In both cases,

we say that “L is separated (resp. algorithmically sep-
arated) by w” when w is a “witness” in the above
definitions. In our setting, where we consider algo-
rithms induced by the outer approximation Z̄ ⊇ Z,
algorithmic separability w.r.t. A is equivalent to sepa-
rability w.r.t. H̄ , {h̄w | w ∈ W}, where h̄w takes the
form h̄w(x) = arg maxz̄∈Z̄ w>Fz̄. Observe also that,
in this setting, algorithmic separability implies sepa-
rability ; this was pointed out by Kulesza and Pereira
(2007) and Finley and Joachims (2008). Essentially,
their theoretical analyses for structured learning with
outer approximate (or “overgenerating”) inference al-
gorithms are extensions of known results for the exact
formulations, obtained by replacing Z with Z̄ in the
formulas. While these theoretical guarantees are help-
ful (constrasting with undergenerating predictors, for
which no guarantees exist), they do not provide suf-
ficient conditions for algorithmic separability, neither
do they bound the risk of an outer approximation com-
pared with the exact formulation.

Lemma 1 Assume that the feature function satisfies
‖fr(x)‖∞ ≤ 1,2 and let Nf , maxx∈X ,r∈R ‖fr(x)‖1.
Then, for any w ∈ W, z̄ ∈ Z̄ and z ∈ V (Z):

|w>F(z̄− z)| ≤ ‖w‖2
√

Nf `(z̄; z). (7)

Proof: By using Hölder’s inequality, |w>F(z̄− z)| ≤
‖F>w‖∞ · ‖z̄ − z‖1 = maxr∈Rw>fr(x) · `(z̄; z) ≤
‖w‖2

√
Nf `(z̄; z).

Note that Lemma 1 implies

ˆ̀(z̄; z,w) , w>F(z̄− z) + `(z̄; z)
≤ (1 + ‖w‖2

√
Nf )`(z̄, z). (8)

We can now provide a sufficient condition for
algorithmic separability. Recall that rt(w) ,
maxz′

t∈Z
ˆ̀(z′t; zt,w); defining analogously r̄t(w) ,

maxz̄′
t∈Z̄

ˆ̀(z̄′t; zt,w), we have:

2This is guaranteed if the features are binary-valued, in
which case Nf is the maximum possible number of active
features at a single part.
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Proposition 2 Let L be such that, for any z̄ ∈ Z̄ \Z,
there exists z ∈ V (Z) such that `(z̄; z) ≤ L. Then:

rt(w) ≤ r̄t(w) ≤ rt(w) + (1 + ‖w‖2
√

Nf )L. (9)

Furthermore, let L′ ≥ L be such that, for any z̄ ∈
Z̄ \ Z, there exist z, z′ ∈ V (Z) such that `(z̄; z) ≤
`(z̄; z′) ≤ L′. If L is separated by w∗ with a large
margin (i.e. if

∑m
t=1 rt(w∗) = 0) and ‖w∗‖2 <

1/(L′
√

Nf ), then L is algorithmically separated by w∗.

Proof: The fact that rt(w) ≤ r̄t(w) is trivial, since
Z ⊆ Z̄. As for the upper bound, we choose z′t ∈ V (Z)
such that `(z̄′t, z

′
t) ≤ L and apply triangle inequality:

r̄t(w) ≤ max
z̄′

t∈Z̄
w>Ft(z̄′t − z′t) + w>Ft(z′t − zt)

+`(z̄′t; z
′
t) + `(z′t, zt)

= max
z̄′

t∈Z̄
ˆ̀(z̄′t; z

′
t,w) + ˆ̀(z′t; zt,w)

≤ rt(w) + (1 + ‖w‖2
√

Nf )L, (10)

As for the second part, we have for all t and z̄′t ∈ Z̄:

w∗>Ft(zt − z̄′t) = w∗>Ft(zt − z′t) + w∗>Ft(z′t − z̄′t)

≥ w∗>Ft(zt − z′t)− ‖w∗‖2
√

Nf `(z′t; z̄
′
t)

≥ `(zt; z′t)− ‖w∗‖2
√

NfL′

≥ 1− 1 = 0, (11)

where we chose z′t 6= zt such that `(z̄′t; z
′
t) ≤ L′, and

used Lemma 1, together with the fact that any two
distinct points in V (Z) have at least unit loss (since
they belong to Bn).

Corollary 3 Under the conditions stated in the sec-
ond part of Prop. 2, the perceptron algorithm running
approximate inference will make a finite number of
mistakes.
Proof: (Sketch) Use Prop. 2 and the mistake bound
for the structured perceptron (Collins, 2002).

The bound (9) relies on a geometric characterization
of the approximating polytope Z̄ (through the param-
eters L and L′). However, in some cases one has al-
gorithmic approximation guarantees instead (see, e.g.,
Vazirani, 2001). The following establishes a bound
similar to the one in Prop. 2 that relies on an algorith-
mic characterization (we define A(x,w) , h̄w(x)):

Proposition 4 If A is outer ε-approximate3 for the
class of problems minz∈Z c>z with c ≥ 0, the vertices

3Given a class F of nonnegative functions and a mini-
mization problem minx∈X f(x) , f∗, an algorithm is said
to be outer ε-approximate if it retrieves a lower bound of
the optimum, f , such that (f∗ − f)/f∗ ≤ ε.

of Z have constant `1-norm (say K), and any z̄ ∈ Z̄
satisfies 1>z̄ ≤ K, then:

rt(w) ≤ r̄t(w) ≤ rt(w) + 2εK(1 + ‖w‖2
√

Nf ). (12)

Proof: Since A is outer ε-approximate, it underesti-
mates minz∈Z c>z by at most εc>z∗, provided c ≥ 0.
In the general case for LAI, however, c = −F>t w−pt �
0; but since the vertices of Z have constant norm,
the problem of optimizing over Z is unchanged by
adding any constant to the cost vector. Thus, defining
c′ = c + ‖c‖∞ ≥ 0:

r̄t(w) = − min
z̄′

t∈Z̄
(c′ − ‖c‖∞ · 1)>z̄′t −w>Ftzt + qt

≤ −(1− ε) min
z′

t∈Z
c′>z′t + K‖c‖∞ −w>Ftzt + qt

≤ rt(w) + ε min
z′

t∈Z
c′>z′t

≤ rt(w) + 2εK(1 + ‖w‖
√

Nf ),

again due to Hölder’s inequality.

Props. 2–4 will be used in Sec. 3.3 to establish empir-
ical risk and generalization bounds.

3.2. Balancing Accuracy and Runtime

We now propose a new learning strategy that balances
accuracy and algorithmic cost. We argue that, when
the computational cost of performing inference at test
time is something that we worry about, then this cost
should be taken into account in the learning problem.

Let `c : H × X → R be a cost function that, given a
hypothesis h ∈ H and a data point x ∈ X , expresses
the cost of computing h(x). Most existing learning
algorithms concern minimizing the expected loss on
unseen data, E`(h(X), Y ); yet, it may happen that
the model that minimizes this quantity (call it h∗)
has an impractically high average computational cost.
On the other hand, there may well exist another hy-
pothesis h′ ∈ H performing similarly to h∗ that yields
much faster runtimes. Hence, our target should be to
minimize E (`(h(X), Y ) + η`c(h, X)), where η ≥ 0 is a
trade-off parameter.

Traditional algorithmic complexity theory, which looks
at the worst possible problem configurations, is not
useful here, as we are interested in average complex-
ities (Levin, 1986) under the unknown distribution
P (X, Y ). As an example, consider the ILP formulation
(6), where the cost vector c , F>w is affected both by
the model parameters w and by the input data, repre-
sented in the matrix F (that we can see as a random
variable). Although solving an ILP is an NP-complete
problem, for some “nice” distributions P (c) (peaked
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over values of c that hit integer vertices of the con-
straint polyhedron) the average computational cost is
low. Therefore, it is desirable to obtain model param-
eters w that, besides having small expected loss, yield
nice cost vectors c ∼ P (F>w) with high probability.

When the constraint polytope does not contain inte-
ger points in its relative interior (which is our case,
cf. (6)), the runtime of many off-the-shelf ILP solvers
(like those based on branch-and-bounding or Gomory’s
cuts) decreases as the solution of the relaxed prob-
lem is closer to the exact solution; therefore, it may
be reasonable to approximate the expected computa-
tional cost E`c(hw, X) by the expected relaxation gap
E`(hw(X), h̄w(X)). Led by this thought, we add a
“empirical relaxation gap” term to our learning objec-
tive of the form 1

m

∑m
t=1(r̄t(w) − rt(w)) ≥ 0. Rear-

ranging terms, the overall learning problem becomes:

min
w

λ

2
‖w‖2 +

1− η

m

m∑
t=1

rt(w) +
η

m

m∑
t=1

r̄t(w). (13)

By defining Z̃η , (1− η)Z + ηZ̄ and due to linearity
of the loss function, observe that each LAI problem
in (13) can be written as (1 − η)rt(w) + ηr̄t(w) =
maxz̃′

t∈Z̃η
w>Ft(z̃′t−zt)+ `(z̃′t, zt). As a consequence,

the formulation (13) is isomorphic to the one in (5),
with the sole difference that the polytope Z is replaced
by Z̃η; unfortunately, Z̃η is, in general, as hard to rep-
resent as Z. Notice that Z ⊆ Z̃η ⊆ Z̄ for any η ∈ [0, 1];
geometrically, Z̃η is obtained from Z̄ by intersecting
the latter with cutting half-spaces that “carve out” the
fractional vertices (see Fig. 1). Therefore, optimizing
over Z̃η has the effect of providing approximate solu-
tions that lie near the integer vertices.

Rather than optimizing over the carved polytope, we
propose a simple stochastic online strategy (see Algo-
rithm 1) to tackle (13); we also allow the trade-off pa-
rameter to vary over time (i.e., we replace η by 〈ηt〉t).
This algorithm is similar to the subgradient algorithm
of Ratliff et al. (2006), except that, at each step, it
randomly decides whether it will perform exact or ap-
proximate LAI; we analyze this algorithm in Sec. 3.3.4

3.3. Generalization Bounds

Kulesza and Pereira (2007) observed that a PAC-Bayes
generalization bound for empirical risk minimization

4Note that Algorithm 1 with fixed η and fixed sample
size indeed optimizes (13). The law of large numbers im-
plies that after enough iterations, the fraction of time that
each datum is used to solve exact LAI (resp. relaxed LAI)
is arbitrarily close, in probability, to 1−η (resp. η); hence,
one just needs to adapt the convergence proofs of the sub-
gradient algorithm.

Algorithm 1 Modified Online Subgradient
Input: L, 〈ηt〉t, learning rate sequence 〈αt〉t
Initialize w1 ← 0
for t = 1 to m = |L| do

Pick σt ∼ Bernoulli(ηt)
if σt = 1 then

Solve relaxed LAI, ẑt←arg maxz̄′
t∈Z̄

ˆ̀(z̄′t; zt,wt)
else

Solve exact LAI, ẑt ← arg maxz′
t∈Z

ˆ̀(z′t; zt,wt)
end if
Compute the subgradient gt ← λwt +Ft(ẑt− zt)
Project and update wt+1 ← ProjW (wt − αtgt)

end for
Return the averaged model ŵ← 1

m

∑m
t=1 wt.

can be adapted to the case of LP relaxed inference
(by invoking the fact that relaxed inference essentially
augments the output set). Here, we go farther and pro-
vide a generalization bound for approximate learning
w.r.t. the empirical risk minimizer in the exact setting.

Proposition 5 Let ŵ be the solution returned by Al-
gorithm 1 with learning rate chosen as αt = 1/(λt).
Assume that ˆ̀(.; zt,wt) is upper bounded by Λ and that
the subgradient norm is bounded by G.5 Then, the fol-
lowing bound holds with probability at least 1− δ:

E`(hŵ(X);Y ) ≤ min
w∈W

1
m

m∑
t=1

rt(w) + M(w,m) +√
8Λ2/m ln(2/δ), (14)

where M(w,m) , λ/2 ·‖w‖2 +G2(1+log m)/(2λm)+
(1 + ‖w‖

√
Nf )L

∑m
t=1 ηt/m.

Proof: (Sketch.) We adapt a result from Cesa-Bianchi
et al. (2004) for convex and bounded loss functions to
get (for any 0 < δ′ ≤ 1)

P

(
Er(ŵ) ≥ 1

m

m∑
t=1

rt(wt) +

√
2Λ2

m
ln

1
δ′

)
≤ δ′. (15)

Since `(hŵ(X);Y ) ≤ r(ŵ), it suffices to bound the
RHS. Noting that rt(wt) ≤ r̄t(wt), and adapting a
regret bound from Ratliff et al. (2006) for the subgra-
dient algorithm we get, for any w ∈ W:

5The function ˆ̀can be made bounded if we defineW to
be a convex body, e.g. by constraining ‖w‖ ≤ ρ, which en-

sures, through Lemma 1, that ˆ̀(.; zt,wt) ≤ (1+ρN
1/2
f )K ,

Λ, where K ≥ ‖z‖1. As for G, assuming feature vectors
whose norm is bounded by R/2, we may take G = R+λρ2.
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1
m

m∑
t=1

rt(wt) ≤ 1
m

m∑
t=1

rt(w) +
λ

2
‖w‖2 +

G2(1 + log m)
2λm

+

1
m

m∑
t=1

σt(r̄t(w)− rt(w)); (16)

Now, applying Hoeffding’s inequality to the random
sequence 〈σt〉t=1,...,m, we get (for any 0 < δ′′ ≤ 1)
P (
∑m

t=1 σt ≥
∑m

t=1 ηt+
√

2/m · log(1/δ′′)) ≤ δ′′. Sub-
stituting in (16), invoking Prop. 2, and plugging the
result in (15) (noting that Λ upper bounds the ap-
proximation gap), we get the desired result (by taking
δ , 2δ′′ = 2δ′).

Corollary 6 If we set λ = Θ(
√

(1 + log m)/m) and
ηt = Θ(1/

√
t), then Er(ŵ) a.s.−→ 1

m

∑m
t=1 rt(w∗).

Proof: The choice of λ was proposed by Ratliff et al.,
2006. As for 〈ηt〉, we have

∑m
t=1 1/

√
t = O(

√
m) =

o(m); therefore limm→∞M(w,m) = 0.

4. Dependency Parsing

We next show how approximate learning using LP re-
laxed inference can be used in an important NLP task
involving non-local interactions among output vari-
ables: dependency parsing. We merely sketch the
problem; see Martins et al. (2009) for a full discussion
of dependency parsing and its ILP representations.

Dependency trees are a lightweight syntactic repre-
sentation that attempts to capture functional rela-
tionships between words. Given a sentence x =
〈w0, . . . , wn〉 (where wi denotes the word at the i-th
position, and w0 = $ is a wall symbol), consider the
digraph D = (V,A), with vertices in V = {0, . . . , n}
(the i-th vertex corresponding to the i-th word) and
arcs in A = V 2. A (legal) dependency parse tree of x
is any 0-arborescence6 of D; we denote the set of legal
dependency parse trees of x by Y(x).7 If a = (i, j) ∈ y
we refer to i as the parent of j and j as the child of i.

A parser is a function h : X → Y, where Y =⋃
x∈X Y(x). The fact that Y(x) is exponentially large

makes this a structured classification problem. We
want to learn an h with small expected loss—here, the
Hamming loss function `(y′; y) , |{(i, j) ∈ y′ : (i, j) /∈
y}|, which, if R = A, is proportional to (3).

6An r-arborescence of D is a subset B of A such that
(V, B) is a (directed) tree rooted at r.

7In this paper, we consider unlabeled dependency pars-
ing, where only the backbone structure is predicted.

An arc-factored model for dependency parsing is one
in which the feature vector decomposes as a sum over
arcs (i.e., R = A in (1)); such models can capture
each word’s preferences for particular properties of its
children or parents. McDonald et al. (2005) showed
that arc-factored inference among trees is an instance
of the minimum arborescence problem, which enables
efficient algorithms for exact inference (Chu & Liu,
1965; Edmonds, 1967).

Riedel and Clarke (2006) added hard linguistic con-
straints to an arc-factored model, representing the in-
ference problem as an ILP with exponentially many
constraints. They used a cutting plane algorithm for
inference, in which constraints are only invoked when
violated; further, they trained with an arc-factored
model since the cutting plane algorithm was slow. In
Martins et al. (2009), we formulate dependency pars-
ing as an ILP with a polynomial number of constraints,
by adapting a single-commodity directed flow model
due to Magnanti and Wolsey (1994). Our representa-
tion allows constraints to be made soft, so that their
strengths are learned as features of the model. This
permits us to include non-arc-factored features, de-
scribed next.

Siblings and grandparents It was shown by Mc-
Donald et al. (2006) and Smith and Eisner (2008) that
modeling interactions among words who share a par-
ent or among a word’s children and its parent can be
beneficial. To incorporate these features, we employ a
linearization trick (Boros & Hammer, 2002). This can
be done with O(n3) variables and constraints.

Valency Words in a language have preferences not
only for which words will be their children, but also
how many children they will have (valency or arity).
Our model includes valency indicator features. An ex-
tra O(n2) variables and constraints are necessary.

Projectivity If y ∈ Y(x), we say that an arc a =
(i, j) ∈ y is projective if for any vertex k in the
span of a (i.e. satisfying min(i, j) < k < max(i, j)),
there exists a path in y from i to k (Kahane et al.,
1998). A dependency tree is called projective if it only
contains projective arcs.8 Although non-projectivity
is arguably necessary for correctly capturing depen-
dency structure in some languages, parse trees tend
to be nearly projective. We encode this preference in
a learned, language-specific way, as a feature. Indica-
tor variables for projective arcs can be added with an
extra O(n3) variables and constraints.

8When the arc-factored assumption is weakened and
non-projectivity is permitted, exact inference becomes NP-
hard (McDonald & Satta, 2007), cf. parsing with non-
projectivity disallowed (Eisner, 1996).
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Table 1. Results for dependency parsing. We have reproduced the system of McDonald et al. (2006) for the sake of
comparison (MLP’06). For each language and model setting, we report the unlabeled attachment scores (UAS, %) using
exact and approximate inference at test time. For the arc-factored model, we report the results obtained by learning with
exact LAI. Bold indicates significantly best results (statistical significance is measured by Dan Bikel’s randomized parsing
evaluation comparator, http://www.cis.upenn.edu/∼dbikel/software.html).

MLP’06 Arc-Factored Model Full Model
Learning → Exact (η = 0) Approx. (η = 1) Approx. (η = 1)
Inference → Exact Approx. Exact Approx. Exact Approx.
Danish 90.60 89.86 89.68 89.80 89.78 91.18 91.04
Dutch 84.11 83.15 83.17 83.55 83.61 85.57 85.41
Portuguese 91.40 90.66 90.66 90.66 90.70 91.42 91.44
Slovene 83.67 84.05 83.87 83.93 83.95 85.61 85.41

5. Experiments

We demonstrate the effectiveness of our polyhedral
approximations for dependency parsing, with exper-
iments on four languages from the CoNLL-X shared
task (Buchholz & Marsi, 2006): Danish, Dutch, Por-
tuguese and Slovene. We used the same arc-factored
features as McDonald et al. (2005) and optional non-
arc-factored features as described in Sec. 4. All our
experiments were conducted on a PC with a Intel dual-
core processor with 2.66 GHz and 2 Gb RAM memory.
We used CPLEX to solve the ILPs.

For scalability, we first prune the base graph by run-
ning a simple algorithm that ranks the k-best can-
didate parents for each word in the sentence, setting
k = 10; this reduces the number of variables and
constraints in the arc-factored model to O(nk), and
in the full model to O(n2k).9 The ranker is a local
model trained using a max-margin criterion; it is arc-
factored and not subject to any structural constraints,
so it is fast. Pruning was employed in both training
and testing. To learn the actual parser, we imple-
mented Alg. 1 with passive-aggressive updates (Cram-
mer et al., 2006).10 At test time, we experimented
with exact and approximate inference. The approxi-
mate decoder was implemented as follows to obtain a
true parse: first, solve the LP relaxation; then, if the
solution z∗ is fractional, project its arc components
z∗A , (z∗a)a∈A onto the feasible set Y(x). The Euclid-
ean projection can be computed by finding a maximal
arborescence in the digraph whose weights are defined
by z∗A (proof omitted); as seen in Sec. 4, the Chu-Liu-
Edmonds algorithm can do this in polynomial time.

Tab. 1 summarizes the results. As expected, adding
non-arc-factored features makes the models more ac-
curate. We also observe that approximate training did
not hurt the arc-factored model, compared with ex-

9The oracle constrained to pick parents from these lists
achieves > 98% in every case.

10Without regularization, this can be seen as a variant
of the online subgradient algorithm of Ratliff et al. (2006).

Table 2. Runtimes for Slovene, as a function of η. Learn-
ing the full model was intractable as η → 0; the valency
and non-projectivity features were excluded in this analy-
sis. The reported values (collected at test time) are: the
percentage of words for which a fractional parent (FP) was
assigned in the LP-relaxed problem, and average runtimes
per sentence, using exact and approximate inference.

η FP (%) Exact (sec.) Approx. (sec.)
0.00 16.53 19.33 0.17
0.25 10.42 4.16 0.13
0.50 8.29 2.20 0.13
0.75 7.76 1.62 0.13
1.00 7.12 1.11 0.12

act training. Moreover, approximate decoding at test
time did not considerably affect accuracy for any of the
models. For 3 out of 4 languages, the full model yields
substantially better results than the approximate non-
arc-factored parser of McDonald et al. (2006).

To see whether the parameter η is effectively penal-
izing computational cost, according to the paradigm
sketched in Sec. 3.2, we did an additional experiment
for the Slovene dataset (Tab. 2). We observe that, as η
approaches 0 (i.e., as training becomes close to exact),
the learned model tends to assign more fractional solu-
tions in the LP relaxed problem (a subroutine for both
the approximate and exact decoders), which results in
a dramatic increase in runtime for the exact decoder.
In contrast, when trained with η = 1, the model learns
to avoid fractional solutions, and ILP solvers will con-
verge faster to the optimum (on average). Yet the
approximate decoder is still significantly faster.

6. Conclusions

We studied the impact of LP relaxed inference in max-
margin learning. Based on a geometric characteriza-
tion, we established conditions that guarantee algo-
rithmic separability and derived risk bounds w.r.t. the
exact formulations. As a by-product, we put forth a
new learning paradigm that takes computational cost
into consideration. We demonstrated the effectiveness
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of these techniques on a structured prediction problem.
As future work, we will look for polyhedral character-
izations that guarantee tighter risk bounds; in par-
ticular, we aim to obtain conditions under which the
approximation gap decreases with the sample size.
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