
Structured Sparsity
in Natural Language Processing:

Models, Algorithms, and Applications

André F. T. Martins1,2,3 Mário A. T. Figueiredo1 Noah A. Smith2

1Instituto de Telecomunicações
Instituto Superior Técnico, Lisboa, Portugal

2Language Technologies Institute, School of Computer Science
Carnegie Mellon University, Pittsburgh, PA, USA

3Priberam, Lisboa, Portugal

NAACL 2012: Tutorials
Montréal, Québec, June 3, 2012

Slides online at http://tiny.cc/ssnlp

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 1 / 155

http://tiny.cc/ssnlp
http://tiny.cc/ssnlp

Welcome

This tutorial is about sparsity, a topic of great relevance to NLP.

Sparsity relates to feature selection, model compactness, runtime,
memory footprint, interpretability of our models.

New idea in the last 5 years: structured sparsity. This tutorial tries to
answer:

What is structured sparsity?

How do we apply it?

How has it been used so far?

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 2 / 155

http://tiny.cc/ssnlp

Outline

1 Introduction

2 Loss Functions and Sparsity

3 Structured Sparsity

4 Algorithms

Convex Analysis

Batch Algorithms

Online Algorithms

5 Applications

6 Conclusions

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 3 / 155

http://tiny.cc/ssnlp

Notation

Many NLP problems involve mapping from one structured space to
another. Notation:

Input set X

For each x ∈ X, candidate outputs are Y(x) ⊆ Y

Mapping is hw : X→ Y

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 4 / 155

http://tiny.cc/ssnlp

Linear Models

Our predictor will take the form

hw(x) = arg max
y∈Y(x)

w>f(x , y)

where:

f is a vector function that encodes all the relevant things about
(x , y); the result of a theory, our knowledge, feature engineering, etc.

w ∈ RD are the weights that parameterize the mapping.

NLP today: D is often in the tens or hundreds of millions.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 5 / 155

http://tiny.cc/ssnlp

Learning Linear Models

Max ent, perceptron, CRF, SVM, even supervised generative models all fit
the linear modeling framework.

General training setup:

We observe a collection of examples {〈xn, yn〉}N
n=1.

Perform statistical analysis to discover w from the data.
Ranges from “count and normalize” to complex optimization routines.

Optimization view:

ŵ = arg min
w

1

N

N∑
n=1

L(w; xn, yn)︸ ︷︷ ︸
empirical loss

+ Ω(w)︸ ︷︷ ︸
regularizer

This tutorial will focus on the regularizer, Ω.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 6 / 155

http://tiny.cc/ssnlp

What is Sparsity?

The word “sparsity” has (at least) four related meanings in NLP!

1 Data sparsity: N is too small to obtain a good estimate for w.
Also known as “curse of dimensionality.”
(Usually bad.)

2 “Probability” sparsity: I have a probability distribution over events
(e.g., X× Y), most of which receive zero probability.
(Might be good or bad.)

3 Sparsity in the dual: associated with SVMs and other kernel-based
methods; implies that the predictor can be represented via kernel
calculations involving just a few training instances.

4 Model sparsity: Most dimensions of f are not needed for a good hw;
those dimensions of w can be zero, leading to a sparse w (model).

This tutorial is about sense #4: today, (model) sparsity is a good thing!

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 7 / 155

http://tiny.cc/ssnlp

Why Sparsity is Desirable in NLP

Occam’s razor and interpretability.

The bet on sparsity (Friedman et al., 2004): it’s often correct. When it
isn’t, there’s no good solution anyway!

Models with just a few features are

easy to explain and implement

attractive as linguistic hypotheses

reminiscent of classical symbolic systems

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 8 / 155

http://tiny.cc/ssnlp

A decision list from Yarowsky (1995).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 9 / 155

http://tiny.cc/ssnlp

Why Sparsity is Desirable in NLP

Computational savings.

wd = 0 is equivalent to erasing the feature from the model; smaller
effective D implies smaller memory footprint.

This, in turn, implies faster decoding runtime.

Further, sometimes entire kinds of features can be eliminated, giving
asymptotic savings.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 10 / 155

http://tiny.cc/ssnlp

Why Sparsity is Desirable in NLP

Generalization.

The challenge of learning is to extract from the data only what will
generalize to new examples.

Forcing a learner to use few features is one way to discourage
overfitting.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 11 / 155

http://tiny.cc/ssnlp

Experimental results from Kazama and Tsujii (2003): F1 on two text
categorization tasks as the number of features varies.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 12 / 155

http://tiny.cc/ssnlp

(Automatic) Feature Selection

Human NLPers are good at thinking of features.

Can we automate the process of selecting which ones to keep?

Three kinds of methods:

1 filters

2 wrappers

3 embedded methods (this tutorial)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 13 / 155

http://tiny.cc/ssnlp

(Automatic) Feature Selection

Human NLPers are good at thinking of features.

Can we automate the process of selecting which ones to keep?

Three kinds of methods:

1 filters

2 wrappers

3 embedded methods (this tutorial)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 13 / 155

http://tiny.cc/ssnlp

Filter-based Feature Selection

For each candidate feature fd , apply a heuristic to determine whether to
include it. (Excluding fd equates to fixing wd = 0.)

Examples:

Count threshold: is |{n | fd (xn, yn) > 0}| > τ?
(Ignore rare features.)

Mutual information or correlation between features and labels

Advantage: speed!

Disadvantages:

Ignores the learning algorithm

Thresholds require tuning

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 14 / 155

http://tiny.cc/ssnlp

Ratnaparkhi (1996), on his POS tagger:

The behavior of a feature that occurs very sparsely in the
training set is often difficult to predict, since its statistics may
not be reliable. Therefore, the model uses the heuristic that any
feature which occurs less than 10 times in the data is unreliable,
and ignores features whose counts are less than 10.1 While there
are many smoothing algorithms which use techniques more
rigorous than a simple count cutoff, they have not yet been
investigated in conjunction with this tagger.

1Except for features that look only at the current word, i.e., features of the form
wi =<word> and ti = <TAG>. The count of 10 was chosen by inspection of Training and
Development data.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 15 / 155

http://tiny.cc/ssnlp

(Automatic) Feature Selection

Human NLPers are good at thinking of features.

Can we automate the process of selecting which ones to keep?

Three kinds of methods:

1 filters

2 wrappers

3 embedded methods (this tutorial)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 16 / 155

http://tiny.cc/ssnlp

(Automatic) Feature Selection

Human NLPers are good at thinking of features.

Can we automate the process of selecting which ones to keep?

Three kinds of methods:

1 filters

2 wrappers

3 embedded methods (this tutorial)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 16 / 155

http://tiny.cc/ssnlp

Wrapper-based Feature Selection

For each subset F ⊆ {1, 2, . . .D}, learn hwF
for features {fd | d ∈ F}.

2D − 1 choices; so perform a search over subsets.

Cons:

NP-hard problem (Amaldi and Kann, 1998; Davis et al., 1997)

Must resort to greedy methods

Even those require iterative calls to a black-box learner

Danger of overfitting in choosing F.
(Typically use development data or cross-validate.)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 17 / 155

http://tiny.cc/ssnlp

Della Pietra et al. (1997) add features one at a time. Step (3) involves
re-estimating parameters:

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 18 / 155

http://tiny.cc/ssnlp

(Automatic) Feature Selection

Human NLPers are good at thinking of features.

Can we automate the process of selecting which ones to keep?

Three kinds of methods:

1 filters

2 wrappers

3 embedded methods (this tutorial)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 19 / 155

http://tiny.cc/ssnlp

(Automatic) Feature Selection

Human NLPers are good at thinking of features.

Can we automate the process of selecting which ones to keep?

Three kinds of methods:

1 filters

2 wrappers

3 embedded methods (this tutorial)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 19 / 155

http://tiny.cc/ssnlp

Embedded Methods for Feature Selection

Formulate the learning problem as a trade-off between

minimizing loss (fitting the training data, achieving good accuracy on
the training data, etc.)

choosing a desirable model (e.g., one with no more features than
needed)

min
w

1

N

N∑
n=1

L(w; xn, yn) + Ω(w)

Key advantage: declarative statements of model “desirability” often lead
to well-understood, solvable optimization problems.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 20 / 155

http://tiny.cc/ssnlp

Useful Papers on Feature Selection and Sparsity

Overview of many feature selection methods:
Guyon and Elisseeff (2003)

Greedy wrapper-based method used for max ent models in NLP:
Della Pietra et al. (1997)

Early uses of sparsity in NLP:
Kazama and Tsujii (2003); Goodman (2004)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 21 / 155

http://tiny.cc/ssnlp

Outline

1 Introduction

2 Loss Functions and Sparsity

3 Structured Sparsity

4 Algorithms

Convex Analysis

Batch Algorithms

Online Algorithms

5 Applications

6 Conclusions

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 22 / 155

http://tiny.cc/ssnlp

Loss functions (I)

Regression (y ∈ R) typically uses the squared error loss:

LSE(w; x , y) =
1

2

(
y −w>f(x)

)2

Total loss:

1

2

N∑
n=1

(
yn −w>f(xn)

)2
=

1

2
‖Aw − y‖2

2

Design matrix: A = [Aij]i=1,...,N; j=1,...,D , where Aij = fj (xi).

Response vector: y = [y1, ..., yN]>.

Arguably, the most/best studied loss function (statistics, machine
learning, signal processing).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 23 / 155

http://tiny.cc/ssnlp

Loss functions (I)

Regression (y ∈ R) typically uses the squared error loss:

LSE(w; x , y) =
1

2

(
y −w>f(x)

)2

Total loss:

1

2

N∑
n=1

(
yn −w>f(xn)

)2
=

1

2
‖Aw − y‖2

2

Design matrix: A = [Aij]i=1,...,N; j=1,...,D , where Aij = fj (xi).

Response vector: y = [y1, ..., yN]>.

Arguably, the most/best studied loss function (statistics, machine
learning, signal processing).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 23 / 155

http://tiny.cc/ssnlp

Loss functions (I)

Regression (y ∈ R) typically uses the squared error loss:

LSE(w; x , y) =
1

2

(
y −w>f(x)

)2

Total loss:

1

2

N∑
n=1

(
yn −w>f(xn)

)2
=

1

2
‖Aw − y‖2

2

Design matrix: A = [Aij]i=1,...,N; j=1,...,D , where Aij = fj (xi).

Response vector: y = [y1, ..., yN]>.

Arguably, the most/best studied loss function (statistics, machine
learning, signal processing).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 23 / 155

http://tiny.cc/ssnlp

Loss functions (I)

Regression (y ∈ R) typically uses the squared error loss:

LSE(w; x , y) =
1

2

(
y −w>f(x)

)2

Total loss:

1

2

N∑
n=1

(
yn −w>f(xn)

)2
=

1

2
‖Aw − y‖2

2

Design matrix: A = [Aij]i=1,...,N; j=1,...,D , where Aij = fj (xi).

Response vector: y = [y1, ..., yN]>.

Arguably, the most/best studied loss function (statistics, machine
learning, signal processing).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 23 / 155

http://tiny.cc/ssnlp

Loss functions (I)

Regression (y ∈ R) typically uses the squared error loss:

LSE(w; x , y) =
1

2

(
y −w>f(x)

)2

Total loss:

1

2

N∑
n=1

(
yn −w>f(xn)

)2
=

1

2
‖Aw − y‖2

2

Design matrix: A = [Aij]i=1,...,N; j=1,...,D , where Aij = fj (xi).

Response vector: y = [y1, ..., yN]>.

Arguably, the most/best studied loss function (statistics, machine
learning, signal processing).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 23 / 155

http://tiny.cc/ssnlp

Loss functions (II)

Classification and structured prediction using log-linear models
(logistic regression, max ent, conditional random fields):

LLR(w; x , y) = − log P (y |x ; w)

= − log
exp(w>f (x , y))∑

y ′∈Y(x) exp(w>f (x , y ′))

= −w>f (x , y) + log Z (w, x)

Partition function:

Z (w, x) =
∑

y ′∈Y(x)

exp(w>f (x , y ′)).

Related loss functions: hinge loss (in SVM) and the perceptron loss.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 24 / 155

http://tiny.cc/ssnlp

Loss functions (II)

Classification and structured prediction using log-linear models
(logistic regression, max ent, conditional random fields):

LLR(w; x , y) = − log P (y |x ; w)

= − log
exp(w>f (x , y))∑

y ′∈Y(x) exp(w>f (x , y ′))

= −w>f (x , y) + log Z (w, x)

Partition function:

Z (w, x) =
∑

y ′∈Y(x)

exp(w>f (x , y ′)).

Related loss functions: hinge loss (in SVM) and the perceptron loss.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 24 / 155

http://tiny.cc/ssnlp

Loss functions (II)

Classification and structured prediction using log-linear models
(logistic regression, max ent, conditional random fields):

LLR(w; x , y) = − log P (y |x ; w)

= − log
exp(w>f (x , y))∑

y ′∈Y(x) exp(w>f (x , y ′))

= −w>f (x , y) + log Z (w, x)

Partition function:

Z (w, x) =
∑

y ′∈Y(x)

exp(w>f (x , y ′)).

Related loss functions: hinge loss (in SVM) and the perceptron loss.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 24 / 155

http://tiny.cc/ssnlp

Main Loss Functions: Summary

Squared (linear regression) 1
2

(
y −w>f(x)

)2

Log-linear (MaxEnt, CRF, logistic) −w>f(x , y) + log
∑
y ′∈Y

exp(w>f(x , y ′))

Hinge (SVMs) −w>f(x , y) + max
y ′∈Y

(
w>f(x , y ′) + c(y , y ′)

)
Perceptron −w>f(x , y) + max

y ′∈Y
w>f(x , y ′)

(in the SVM loss, c(y , y ′) is a cost function.)

All these losses are particular cases of general family (Martins et al., 2010).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 25 / 155

http://tiny.cc/ssnlp

Main Loss Functions: Summary

Squared (linear regression) 1
2

(
y −w>f(x)

)2

Log-linear (MaxEnt, CRF, logistic) −w>f(x , y) + log
∑
y ′∈Y

exp(w>f(x , y ′))

Hinge (SVMs) −w>f(x , y) + max
y ′∈Y

(
w>f(x , y ′) + c(y , y ′)

)
Perceptron −w>f(x , y) + max

y ′∈Y
w>f(x , y ′)

(in the SVM loss, c(y , y ′) is a cost function.)

All these losses are particular cases of general family (Martins et al., 2010).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 25 / 155

http://tiny.cc/ssnlp

Regularization

Regularized parameter estimate:

ŵ = arg min
w

Ω(w) +
N∑

n=1

L(w; xn, yn)︸ ︷︷ ︸
total loss

where Ω(w) ≥ 0 and lim
‖w‖→∞

Ω(w) =∞ (coercive function).

Why regularize?

Improve generalization by avoiding over-fitting.

The total loss may not be coercive (e.g., logistic loss on separable
data), thus having no minima.

Express prior knowledge about w.

Select relevant features (via sparsity-inducing regularization).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 26 / 155

http://tiny.cc/ssnlp

Regularization

Regularized parameter estimate:

ŵ = arg min
w

Ω(w) +
N∑

n=1

L(w; xn, yn)︸ ︷︷ ︸
total loss

where Ω(w) ≥ 0 and lim
‖w‖→∞

Ω(w) =∞ (coercive function).

Why regularize?

Improve generalization by avoiding over-fitting.

The total loss may not be coercive (e.g., logistic loss on separable
data), thus having no minima.

Express prior knowledge about w.

Select relevant features (via sparsity-inducing regularization).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 26 / 155

http://tiny.cc/ssnlp

Regularization

Regularized parameter estimate:

ŵ = arg min
w

Ω(w) +
N∑

n=1

L(w; xn, yn)︸ ︷︷ ︸
total loss

where Ω(w) ≥ 0 and lim
‖w‖→∞

Ω(w) =∞ (coercive function).

Why regularize?

Improve generalization by avoiding over-fitting.

The total loss may not be coercive (e.g., logistic loss on separable
data), thus having no minima.

Express prior knowledge about w.

Select relevant features (via sparsity-inducing regularization).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 26 / 155

http://tiny.cc/ssnlp

Regularization

Regularized parameter estimate:

ŵ = arg min
w

Ω(w) +
N∑

n=1

L(w; xn, yn)︸ ︷︷ ︸
total loss

where Ω(w) ≥ 0 and lim
‖w‖→∞

Ω(w) =∞ (coercive function).

Why regularize?

Improve generalization by avoiding over-fitting.

The total loss may not be coercive (e.g., logistic loss on separable
data), thus having no minima.

Express prior knowledge about w.

Select relevant features (via sparsity-inducing regularization).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 26 / 155

http://tiny.cc/ssnlp

Regularization

Regularized parameter estimate:

ŵ = arg min
w

Ω(w) +
N∑

n=1

L(w; xn, yn)︸ ︷︷ ︸
total loss

where Ω(w) ≥ 0 and lim
‖w‖→∞

Ω(w) =∞ (coercive function).

Why regularize?

Improve generalization by avoiding over-fitting.

The total loss may not be coercive (e.g., logistic loss on separable
data), thus having no minima.

Express prior knowledge about w.

Select relevant features (via sparsity-inducing regularization).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 26 / 155

http://tiny.cc/ssnlp

Regularization Formulations

Tikhonov regularization: ŵ = arg min
w
λΩ̄(w) +

N∑
n=1

L(w; xn, yn)

Ivanov regularization

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to Ω(w) ≤ τ

Morozov regularization

ŵ = arg min
w

Ω(w)

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

Equivalent, under mild conditions (namely convexity).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 27 / 155

http://tiny.cc/ssnlp

Regularization Formulations

Tikhonov regularization: ŵ = arg min
w
λΩ̄(w) +

N∑
n=1

L(w; xn, yn)

Ivanov regularization

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to Ω(w) ≤ τ

Morozov regularization

ŵ = arg min
w

Ω(w)

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

Equivalent, under mild conditions (namely convexity).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 27 / 155

http://tiny.cc/ssnlp

Regularization Formulations

Tikhonov regularization: ŵ = arg min
w
λΩ̄(w) +

N∑
n=1

L(w; xn, yn)

Ivanov regularization

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to Ω(w) ≤ τ

Morozov regularization

ŵ = arg min
w

Ω(w)

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

Equivalent, under mild conditions (namely convexity).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 27 / 155

http://tiny.cc/ssnlp

Regularization Formulations

Tikhonov regularization: ŵ = arg min
w
λΩ̄(w) +

N∑
n=1

L(w; xn, yn)

Ivanov regularization

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to Ω(w) ≤ τ

Morozov regularization

ŵ = arg min
w

Ω(w)

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

Equivalent, under mild conditions (namely convexity).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 27 / 155

http://tiny.cc/ssnlp

Regularization vs. Bayesian estimation

Regularized parameter estimate: ŵ = arg min
w

Ω(w) +
N∑

n=1

L(w; xn, yn)

...interpretable as Bayesian maximum a posteriori (MAP) estimate:

ŵ = arg max
w

exp (−Ω(w))︸ ︷︷ ︸
prior p(w)

N∏
n=1

exp (−L(w; xn, yn))︸ ︷︷ ︸
likelihood (i.i.d. data)

.

This interpretation underlies the logistic regression (LR) loss:
LLR(w; xn, yn) = − log P (yn|xn; w).

Same is true for the squared error (SE) loss:

LSE(w; xn, yn) = 1
2

(
y −w>f(x)

)2
= − logN(y |w>f(x), 1)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 28 / 155

http://tiny.cc/ssnlp

Regularization vs. Bayesian estimation

Regularized parameter estimate: ŵ = arg min
w

Ω(w) +
N∑

n=1

L(w; xn, yn)

...interpretable as Bayesian maximum a posteriori (MAP) estimate:

ŵ = arg max
w

exp (−Ω(w))︸ ︷︷ ︸
prior p(w)

N∏
n=1

exp (−L(w; xn, yn))︸ ︷︷ ︸
likelihood (i.i.d. data)

.

This interpretation underlies the logistic regression (LR) loss:
LLR(w; xn, yn) = − log P (yn|xn; w).

Same is true for the squared error (SE) loss:

LSE(w; xn, yn) = 1
2

(
y −w>f(x)

)2
= − logN(y |w>f(x), 1)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 28 / 155

http://tiny.cc/ssnlp

Regularization vs. Bayesian estimation

Regularized parameter estimate: ŵ = arg min
w

Ω(w) +
N∑

n=1

L(w; xn, yn)

...interpretable as Bayesian maximum a posteriori (MAP) estimate:

ŵ = arg max
w

exp (−Ω(w))︸ ︷︷ ︸
prior p(w)

N∏
n=1

exp (−L(w; xn, yn))︸ ︷︷ ︸
likelihood (i.i.d. data)

.

This interpretation underlies the logistic regression (LR) loss:
LLR(w; xn, yn) = − log P (yn|xn; w).

Same is true for the squared error (SE) loss:

LSE(w; xn, yn) = 1
2

(
y −w>f(x)

)2
= − logN(y |w>f(x), 1)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 28 / 155

http://tiny.cc/ssnlp

Norms: A Quick Review

Before focusing on regularizers, a quick review about norms.

Some function p : R→ R is a norm if if satisfies:

p(αw) = |α|p(w), for any w (homogeneity);

p(w + w′) ≤ p(w) + p(w′), for any w,w′ (triangle inequality);

p(w) = 0 if and only if w = 0.

Examples of norms:

‖w‖p =

(∑
i

(wi)
p

)1/p

(called `p norm, for p ≥ 1).

‖w‖∞ = lim
p→∞

‖w‖p = max{|wi |, i = 1, ...,D}

Fact: all norms are convex.

Also important (but not a norm): ‖w‖0 = lim
p→0
‖w‖p

p = |{i : wi 6= 0}|

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 29 / 155

http://tiny.cc/ssnlp

Norms: A Quick Review

Before focusing on regularizers, a quick review about norms.

Some function p : R→ R is a norm if if satisfies:

p(αw) = |α|p(w), for any w (homogeneity);

p(w + w′) ≤ p(w) + p(w′), for any w,w′ (triangle inequality);

p(w) = 0 if and only if w = 0.

Examples of norms:

‖w‖p =

(∑
i

(wi)
p

)1/p

(called `p norm, for p ≥ 1).

‖w‖∞ = lim
p→∞

‖w‖p = max{|wi |, i = 1, ...,D}

Fact: all norms are convex.

Also important (but not a norm): ‖w‖0 = lim
p→0
‖w‖p

p = |{i : wi 6= 0}|

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 29 / 155

http://tiny.cc/ssnlp

Norms: A Quick Review

Before focusing on regularizers, a quick review about norms.

Some function p : R→ R is a norm if if satisfies:

p(αw) = |α|p(w), for any w (homogeneity);

p(w + w′) ≤ p(w) + p(w′), for any w,w′ (triangle inequality);

p(w) = 0 if and only if w = 0.

Examples of norms:

‖w‖p =

(∑
i

(wi)
p

)1/p

(called `p norm, for p ≥ 1).

‖w‖∞ = lim
p→∞

‖w‖p = max{|wi |, i = 1, ...,D}

Fact: all norms are convex.

Also important (but not a norm): ‖w‖0 = lim
p→0
‖w‖p

p = |{i : wi 6= 0}|

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 29 / 155

http://tiny.cc/ssnlp

Norms: A Quick Review

Before focusing on regularizers, a quick review about norms.

Some function p : R→ R is a norm if if satisfies:

p(αw) = |α|p(w), for any w (homogeneity);

p(w + w′) ≤ p(w) + p(w′), for any w,w′ (triangle inequality);

p(w) = 0 if and only if w = 0.

Examples of norms:

‖w‖p =

(∑
i

(wi)
p

)1/p

(called `p norm, for p ≥ 1).

‖w‖∞ = lim
p→∞

‖w‖p = max{|wi |, i = 1, ...,D}

Fact: all norms are convex.

Also important (but not a norm): ‖w‖0 = lim
p→0
‖w‖p

p = |{i : wi 6= 0}|

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 29 / 155

http://tiny.cc/ssnlp

Norms: A Quick Review

Before focusing on regularizers, a quick review about norms.

Some function p : R→ R is a norm if if satisfies:

p(αw) = |α|p(w), for any w (homogeneity);

p(w + w′) ≤ p(w) + p(w′), for any w,w′ (triangle inequality);

p(w) = 0 if and only if w = 0.

Examples of norms:

‖w‖p =

(∑
i

(wi)
p

)1/p

(called `p norm, for p ≥ 1).

‖w‖∞ = lim
p→∞

‖w‖p = max{|wi |, i = 1, ...,D}

Fact: all norms are convex.

Also important (but not a norm): ‖w‖0 = lim
p→0
‖w‖p

p = |{i : wi 6= 0}|

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 29 / 155

http://tiny.cc/ssnlp

Norms: A Quick Review

Before focusing on regularizers, a quick review about norms.

Some function p : R→ R is a norm if if satisfies:

p(αw) = |α|p(w), for any w (homogeneity);

p(w + w′) ≤ p(w) + p(w′), for any w,w′ (triangle inequality);

p(w) = 0 if and only if w = 0.

Examples of norms:

‖w‖p =

(∑
i

(wi)
p

)1/p

(called `p norm, for p ≥ 1).

‖w‖∞ = lim
p→∞

‖w‖p = max{|wi |, i = 1, ...,D}

Fact: all norms are convex.

Also important (but not a norm): ‖w‖0 = lim
p→0
‖w‖p

p = |{i : wi 6= 0}|

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 29 / 155

http://tiny.cc/ssnlp

Norms: A Quick Review

Before focusing on regularizers, a quick review about norms.

Some function p : R→ R is a norm if if satisfies:

p(αw) = |α|p(w), for any w (homogeneity);

p(w + w′) ≤ p(w) + p(w′), for any w,w′ (triangle inequality);

p(w) = 0 if and only if w = 0.

Examples of norms:

‖w‖p =

(∑
i

(wi)
p

)1/p

(called `p norm, for p ≥ 1).

‖w‖∞ = lim
p→∞

‖w‖p = max{|wi |, i = 1, ...,D}

Fact: all norms are convex.

Also important (but not a norm): ‖w‖0 = lim
p→0
‖w‖p

p = |{i : wi 6= 0}|

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 29 / 155

http://tiny.cc/ssnlp

Norms: A Quick Review

Before focusing on regularizers, a quick review about norms.

Some function p : R→ R is a norm if if satisfies:

p(αw) = |α|p(w), for any w (homogeneity);

p(w + w′) ≤ p(w) + p(w′), for any w,w′ (triangle inequality);

p(w) = 0 if and only if w = 0.

Examples of norms:

‖w‖p =

(∑
i

(wi)
p

)1/p

(called `p norm, for p ≥ 1).

‖w‖∞ = lim
p→∞

‖w‖p = max{|wi |, i = 1, ...,D}

Fact: all norms are convex.

Also important (but not a norm): ‖w‖0 = lim
p→0
‖w‖p

p = |{i : wi 6= 0}|

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 29 / 155

http://tiny.cc/ssnlp

Classical Regularizers: Ridge

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

Arguably, the most classical choice: squared `2 norm: Ω(w) =
λ

2
‖w‖2

2

Corresponds to zero-mean Gaussian prior p(w) ∝ exp
(
−λ‖w‖2

2

)

Ridge regression (SE loss): Hoerl and Kennard (1962 and 1970).

Ridge logistic regression: Schaefer et al. (1984), Cessie and
Houwelingen (1992); in NLP: Chen and Rosenfeld (1999).

Closely related to Tikhonov (1943) and Wiener (1949).

Pros: smooth and convex, thus benign for optimization.

Cons: doesn’t promote sparsity (no explicit feature selection).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 30 / 155

http://tiny.cc/ssnlp

Classical Regularizers: Ridge

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

Arguably, the most classical choice: squared `2 norm: Ω(w) =
λ

2
‖w‖2

2

Corresponds to zero-mean Gaussian prior p(w) ∝ exp
(
−λ‖w‖2

2

)
Ridge regression (SE loss): Hoerl and Kennard (1962 and 1970).

Ridge logistic regression: Schaefer et al. (1984), Cessie and
Houwelingen (1992); in NLP: Chen and Rosenfeld (1999).

Closely related to Tikhonov (1943) and Wiener (1949).

Pros: smooth and convex, thus benign for optimization.

Cons: doesn’t promote sparsity (no explicit feature selection).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 30 / 155

http://tiny.cc/ssnlp

Classical Regularizers: Ridge

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

Arguably, the most classical choice: squared `2 norm: Ω(w) =
λ

2
‖w‖2

2

Corresponds to zero-mean Gaussian prior p(w) ∝ exp
(
−λ‖w‖2

2

)
Ridge regression (SE loss): Hoerl and Kennard (1962 and 1970).

Ridge logistic regression: Schaefer et al. (1984), Cessie and
Houwelingen (1992); in NLP: Chen and Rosenfeld (1999).

Closely related to Tikhonov (1943) and Wiener (1949).

Pros: smooth and convex, thus benign for optimization.

Cons: doesn’t promote sparsity (no explicit feature selection).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 30 / 155

http://tiny.cc/ssnlp

Classical Regularizers: Ridge

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

Arguably, the most classical choice: squared `2 norm: Ω(w) =
λ

2
‖w‖2

2

Corresponds to zero-mean Gaussian prior p(w) ∝ exp
(
−λ‖w‖2

2

)
Ridge regression (SE loss): Hoerl and Kennard (1962 and 1970).

Ridge logistic regression: Schaefer et al. (1984), Cessie and
Houwelingen (1992); in NLP: Chen and Rosenfeld (1999).

Closely related to Tikhonov (1943) and Wiener (1949).

Pros: smooth and convex, thus benign for optimization.

Cons: doesn’t promote sparsity (no explicit feature selection).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 30 / 155

http://tiny.cc/ssnlp

Classical Regularizers: Ridge

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

Arguably, the most classical choice: squared `2 norm: Ω(w) =
λ

2
‖w‖2

2

Corresponds to zero-mean Gaussian prior p(w) ∝ exp
(
−λ‖w‖2

2

)
Ridge regression (SE loss): Hoerl and Kennard (1962 and 1970).

Ridge logistic regression: Schaefer et al. (1984), Cessie and
Houwelingen (1992); in NLP: Chen and Rosenfeld (1999).

Closely related to Tikhonov (1943) and Wiener (1949).

Pros: smooth and convex, thus benign for optimization.

Cons: doesn’t promote sparsity (no explicit feature selection).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 30 / 155

http://tiny.cc/ssnlp

Classical Regularizers: Ridge

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

Arguably, the most classical choice: squared `2 norm: Ω(w) =
λ

2
‖w‖2

2

Corresponds to zero-mean Gaussian prior p(w) ∝ exp
(
−λ‖w‖2

2

)
Ridge regression (SE loss): Hoerl and Kennard (1962 and 1970).

Ridge logistic regression: Schaefer et al. (1984), Cessie and
Houwelingen (1992); in NLP: Chen and Rosenfeld (1999).

Closely related to Tikhonov (1943) and Wiener (1949).

Pros: smooth and convex, thus benign for optimization.

Cons: doesn’t promote sparsity (no explicit feature selection).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 30 / 155

http://tiny.cc/ssnlp

Classical Regularizers: Lasso

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

The new classic is the `1 norm: Ω(w) = λ‖w‖1 = λ

D∑
i=1

|wi |.

Corresponds to zero-mean Laplacian prior p(wi) ∝ exp (−λ|wi |)

Best known as: least absolute shrinkage and selection operator
(Lasso) (Tibshirani, 1996).

Used earlier in signal processing (Claerbout and Muir, 1973; Taylor
et al., 1979) neural networks (Williams, 1995),...

In NLP: Kazama and Tsujii (2003); Goodman (2004).

Pros: encourages sparsity: embedded feature selection.

Cons: convex, but non-smooth: challenging optimization.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 31 / 155

http://tiny.cc/ssnlp

Classical Regularizers: Lasso

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

The new classic is the `1 norm: Ω(w) = λ‖w‖1 = λ

D∑
i=1

|wi |.

Corresponds to zero-mean Laplacian prior p(wi) ∝ exp (−λ|wi |)
Best known as: least absolute shrinkage and selection operator
(Lasso) (Tibshirani, 1996).

Used earlier in signal processing (Claerbout and Muir, 1973; Taylor
et al., 1979) neural networks (Williams, 1995),...

In NLP: Kazama and Tsujii (2003); Goodman (2004).

Pros: encourages sparsity: embedded feature selection.

Cons: convex, but non-smooth: challenging optimization.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 31 / 155

http://tiny.cc/ssnlp

Classical Regularizers: Lasso

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

The new classic is the `1 norm: Ω(w) = λ‖w‖1 = λ

D∑
i=1

|wi |.

Corresponds to zero-mean Laplacian prior p(wi) ∝ exp (−λ|wi |)
Best known as: least absolute shrinkage and selection operator
(Lasso) (Tibshirani, 1996).

Used earlier in signal processing (Claerbout and Muir, 1973; Taylor
et al., 1979) neural networks (Williams, 1995),...

In NLP: Kazama and Tsujii (2003); Goodman (2004).

Pros: encourages sparsity: embedded feature selection.

Cons: convex, but non-smooth: challenging optimization.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 31 / 155

http://tiny.cc/ssnlp

Classical Regularizers: Lasso

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

The new classic is the `1 norm: Ω(w) = λ‖w‖1 = λ

D∑
i=1

|wi |.

Corresponds to zero-mean Laplacian prior p(wi) ∝ exp (−λ|wi |)
Best known as: least absolute shrinkage and selection operator
(Lasso) (Tibshirani, 1996).

Used earlier in signal processing (Claerbout and Muir, 1973; Taylor
et al., 1979) neural networks (Williams, 1995),...

In NLP: Kazama and Tsujii (2003); Goodman (2004).

Pros: encourages sparsity: embedded feature selection.

Cons: convex, but non-smooth: challenging optimization.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 31 / 155

http://tiny.cc/ssnlp

Classical Regularizers: Lasso

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

The new classic is the `1 norm: Ω(w) = λ‖w‖1 = λ

D∑
i=1

|wi |.

Corresponds to zero-mean Laplacian prior p(wi) ∝ exp (−λ|wi |)
Best known as: least absolute shrinkage and selection operator
(Lasso) (Tibshirani, 1996).

Used earlier in signal processing (Claerbout and Muir, 1973; Taylor
et al., 1979) neural networks (Williams, 1995),...

In NLP: Kazama and Tsujii (2003); Goodman (2004).

Pros: encourages sparsity: embedded feature selection.

Cons: convex, but non-smooth: challenging optimization.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 31 / 155

http://tiny.cc/ssnlp

Classical Regularizers: Lasso

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

The new classic is the `1 norm: Ω(w) = λ‖w‖1 = λ

D∑
i=1

|wi |.

Corresponds to zero-mean Laplacian prior p(wi) ∝ exp (−λ|wi |)
Best known as: least absolute shrinkage and selection operator
(Lasso) (Tibshirani, 1996).

Used earlier in signal processing (Claerbout and Muir, 1973; Taylor
et al., 1979) neural networks (Williams, 1995),...

In NLP: Kazama and Tsujii (2003); Goodman (2004).

Pros: encourages sparsity: embedded feature selection.

Cons: convex, but non-smooth: challenging optimization.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 31 / 155

http://tiny.cc/ssnlp

Classical Regularizers: Lasso

Regularized parameter estimate: ŵ = arg min
w

N∑
n=1

L(w; xn, yn) + Ω(w)

The new classic is the `1 norm: Ω(w) = λ‖w‖1 = λ

D∑
i=1

|wi |.

Corresponds to zero-mean Laplacian prior p(wi) ∝ exp (−λ|wi |)
Best known as: least absolute shrinkage and selection operator
(Lasso) (Tibshirani, 1996).

Used earlier in signal processing (Claerbout and Muir, 1973; Taylor
et al., 1979) neural networks (Williams, 1995),...

In NLP: Kazama and Tsujii (2003); Goodman (2004).

Pros: encourages sparsity: embedded feature selection.

Cons: convex, but non-smooth: challenging optimization.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 31 / 155

http://tiny.cc/ssnlp

The Lasso and Sparsity
Why does the Lasso yield sparsity?

The simplest case:

ŵ = arg min
w

1

2
(w − y)2 + λ|w | = soft(y , λ) =


y − λ ⇐ y > λ
0 ⇐ |y | ≤ λ
y + λ ⇐ y < −λ

Contrast with the squared `2 (ridge) regularizer (linear scaling):

ŵ = arg min
w

1

2
(w − y)2 +

λ

2
w 2 =

1

1 + λ
y

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 32 / 155

http://tiny.cc/ssnlp

The Lasso and Sparsity
Why does the Lasso yield sparsity?

The simplest case:

ŵ = arg min
w

1

2
(w − y)2 + λ|w | = soft(y , λ) =


y − λ ⇐ y > λ
0 ⇐ |y | ≤ λ
y + λ ⇐ y < −λ

Contrast with the squared `2 (ridge) regularizer (linear scaling):

ŵ = arg min
w

1

2
(w − y)2 +

λ

2
w 2 =

1

1 + λ
y

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 32 / 155

http://tiny.cc/ssnlp

The Lasso and Sparsity
Why does the Lasso yield sparsity?

The simplest case:

ŵ = arg min
w

1

2
(w − y)2 + λ|w | = soft(y , λ) =


y − λ ⇐ y > λ
0 ⇐ |y | ≤ λ
y + λ ⇐ y < −λ

Contrast with the squared `2 (ridge) regularizer (linear scaling):

ŵ = arg min
w

1

2
(w − y)2 +

λ

2
w 2 =

1

1 + λ
y

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 32 / 155

http://tiny.cc/ssnlp

The Lasso and Sparsity (II)

Why does the Lasso yield sparsity?

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 33 / 155

http://tiny.cc/ssnlp

The Lasso and Sparsity (II)

Why does the Lasso yield sparsity?

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 33 / 155

http://tiny.cc/ssnlp

Relationship Between `1 and `0

The `0 “norm” (number of non-zeros): ‖w‖0 = |{i : wi 6= 0}|.
Not convex, but...

ŵ = arg min
w

1

2
(w − y)2 + λ|w |0 = hard(y ,

√
2λ) =

{
y ⇐ |y | >

√
2λ

0 ⇐ |y | ≤
√

2λ

The “ideal” feature selection criterion (best subset):

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to ‖w‖0 ≤ τ (limit the number of features)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 34 / 155

http://tiny.cc/ssnlp

Relationship Between `1 and `0

The `0 “norm” (number of non-zeros): ‖w‖0 = |{i : wi 6= 0}|.
Not convex, but...

ŵ = arg min
w

1

2
(w − y)2 + λ|w |0 = hard(y ,

√
2λ) =

{
y ⇐ |y | >

√
2λ

0 ⇐ |y | ≤
√

2λ

The “ideal” feature selection criterion (best subset):

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to ‖w‖0 ≤ τ (limit the number of features)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 34 / 155

http://tiny.cc/ssnlp

Relationship Between `1 and `0

The `0 “norm” (number of non-zeros): ‖w‖0 = |{i : wi 6= 0}|.
Not convex, but...

ŵ = arg min
w

1

2
(w − y)2 + λ|w |0 = hard(y ,

√
2λ) =

{
y ⇐ |y | >

√
2λ

0 ⇐ |y | ≤
√

2λ

The “ideal” feature selection criterion (best subset):

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to ‖w‖0 ≤ τ (limit the number of features)
Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 34 / 155

http://tiny.cc/ssnlp

Relationship Between `1 and `0 (II)
The best subset selection problem

is NP-hard Amaldi and Kann
(1998)(Davis et al., 1997).

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to ‖w‖0 ≤ τ

A closely related problem, also NP-hard (Muthukrishnan, 2005).

ŵ = arg min
w
‖w‖0

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

In some cases, one may replace `0 with `1 and obtain “similar” results:

central issue in compressive sensing (CS) (Candès et al., 2006a; Donoho,

2006)

.
Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 35 / 155

http://tiny.cc/ssnlp

Relationship Between `1 and `0 (II)
The best subset selection problem is NP-hard Amaldi and Kann
(1998)(Davis et al., 1997).

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to ‖w‖0 ≤ τ

A closely related problem, also NP-hard (Muthukrishnan, 2005).

ŵ = arg min
w
‖w‖0

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

In some cases, one may replace `0 with `1 and obtain “similar” results:

central issue in compressive sensing (CS) (Candès et al., 2006a; Donoho,

2006)

.
Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 35 / 155

http://tiny.cc/ssnlp

Relationship Between `1 and `0 (II)
The best subset selection problem is NP-hard Amaldi and Kann
(1998)(Davis et al., 1997).

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to ‖w‖0 ≤ τ

A closely related problem,

also NP-hard (Muthukrishnan, 2005).

ŵ = arg min
w
‖w‖0

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

In some cases, one may replace `0 with `1 and obtain “similar” results:

central issue in compressive sensing (CS) (Candès et al., 2006a; Donoho,

2006)

.
Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 35 / 155

http://tiny.cc/ssnlp

Relationship Between `1 and `0 (II)
The best subset selection problem is NP-hard Amaldi and Kann
(1998)(Davis et al., 1997).

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to ‖w‖0 ≤ τ

A closely related problem, also NP-hard (Muthukrishnan, 2005).

ŵ = arg min
w
‖w‖0

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

In some cases, one may replace `0 with `1 and obtain “similar” results:

central issue in compressive sensing (CS) (Candès et al., 2006a; Donoho,

2006)

.
Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 35 / 155

http://tiny.cc/ssnlp

Relationship Between `1 and `0 (II)
The best subset selection problem is NP-hard Amaldi and Kann
(1998)(Davis et al., 1997).

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to ‖w‖0 ≤ τ

A closely related problem, also NP-hard (Muthukrishnan, 2005).

ŵ = arg min
w
‖w‖0

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

In some cases, one may replace `0 with `1 and obtain “similar” results:

central issue in compressive sensing (CS) (Candès et al., 2006a; Donoho,

2006).
Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 35 / 155

http://tiny.cc/ssnlp

Compressive Sensing in One Slide

Even in the noiseless case, it seems impossible to recover w from y

...unless, w is sparse and A has some properties.

If w is sparse enough and A has certain properties, then w is stably
recovered via (Haupt and Nowak, 2006)

ŵ = arg min
w
‖w‖0

subject to ‖Aw − y‖ ≤ δ NP-hard!

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 36 / 155

http://tiny.cc/ssnlp

Compressive Sensing in One Slide

Even in the noiseless case, it seems impossible to recover w from y
...unless, w is sparse and A has some properties.

If w is sparse enough and A has certain properties, then w is stably
recovered via (Haupt and Nowak, 2006)

ŵ = arg min
w
‖w‖0

subject to ‖Aw − y‖ ≤ δ NP-hard!

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 36 / 155

http://tiny.cc/ssnlp

Compressive Sensing in One Slide

Even in the noiseless case, it seems impossible to recover w from y
...unless, w is sparse and A has some properties.

If w is sparse enough and A has certain properties, then w is stably
recovered via (Haupt and Nowak, 2006)

ŵ = arg min
w
‖w‖0

subject to ‖Aw − y‖ ≤ δ NP-hard!

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 36 / 155

http://tiny.cc/ssnlp

...OK, in Two Slides

Under some conditions on A (e.g., the restricted isometry property (RIP)),
`0 can be replaced with `1 (Candès et al., 2006b):

ŵ = arg min
w
‖w‖1

subject to ‖Aw − y‖ ≤ δ convex problem

Matrix A satisfies the RIP of order k, with constant δk ∈ (0, 1), if

‖w‖0 ≤ k ⇒ (1− δk)‖w‖2
2 ≤ ‖Aw‖ ≤ (1 + δk)‖w‖2

2

...i.e., for k-sparse vectors, A is approximately an isometry.

Other properties (spark and null space property (NSP)) can be used;
checking RIP, NSP, spark is NP-hard (Tillmann and Pfetsch, 2012).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 37 / 155

http://tiny.cc/ssnlp

...OK, in Two Slides

Under some conditions on A (e.g., the restricted isometry property (RIP)),
`0 can be replaced with `1 (Candès et al., 2006b):

ŵ = arg min
w
‖w‖1

subject to ‖Aw − y‖ ≤ δ convex problem

Matrix A satisfies the RIP of order k, with constant δk ∈ (0, 1), if

‖w‖0 ≤ k ⇒ (1− δk)‖w‖2
2 ≤ ‖Aw‖ ≤ (1 + δk)‖w‖2

2

...i.e., for k-sparse vectors, A is approximately an isometry.

Other properties (spark and null space property (NSP)) can be used;
checking RIP, NSP, spark is NP-hard (Tillmann and Pfetsch, 2012).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 37 / 155

http://tiny.cc/ssnlp

...OK, in Two Slides

Under some conditions on A (e.g., the restricted isometry property (RIP)),
`0 can be replaced with `1 (Candès et al., 2006b):

ŵ = arg min
w
‖w‖1

subject to ‖Aw − y‖ ≤ δ convex problem

Matrix A satisfies the RIP of order k, with constant δk ∈ (0, 1), if

‖w‖0 ≤ k ⇒ (1− δk)‖w‖2
2 ≤ ‖Aw‖ ≤ (1 + δk)‖w‖2

2

...i.e., for k-sparse vectors, A is approximately an isometry.

Other properties (spark and null space property (NSP)) can be used;
checking RIP, NSP, spark is NP-hard (Tillmann and Pfetsch, 2012).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 37 / 155

http://tiny.cc/ssnlp

Relevant Theory?

Are sparsity-related compressed sensing (CS) results relevant for NLP?

Nearly all CS results assume linear observations y = Aw + noise;
recent exceptions: Blumensath (2012); Plan and Vershynin (2012).

“Good” matrices with RIP or NSP are randomly constructed.

What is missing: results for (multinomial) logistic loss, not based on
RIP or NSP.

Other types of results for `1-regularized logistic regression:

PAC-Bayesian bounds (generalization improves with sparsity):
Krishnapuram et al. (2005)

Oracle (van de Geer, 2008) and consistency (Negahban et al., 2012)
results.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 38 / 155

http://tiny.cc/ssnlp

Relevant Theory?

Are sparsity-related compressed sensing (CS) results relevant for NLP?

Nearly all CS results assume linear observations y = Aw + noise;
recent exceptions: Blumensath (2012); Plan and Vershynin (2012).

“Good” matrices with RIP or NSP are randomly constructed.

What is missing: results for (multinomial) logistic loss, not based on
RIP or NSP.

Other types of results for `1-regularized logistic regression:

PAC-Bayesian bounds (generalization improves with sparsity):
Krishnapuram et al. (2005)

Oracle (van de Geer, 2008) and consistency (Negahban et al., 2012)
results.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 38 / 155

http://tiny.cc/ssnlp

Relevant Theory?

Are sparsity-related compressed sensing (CS) results relevant for NLP?

Nearly all CS results assume linear observations y = Aw + noise;
recent exceptions: Blumensath (2012); Plan and Vershynin (2012).

“Good” matrices with RIP or NSP are randomly constructed.

What is missing: results for (multinomial) logistic loss, not based on
RIP or NSP.

Other types of results for `1-regularized logistic regression:

PAC-Bayesian bounds (generalization improves with sparsity):
Krishnapuram et al. (2005)

Oracle (van de Geer, 2008) and consistency (Negahban et al., 2012)
results.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 38 / 155

http://tiny.cc/ssnlp

Relevant Theory?

Are sparsity-related compressed sensing (CS) results relevant for NLP?

Nearly all CS results assume linear observations y = Aw + noise;
recent exceptions: Blumensath (2012); Plan and Vershynin (2012).

“Good” matrices with RIP or NSP are randomly constructed.

What is missing: results for (multinomial) logistic loss, not based on
RIP or NSP.

Other types of results for `1-regularized logistic regression:

PAC-Bayesian bounds (generalization improves with sparsity):
Krishnapuram et al. (2005)

Oracle (van de Geer, 2008) and consistency (Negahban et al., 2012)
results.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 38 / 155

http://tiny.cc/ssnlp

Relevant Theory?

Are sparsity-related compressed sensing (CS) results relevant for NLP?

Nearly all CS results assume linear observations y = Aw + noise;
recent exceptions: Blumensath (2012); Plan and Vershynin (2012).

“Good” matrices with RIP or NSP are randomly constructed.

What is missing: results for (multinomial) logistic loss, not based on
RIP or NSP.

Other types of results for `1-regularized logistic regression:

PAC-Bayesian bounds (generalization improves with sparsity):
Krishnapuram et al. (2005)

Oracle (van de Geer, 2008) and consistency (Negahban et al., 2012)
results.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 38 / 155

http://tiny.cc/ssnlp

Relevant Theory?

Are sparsity-related compressed sensing (CS) results relevant for NLP?

Nearly all CS results assume linear observations y = Aw + noise;
recent exceptions: Blumensath (2012); Plan and Vershynin (2012).

“Good” matrices with RIP or NSP are randomly constructed.

What is missing: results for (multinomial) logistic loss, not based on
RIP or NSP.

Other types of results for `1-regularized logistic regression:

PAC-Bayesian bounds (generalization improves with sparsity):
Krishnapuram et al. (2005)

Oracle (van de Geer, 2008) and consistency (Negahban et al., 2012)
results.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 38 / 155

http://tiny.cc/ssnlp

Relevant Theory?

Are sparsity-related compressed sensing (CS) results relevant for NLP?

Nearly all CS results assume linear observations y = Aw + noise;
recent exceptions: Blumensath (2012); Plan and Vershynin (2012).

“Good” matrices with RIP or NSP are randomly constructed.

What is missing: results for (multinomial) logistic loss, not based on
RIP or NSP.

Other types of results for `1-regularized logistic regression:

PAC-Bayesian bounds (generalization improves with sparsity):
Krishnapuram et al. (2005)

Oracle (van de Geer, 2008) and consistency (Negahban et al., 2012)
results.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 38 / 155

http://tiny.cc/ssnlp

Take-Home Messages

Sparsity is desirable for interpretability, computational savings, and
generalization

`1-regularization gives an embedded method for feature selection

Another view of `1: a convex surrogate for direct penalization of
cardinality (`0)

Under some conditions, `1 guarantees exact support recovery

However: the currently known sufficient conditions are too strong and
not met in typical NLP problems

Yet: a lot of theory is still missing

There are compelling algorithmic reasons for using convex surrogates
like `1

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 39 / 155

http://tiny.cc/ssnlp

Outline

1 Introduction

2 Loss Functions and Sparsity

3 Structured Sparsity

4 Algorithms

Convex Analysis

Batch Algorithms

Online Algorithms

5 Applications

6 Conclusions

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 40 / 155

http://tiny.cc/ssnlp

Models

`1 regularization promotes sparse models

A very simple sparsity pattern: prefer models with small cardinality

Our main question: how can we promote less trivial sparsity patterns?

We’ll talk about structured sparsity and group-Lasso regularization.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 41 / 155

http://tiny.cc/ssnlp

Models

`1 regularization promotes sparse models

A very simple sparsity pattern: prefer models with small cardinality

Our main question: how can we promote less trivial sparsity patterns?

We’ll talk about structured sparsity and group-Lasso regularization.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 41 / 155

http://tiny.cc/ssnlp

Models

`1 regularization promotes sparse models

A very simple sparsity pattern: prefer models with small cardinality

Our main question: how can we promote less trivial sparsity patterns?

We’ll talk about structured sparsity and group-Lasso regularization.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 41 / 155

http://tiny.cc/ssnlp

Structured Sparsity and Groups

Main goal: promote structural patterns, not just penalize cardinality

Group sparsity: discard entire groups of features

density inside each group

sparsity with respect to the groups which are selected

choice of groups: prior knowledge about the intended sparsity patterns

Leads to statistical gains if the prior assumptions are correct (Stojnic
et al., 2009)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 42 / 155

http://tiny.cc/ssnlp

Structured Sparsity and Groups

Main goal: promote structural patterns, not just penalize cardinality

Group sparsity: discard entire groups of features

density inside each group

sparsity with respect to the groups which are selected

choice of groups: prior knowledge about the intended sparsity patterns

Leads to statistical gains if the prior assumptions are correct (Stojnic
et al., 2009)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 42 / 155

http://tiny.cc/ssnlp

Structured Sparsity and Groups

Main goal: promote structural patterns, not just penalize cardinality

Group sparsity: discard entire groups of features

density inside each group

sparsity with respect to the groups which are selected

choice of groups: prior knowledge about the intended sparsity patterns

Leads to statistical gains if the prior assumptions are correct (Stojnic
et al., 2009)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 42 / 155

http://tiny.cc/ssnlp

Tons of Uses

feature template selection (Martins et al., 2011b)

multi-task learning (Caruana, 1997; Obozinski et al., 2010)

multiple kernel learning (Lanckriet et al., 2004)

learning the structure of graphical models (Schmidt and Murphy,
2010)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 43 / 155

http://tiny.cc/ssnlp

“Grid” Sparsity

For feature spaces that can be arranged as a grid (examples next)

Goal: push entire columns to have zero weights

The groups are the columns of the grid

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 44 / 155

http://tiny.cc/ssnlp

“Grid” Sparsity

For feature spaces that can be arranged as a grid (examples next)

Goal: push entire columns to have zero weights

The groups are the columns of the grid

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 44 / 155

http://tiny.cc/ssnlp

“Grid” Sparsity

For feature spaces that can be arranged as a grid (examples next)

Goal: push entire columns to have zero weights

The groups are the columns of the grid

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 44 / 155

http://tiny.cc/ssnlp

Example 1: Sparsity with Multiple Classes

Assume the feature map decomposes as f(x , y) = f(x)⊗ ey

In words: we’re conjoining each input feature with each output class

input features

la
b
e
ls

“Standard” sparsity is wasteful—we still need to hash all the input features

What we want: discard some input features, along with each class they
conjoin with

Solution: one group per input feature

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 45 / 155

http://tiny.cc/ssnlp

Example 1: Sparsity with Multiple Classes

Assume the feature map decomposes as f(x , y) = f(x)⊗ ey

In words: we’re conjoining each input feature with each output class

input features

la
b
e
ls

“Standard” sparsity is wasteful—we still need to hash all the input features

What we want: discard some input features, along with each class they
conjoin with

Solution: one group per input feature

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 45 / 155

http://tiny.cc/ssnlp

Example 2: Multi-Task Learning
(Caruana, 1997; Obozinski et al., 2010)

Same thing, except now rows are tasks and columns are features

shared features

ta
sk

s

What we want: discard features that are irrelevant for all tasks

Solution: one group per feature

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 46 / 155

http://tiny.cc/ssnlp

Example 2: Multi-Task Learning
(Caruana, 1997; Obozinski et al., 2010)

Same thing, except now rows are tasks and columns are features

shared features

ta
sk

s

What we want: discard features that are irrelevant for all tasks

Solution: one group per feature

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 46 / 155

http://tiny.cc/ssnlp

Example 3: Multiple Kernel Learning
(Lanckriet et al., 2004)

Same thing, except now columns are kernel functions {Km}M
m=1

kernels

im
p
lic

it
 f

e
a
tu

re
s

Goal: a new kernel which is a sparse combination of the given kernels

K ((x , y), (x ′, y ′)) =
M∑

m=1

αmKm((x , y), (x ′, y ′)), α is sparse

Solution: make each group be a kernel Kj

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 47 / 155

http://tiny.cc/ssnlp

Example 3: Multiple Kernel Learning
(Lanckriet et al., 2004)

Same thing, except now columns are kernel functions {Km}M
m=1

kernels

im
p
lic

it
 f

e
a
tu

re
s

Goal: a new kernel which is a sparse combination of the given kernels

K ((x , y), (x ′, y ′)) =
M∑

m=1

αmKm((x , y), (x ′, y ′)), α is sparse

Solution: make each group be a kernel Kj

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 47 / 155

http://tiny.cc/ssnlp

Group Sparsity

D features

M groups G1, . . . ,GM , each
Gm ⊆ {1, . . . ,D}
parameter subvectors w1, . . . ,wM

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

Ω(w) =
∑M

m=1 ‖wm‖2

Intuitively: the `1 norm of the `2 norms

Technically, still a norm (called a mixed norm, denoted `2,1)

λm: prior weight for group Gm (different groups have different sizes)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 48 / 155

http://tiny.cc/ssnlp

Group Sparsity

D features

M groups G1, . . . ,GM , each
Gm ⊆ {1, . . . ,D}
parameter subvectors w1, . . . ,wM

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

Ω(w) =
∑M

m=1 ‖wm‖2

Intuitively: the `1 norm of the `2 norms

Technically, still a norm (called a mixed norm, denoted `2,1)

λm: prior weight for group Gm (different groups have different sizes)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 48 / 155

http://tiny.cc/ssnlp

Group Sparsity

D features

M groups G1, . . . ,GM , each
Gm ⊆ {1, . . . ,D}
parameter subvectors w1, . . . ,wM

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

Ω(w) =
∑M

m=1 ‖wm‖2

Intuitively: the `1 norm of the `2 norms

Technically, still a norm (called a mixed norm, denoted `2,1)

λm: prior weight for group Gm (different groups have different sizes)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 48 / 155

http://tiny.cc/ssnlp

Group Sparsity

D features

M groups G1, . . . ,GM , each
Gm ⊆ {1, . . . ,D}
parameter subvectors w1, . . . ,wM

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

Ω(w) =
∑M

m=1 ‖wm‖2

Intuitively: the `1 norm of the `2 norms

Technically, still a norm (called a mixed norm, denoted `2,1)

λm: prior weight for group Gm (different groups have different sizes)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 48 / 155

http://tiny.cc/ssnlp

Group Sparsity

D features

M groups G1, . . . ,GM , each
Gm ⊆ {1, . . . ,D}
parameter subvectors w1, . . . ,wM

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

Ω(w) =
∑M

m=1 λm‖wm‖2

Intuitively: the `1 norm of the `2 norms

Technically, still a norm (called a mixed norm, denoted `2,1)

λm: prior weight for group Gm (different groups have different sizes)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 48 / 155

http://tiny.cc/ssnlp

Regularization Formulations (reminder)

Tikhonov regularization: ŵ = arg min
w

Ω(w) +
N∑

n=1

L(w; xn, yn)

Ivanov regularization

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to Ω(w) ≤ τ

Morozov regularization

ŵ = arg min
w

Ω(w)

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

Equivalent, under mild conditions (namely convexity).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 49 / 155

http://tiny.cc/ssnlp

Lasso versus group-Lasso

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 50 / 155

http://tiny.cc/ssnlp

Lasso versus group-Lasso

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 50 / 155

http://tiny.cc/ssnlp

Other names, other norms

Statisticians call these composite absolute penalties (Zhao et al., 2009)

In general: the (weighted) `r -norm of the `q-norms (r ≥ 1, q ≥ 1), called
the mixed `q,r norm

Ω(w) =
(∑M

m=1λm‖wm‖r
q

)1/r

Group sparsity corresponds to r = 1

This talk: q = 2

However q =∞ is also popular (Quattoni et al., 2009; Graça et al., 2009;

Wright et al., 2009; Eisenstein et al., 2011)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 51 / 155

http://tiny.cc/ssnlp

Other names, other norms

Statisticians call these composite absolute penalties (Zhao et al., 2009)

In general: the (weighted) `r -norm of the `q-norms (r ≥ 1, q ≥ 1), called
the mixed `q,r norm

Ω(w) =
(∑M

m=1λm‖wm‖r
q

)1/r

Group sparsity corresponds to r = 1

This talk: q = 2

However q =∞ is also popular (Quattoni et al., 2009; Graça et al., 2009;

Wright et al., 2009; Eisenstein et al., 2011)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 51 / 155

http://tiny.cc/ssnlp

Other names, other norms

Statisticians call these composite absolute penalties (Zhao et al., 2009)

In general: the (weighted) `r -norm of the `q-norms (r ≥ 1, q ≥ 1), called
the mixed `q,r norm

Ω(w) =
(∑M

m=1λm‖wm‖r
q

)1/r

Group sparsity corresponds to r = 1

This talk: q = 2

However q =∞ is also popular (Quattoni et al., 2009; Graça et al., 2009;

Wright et al., 2009; Eisenstein et al., 2011)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 51 / 155

http://tiny.cc/ssnlp

Three Scenarios

Non-overlapping Groups

Tree-structured Groups

Graph-structured Groups

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 52 / 155

http://tiny.cc/ssnlp

Three Scenarios

Non-overlapping Groups

Tree-structured Groups

Graph-structured Groups

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 52 / 155

http://tiny.cc/ssnlp

Non-overlapping Groups

Assume G1, . . . ,GM are disjoint

⇒ Each feature belongs to exactly one group

Ω(w) =
∑M

m=1 λm‖wm‖2

Trivial choices of groups recover unstructured regularizers:

`2-regularization: one large group G1 = {1, . . . ,D}
`1-regularization: D singleton groups Gd = {d}

Examples of non-trivial groups:

label-based groups (groups are columns of a matrix)

template-based groups (next)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 53 / 155

http://tiny.cc/ssnlp

Non-overlapping Groups

Assume G1, . . . ,GM are disjoint

⇒ Each feature belongs to exactly one group

Ω(w) =
∑M

m=1 λm‖wm‖2

Trivial choices of groups recover unstructured regularizers:

`2-regularization: one large group G1 = {1, . . . ,D}
`1-regularization: D singleton groups Gd = {d}

Examples of non-trivial groups:

label-based groups (groups are columns of a matrix)

template-based groups (next)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 53 / 155

http://tiny.cc/ssnlp

Non-overlapping Groups

Assume G1, . . . ,GM are disjoint

⇒ Each feature belongs to exactly one group

Ω(w) =
∑M

m=1 λm‖wm‖2

Trivial choices of groups recover unstructured regularizers:

`2-regularization: one large group G1 = {1, . . . ,D}
`1-regularization: D singleton groups Gd = {d}

Examples of non-trivial groups:

label-based groups (groups are columns of a matrix)

template-based groups (next)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 53 / 155

http://tiny.cc/ssnlp

Non-overlapping Groups

Assume G1, . . . ,GM are disjoint

⇒ Each feature belongs to exactly one group

Ω(w) =
∑M

m=1 λm‖wm‖2

Trivial choices of groups recover unstructured regularizers:

`2-regularization: one large group G1 = {1, . . . ,D}
`1-regularization: D singleton groups Gd = {d}

Examples of non-trivial groups:

label-based groups (groups are columns of a matrix)

template-based groups (next)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 53 / 155

http://tiny.cc/ssnlp

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 54 / 155

http://tiny.cc/ssnlp

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 54 / 155

http://tiny.cc/ssnlp

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 54 / 155

http://tiny.cc/ssnlp

Example: Feature Template Selection

5

5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 54 / 155

http://tiny.cc/ssnlp

Example: Feature Template Selection

5

5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 54 / 155

http://tiny.cc/ssnlp

Example: Feature Template Selection

5

5
Input: We want to explore the feature space

PRP VBP TO VB DT NN NN
Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

"the feature"

"explore the"

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 54 / 155

http://tiny.cc/ssnlp

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

"the feature"

"explore the"

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 54 / 155

http://tiny.cc/ssnlp

Example: Feature Template Selection

5

5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

"the feature"

"explore the"

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 54 / 155

http://tiny.cc/ssnlp

Example: Feature Template Selection

5

5
Input: We want to explore the feature space

PRP VBP TO VB DT NN NN
Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

"the feature"

"explore the"

"DT NN NN"

"VB DT NN"

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 54 / 155

http://tiny.cc/ssnlp

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

"the feature"

"explore the"

"DT NN NN"

"VB DT NN"

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 54 / 155

http://tiny.cc/ssnlp

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

"DT NN NN"

"VB DT NN"

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 54 / 155

http://tiny.cc/ssnlp

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 54 / 155

http://tiny.cc/ssnlp

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 54 / 155

http://tiny.cc/ssnlp

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: B-NP B-VP I-VP I-VP B-NP I-NP I-NP

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 54 / 155

http://tiny.cc/ssnlp

Three Scenarios

Non-overlapping Groups

Tree-structured Groups

Graph-structured Groups

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 55 / 155

http://tiny.cc/ssnlp

Three Scenarios

Non-overlapping Groups

Tree-structured Groups

Graph-structured Groups

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 55 / 155

http://tiny.cc/ssnlp

Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 56 / 155

http://tiny.cc/ssnlp

Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 56 / 155

http://tiny.cc/ssnlp

Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 56 / 155

http://tiny.cc/ssnlp

Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 56 / 155

http://tiny.cc/ssnlp

Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 56 / 155

http://tiny.cc/ssnlp

Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 56 / 155

http://tiny.cc/ssnlp

Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 56 / 155

http://tiny.cc/ssnlp

Plate Notation

Typically used for graphical models, but also works here for representing
the Hasse diagram of tree-structured groups

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 57 / 155

http://tiny.cc/ssnlp

Three Scenarios

Non-overlapping Groups

Tree-structured Groups

Graph-structured Groups

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 58 / 155

http://tiny.cc/ssnlp

Three Scenarios

Non-overlapping Groups

Tree-structured Groups

Graph-structured Groups

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 58 / 155

http://tiny.cc/ssnlp

Graph-Structured Groups

In general: groups can be represented as a directed acyclic graph

set inclusion induces a partial order on groups (Jenatton et al., 2009)

feature space becomes a poset

sparsity patterns: given by this poset

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 59 / 155

http://tiny.cc/ssnlp

Example: coarse-to-fine regularization

1 Define a partial order between basic feature templates (e.g., p0 � w0)

2 Extend this partial order to all templates by lexicographic closure:
p0 � p0p1 � w0w1

Goal: only include finer features if coarser ones are also in the model

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 60 / 155

http://tiny.cc/ssnlp

Things to Keep in Mind

Structured sparsity cares about the structure of the feature space

Group-Lasso regularization generalizes `1 and it’s still convex

Choice of groups: problem dependent, opportunity to use prior
knowledge to favour certain structural patterns

Next: algorithms

We’ll see that optimization is easier with non-overlapping or
tree-structured groups than with arbitrary overlaps

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 61 / 155

http://tiny.cc/ssnlp

Things to Keep in Mind

Structured sparsity cares about the structure of the feature space

Group-Lasso regularization generalizes `1 and it’s still convex

Choice of groups: problem dependent, opportunity to use prior
knowledge to favour certain structural patterns

Next: algorithms

We’ll see that optimization is easier with non-overlapping or
tree-structured groups than with arbitrary overlaps

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 61 / 155

http://tiny.cc/ssnlp

Things to Keep in Mind

Structured sparsity cares about the structure of the feature space

Group-Lasso regularization generalizes `1 and it’s still convex

Choice of groups: problem dependent, opportunity to use prior
knowledge to favour certain structural patterns

Next: algorithms

We’ll see that optimization is easier with non-overlapping or
tree-structured groups than with arbitrary overlaps

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 61 / 155

http://tiny.cc/ssnlp

Outline

1 Introduction

2 Loss Functions and Sparsity

3 Structured Sparsity

4 Algorithms

Convex Analysis

Batch Algorithms

Online Algorithms

5 Applications

6 Conclusions

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 62 / 155

http://tiny.cc/ssnlp

Learning the Model

Recall that learning involves solving

min
w

Ω(w)︸ ︷︷ ︸
regularizer

+
1

N

N∑
i=1

L(w, xi , yi)︸ ︷︷ ︸
total loss

,

We’ll address two kinds of optimization algorithms:

batch algorithms (attacks the complete problem);

online algorithms (uses the training examples one by one)

Before that: we’ll review some key concepts of convex analysis

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 63 / 155

http://tiny.cc/ssnlp

Learning the Model

Recall that learning involves solving

min
w

Ω(w)︸ ︷︷ ︸
regularizer

+
1

N

N∑
i=1

L(w, xi , yi)︸ ︷︷ ︸
total loss

,

We’ll address two kinds of optimization algorithms:

batch algorithms (attacks the complete problem);

online algorithms (uses the training examples one by one)

Before that: we’ll review some key concepts of convex analysis

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 63 / 155

http://tiny.cc/ssnlp

Learning the Model

Recall that learning involves solving

min
w

Ω(w)︸ ︷︷ ︸
regularizer

+
1

N

N∑
i=1

L(w, xi , yi)︸ ︷︷ ︸
total loss

,

We’ll address two kinds of optimization algorithms:

batch algorithms (attacks the complete problem);

online algorithms (uses the training examples one by one)

Before that: we’ll review some key concepts of convex analysis

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 63 / 155

http://tiny.cc/ssnlp

Outline

1 Introduction

2 Loss Functions and Sparsity

3 Structured Sparsity

4 Algorithms

Convex Analysis

Batch Algorithms

Online Algorithms

5 Applications

6 Conclusions

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 64 / 155

http://tiny.cc/ssnlp

Key Concepts in Convex Analysis: Convex Sets

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 65 / 155

http://tiny.cc/ssnlp

Key Concepts in Convex Analysis: Convex Functions

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 66 / 155

http://tiny.cc/ssnlp

Key Concepts in Convex Analysis: Minimizers

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 67 / 155

http://tiny.cc/ssnlp

Key Concepts in Convex Analysis: Subgradients
Convexity ⇒ continuity; convexity 6⇒ differentiability (e.g., f (w) = ‖w‖1).

Subgradients generalize gradients for (maybe non-diff.) convex functions:

v is a subgradient of f at x if f (x′) ≥ f (x) + v>(x′ − x)

Subdifferential: ∂f (x) = {v : v is a subgradient of f at x}
If f is differentiable, ∂f (x) = {∇f (x)}

linear lower bound non-differentiable case

Notation: ∇̃f (x) is a subgradient of f at x

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 68 / 155

http://tiny.cc/ssnlp

Key Concepts in Convex Analysis: Subgradients
Convexity ⇒ continuity; convexity 6⇒ differentiability (e.g., f (w) = ‖w‖1).

Subgradients generalize gradients for (maybe non-diff.) convex functions:

v is a subgradient of f at x if f (x′) ≥ f (x) + v>(x′ − x)

Subdifferential: ∂f (x) = {v : v is a subgradient of f at x}

If f is differentiable, ∂f (x) = {∇f (x)}

linear lower bound

non-differentiable case

Notation: ∇̃f (x) is a subgradient of f at x

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 68 / 155

http://tiny.cc/ssnlp

Key Concepts in Convex Analysis: Subgradients
Convexity ⇒ continuity; convexity 6⇒ differentiability (e.g., f (w) = ‖w‖1).

Subgradients generalize gradients for (maybe non-diff.) convex functions:

v is a subgradient of f at x if f (x′) ≥ f (x) + v>(x′ − x)

Subdifferential: ∂f (x) = {v : v is a subgradient of f at x}
If f is differentiable, ∂f (x) = {∇f (x)}

linear lower bound

non-differentiable case

Notation: ∇̃f (x) is a subgradient of f at x

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 68 / 155

http://tiny.cc/ssnlp

Key Concepts in Convex Analysis: Subgradients
Convexity ⇒ continuity; convexity 6⇒ differentiability (e.g., f (w) = ‖w‖1).

Subgradients generalize gradients for (maybe non-diff.) convex functions:

v is a subgradient of f at x if f (x′) ≥ f (x) + v>(x′ − x)

Subdifferential: ∂f (x) = {v : v is a subgradient of f at x}
If f is differentiable, ∂f (x) = {∇f (x)}

linear lower bound non-differentiable case

Notation: ∇̃f (x) is a subgradient of f at x

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 68 / 155

http://tiny.cc/ssnlp

Key Concepts in Convex Analysis: Subgradients
Convexity ⇒ continuity; convexity 6⇒ differentiability (e.g., f (w) = ‖w‖1).

Subgradients generalize gradients for (maybe non-diff.) convex functions:

v is a subgradient of f at x if f (x′) ≥ f (x) + v>(x′ − x)

Subdifferential: ∂f (x) = {v : v is a subgradient of f at x}
If f is differentiable, ∂f (x) = {∇f (x)}

linear lower bound non-differentiable case

Notation: ∇̃f (x) is a subgradient of f at x
Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 68 / 155

http://tiny.cc/ssnlp

Key Concepts in Convex Analysis: Strong Convexity
Recall the definition of convex function: ∀λ ∈ [0, 1],

f (λx + (1− λ)x ′) ≤ λf (x) + (1− λ)f (x ′)

A β−strongly convex function satisfies a stronger condition: ∀λ ∈ [0, 1]

f (λx + (1− λ)x ′) ≤ λf (x) + (1− λ)f (x ′)− β

2
λ(1− λ)‖x − x ′‖2

2

convexity

strong convexity

Strong convexity
⇒
6⇐ strict convexity.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 69 / 155

http://tiny.cc/ssnlp

Key Concepts in Convex Analysis: Strong Convexity
Recall the definition of convex function: ∀λ ∈ [0, 1],

f (λx + (1− λ)x ′) ≤ λf (x) + (1− λ)f (x ′)

A β−strongly convex function satisfies a stronger condition: ∀λ ∈ [0, 1]

f (λx + (1− λ)x ′) ≤ λf (x) + (1− λ)f (x ′)− β

2
λ(1− λ)‖x − x ′‖2

2

convexity strong convexity

Strong convexity
⇒
6⇐ strict convexity.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 69 / 155

http://tiny.cc/ssnlp

Key Concepts in Convex Analysis: Strong Convexity
Recall the definition of convex function: ∀λ ∈ [0, 1],

f (λx + (1− λ)x ′) ≤ λf (x) + (1− λ)f (x ′)

A β−strongly convex function satisfies a stronger condition: ∀λ ∈ [0, 1]

f (λx + (1− λ)x ′) ≤ λf (x) + (1− λ)f (x ′)− β

2
λ(1− λ)‖x − x ′‖2

2

convexity strong convexity

Strong convexity
⇒
6⇐ strict convexity.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 69 / 155

http://tiny.cc/ssnlp

Proximity Operators
Let Ω : RD → R̄ be a convex function.

The Ω-proximity operator is the following RD → RD map:

w 7→ proxΩ(w) = arg min
u

1

2
‖u−w‖2

2 + Ω(u)

...always well defined, because ‖u−w‖2
2 is strictly convex.

Classical examples:

Squared `2 regularization, Ω(w) = λ
2‖w‖

2
2: scaling operation

proxΩ(w) =
1

1 + λ
w

`1 regularization, Ω(w) = λ‖w‖1: soft-thresholding;

proxΩ(w) = soft(w, λ)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 70 / 155

http://tiny.cc/ssnlp

Proximity Operators
Let Ω : RD → R̄ be a convex function.

The Ω-proximity operator is the following RD → RD map:

w 7→ proxΩ(w) = arg min
u

1

2
‖u−w‖2

2 + Ω(u)

...always well defined, because ‖u−w‖2
2 is strictly convex.

Classical examples:

Squared `2 regularization, Ω(w) = λ
2‖w‖

2
2: scaling operation

proxΩ(w) =
1

1 + λ
w

`1 regularization, Ω(w) = λ‖w‖1: soft-thresholding;

proxΩ(w) = soft(w, λ)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 70 / 155

http://tiny.cc/ssnlp

Proximity Operators
Let Ω : RD → R̄ be a convex function.

The Ω-proximity operator is the following RD → RD map:

w 7→ proxΩ(w) = arg min
u

1

2
‖u−w‖2

2 + Ω(u)

...always well defined, because ‖u−w‖2
2 is strictly convex.

Classical examples:

Squared `2 regularization, Ω(w) = λ
2‖w‖

2
2: scaling operation

proxΩ(w) =
1

1 + λ
w

`1 regularization, Ω(w) = λ‖w‖1: soft-thresholding;

proxΩ(w) = soft(w, λ)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 70 / 155

http://tiny.cc/ssnlp

Proximity Operators
Let Ω : RD → R̄ be a convex function.

The Ω-proximity operator is the following RD → RD map:

w 7→ proxΩ(w) = arg min
u

1

2
‖u−w‖2

2 + Ω(u)

...always well defined, because ‖u−w‖2
2 is strictly convex.

Classical examples:

Squared `2 regularization, Ω(w) = λ
2‖w‖

2
2: scaling operation

proxΩ(w) =
1

1 + λ
w

`1 regularization, Ω(w) = λ‖w‖1: soft-thresholding;

proxΩ(w) = soft(w, λ)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 70 / 155

http://tiny.cc/ssnlp

Proximity Operators (II)

proxΩ(w) = arg min
u

1

2
‖u−w‖2

2 + Ω(u)

`2 regularization, Ω(w) = λ‖w‖2: vector soft thresholding

proxΩ(w) =

{
0 ⇐ ‖w‖ ≤ λ

w
‖w‖ (‖w‖ − λ) ⇐ ‖w‖ > λ

indicator function, Ω(w) = ιS(w) =

{
0 ⇐ w ∈ S

+∞ ⇐ w 6∈ S

proxΩ(w) = PS(w)

Euclidean projection

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 71 / 155

http://tiny.cc/ssnlp

Proximity Operators (II)

proxΩ(w) = arg min
u

1

2
‖u−w‖2

2 + Ω(u)

`2 regularization, Ω(w) = λ‖w‖2: vector soft thresholding

proxΩ(w) =

{
0 ⇐ ‖w‖ ≤ λ

w
‖w‖ (‖w‖ − λ) ⇐ ‖w‖ > λ

indicator function, Ω(w) = ιS(w) =

{
0 ⇐ w ∈ S

+∞ ⇐ w 6∈ S

proxΩ(w) = PS(w)

Euclidean projection

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 71 / 155

http://tiny.cc/ssnlp

Proximity Operators (II)

proxΩ(w) = arg min
u

1

2
‖u−w‖2

2 + Ω(u)

`2 regularization, Ω(w) = λ‖w‖2: vector soft thresholding

proxΩ(w) =

{
0 ⇐ ‖w‖ ≤ λ

w
‖w‖ (‖w‖ − λ) ⇐ ‖w‖ > λ

indicator function, Ω(w) = ιS(w) =

{
0 ⇐ w ∈ S

+∞ ⇐ w 6∈ S

proxΩ(w) = PS(w)

Euclidean projection

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 71 / 155

http://tiny.cc/ssnlp

Proximity Operators (III)

Group regularizers: Ω(w) =
M∑

m=1

Ωj (wGm)

Groups: Gm ⊂ {1, 2, ...,D}. wGm is a sub-vector of w.

Non-overlapping groups (Gm ∩ Gn = ∅, for m 6= n): separable prox
operator

[proxΩ(w)]Gm
= proxΩm

(wGm)

Tree-structured groups: (two groups are either non-overlapping or
one contais the other) proxΩ can be computed recursively (Jenatton
et al., 2011).

Arbitrary groups:
For Ωj (wGm) = ‖wGm‖2: solved via convex smooth optimization (Yuan
et al., 2011).
Sequential proximity steps (Martins et al., 2011a) (more later).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 72 / 155

http://tiny.cc/ssnlp

Proximity Operators (III)

Group regularizers: Ω(w) =
M∑

m=1

Ωj (wGm)

Groups: Gm ⊂ {1, 2, ...,D}. wGm is a sub-vector of w.

Non-overlapping groups (Gm ∩ Gn = ∅, for m 6= n): separable prox
operator

[proxΩ(w)]Gm
= proxΩm

(wGm)

Tree-structured groups: (two groups are either non-overlapping or
one contais the other) proxΩ can be computed recursively (Jenatton
et al., 2011).

Arbitrary groups:
For Ωj (wGm) = ‖wGm‖2: solved via convex smooth optimization (Yuan
et al., 2011).
Sequential proximity steps (Martins et al., 2011a) (more later).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 72 / 155

http://tiny.cc/ssnlp

Proximity Operators (III)

Group regularizers: Ω(w) =
M∑

m=1

Ωj (wGm)

Groups: Gm ⊂ {1, 2, ...,D}. wGm is a sub-vector of w.

Non-overlapping groups (Gm ∩ Gn = ∅, for m 6= n): separable prox
operator

[proxΩ(w)]Gm
= proxΩm

(wGm)

Tree-structured groups: (two groups are either non-overlapping or
one contais the other) proxΩ can be computed recursively (Jenatton
et al., 2011).

Arbitrary groups:
For Ωj (wGm) = ‖wGm‖2: solved via convex smooth optimization (Yuan
et al., 2011).
Sequential proximity steps (Martins et al., 2011a) (more later).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 72 / 155

http://tiny.cc/ssnlp

Proximity Operators (III)

Group regularizers: Ω(w) =
M∑

m=1

Ωj (wGm)

Groups: Gm ⊂ {1, 2, ...,D}. wGm is a sub-vector of w.

Non-overlapping groups (Gm ∩ Gn = ∅, for m 6= n): separable prox
operator

[proxΩ(w)]Gm
= proxΩm

(wGm)

Tree-structured groups: (two groups are either non-overlapping or
one contais the other) proxΩ can be computed recursively (Jenatton
et al., 2011).

Arbitrary groups:
For Ωj (wGm) = ‖wGm‖2: solved via convex smooth optimization (Yuan
et al., 2011).
Sequential proximity steps (Martins et al., 2011a) (more later).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 72 / 155

http://tiny.cc/ssnlp

Outline

1 Introduction

2 Loss Functions and Sparsity

3 Structured Sparsity

4 Algorithms

Convex Analysis

Batch Algorithms

Online Algorithms

5 Applications

6 Conclusions

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 73 / 155

http://tiny.cc/ssnlp

Subgradient Methods

minw Ω(w) + Λ(w), where Λ(w) = 1
N

∑N
i=1 L(w, xi , yi) (loss)

Subgradient methods were invented by Shor in the 1970’s (Shor, 1985):

input: stepsize sequence (ηt)T
t=1

initialize w
for t = 1, 2, . . . do

(sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃Λ(w)

)
end for

Key disadvantages:

The step size ηt needs to be annealed for convergence: very slow!

Doesn’t explicitly capture the sparsity promoted by `1 regularizers.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 74 / 155

http://tiny.cc/ssnlp

Subgradient Methods

minw Ω(w) + Λ(w), where Λ(w) = 1
N

∑N
i=1 L(w, xi , yi) (loss)

Subgradient methods were invented by Shor in the 1970’s (Shor, 1985):

input: stepsize sequence (ηt)T
t=1

initialize w
for t = 1, 2, . . . do

(sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃Λ(w)

)
end for

Key disadvantages:

The step size ηt needs to be annealed for convergence: very slow!

Doesn’t explicitly capture the sparsity promoted by `1 regularizers.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 74 / 155

http://tiny.cc/ssnlp

Subgradient Methods

minw Ω(w) + Λ(w), where Λ(w) = 1
N

∑N
i=1 L(w, xi , yi) (loss)

Subgradient methods were invented by Shor in the 1970’s (Shor, 1985):

input: stepsize sequence (ηt)T
t=1

initialize w
for t = 1, 2, . . . do

(sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃Λ(w)

)
end for

Key disadvantages:

The step size ηt needs to be annealed for convergence: very slow!

Doesn’t explicitly capture the sparsity promoted by `1 regularizers.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 74 / 155

http://tiny.cc/ssnlp

(Block-)Coordinate Descent

minw Ω(w) + Λ(w), where Λ(w) = 1
N

∑N
i=1 L(w, xi , yi) (loss)

Update one (block of) component(s) of w at a time:

w new
i ← arg min

wi

Ω([w1, ...,wi , ...wD]) + Λ([w1, ...,wi , ...wD])

(Genkin et al., 2007; Krishnapuram et al., 2005; Liu et al., 2009; Shevade and

Keerthi, 2003; Tseng and Yun, 2009; Yun and Toh, 2011)

Squared error loss: closed-form solution. Other losses (e.g., logistic):

solve numerically, e.g., Newton steps (Shevade and Keerthi, 2003).

use local quadratic approximation/bound (Krishnapuram et al., 2005;
Tseng and Yun, 2009; Yun and Toh, 2011).

Shown to converge; competitive with state-of-the-art (Yun and Toh, 2011).

Has been used in NLP: Sokolovska et al. (2010); Lavergne et al. (2010).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 75 / 155

http://tiny.cc/ssnlp

(Block-)Coordinate Descent

minw Ω(w) + Λ(w), where Λ(w) = 1
N

∑N
i=1 L(w, xi , yi) (loss)

Update one (block of) component(s) of w at a time:

w new
i ← arg min

wi

Ω([w1, ...,wi , ...wD]) + Λ([w1, ...,wi , ...wD])

(Genkin et al., 2007; Krishnapuram et al., 2005; Liu et al., 2009; Shevade and

Keerthi, 2003; Tseng and Yun, 2009; Yun and Toh, 2011)

Squared error loss: closed-form solution. Other losses (e.g., logistic):

solve numerically, e.g., Newton steps (Shevade and Keerthi, 2003).

use local quadratic approximation/bound (Krishnapuram et al., 2005;
Tseng and Yun, 2009; Yun and Toh, 2011).

Shown to converge; competitive with state-of-the-art (Yun and Toh, 2011).

Has been used in NLP: Sokolovska et al. (2010); Lavergne et al. (2010).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 75 / 155

http://tiny.cc/ssnlp

(Block-)Coordinate Descent

minw Ω(w) + Λ(w), where Λ(w) = 1
N

∑N
i=1 L(w, xi , yi) (loss)

Update one (block of) component(s) of w at a time:

w new
i ← arg min

wi

Ω([w1, ...,wi , ...wD]) + Λ([w1, ...,wi , ...wD])

(Genkin et al., 2007; Krishnapuram et al., 2005; Liu et al., 2009; Shevade and

Keerthi, 2003; Tseng and Yun, 2009; Yun and Toh, 2011)

Squared error loss: closed-form solution. Other losses (e.g., logistic):

solve numerically, e.g., Newton steps (Shevade and Keerthi, 2003).

use local quadratic approximation/bound (Krishnapuram et al., 2005;
Tseng and Yun, 2009; Yun and Toh, 2011).

Shown to converge; competitive with state-of-the-art (Yun and Toh, 2011).

Has been used in NLP: Sokolovska et al. (2010); Lavergne et al. (2010).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 75 / 155

http://tiny.cc/ssnlp

(Block-)Coordinate Descent

minw Ω(w) + Λ(w), where Λ(w) = 1
N

∑N
i=1 L(w, xi , yi) (loss)

Update one (block of) component(s) of w at a time:

w new
i ← arg min

wi

Ω([w1, ...,wi , ...wD]) + Λ([w1, ...,wi , ...wD])

(Genkin et al., 2007; Krishnapuram et al., 2005; Liu et al., 2009; Shevade and

Keerthi, 2003; Tseng and Yun, 2009; Yun and Toh, 2011)

Squared error loss: closed-form solution. Other losses (e.g., logistic):

solve numerically, e.g., Newton steps (Shevade and Keerthi, 2003).

use local quadratic approximation/bound (Krishnapuram et al., 2005;
Tseng and Yun, 2009; Yun and Toh, 2011).

Shown to converge; competitive with state-of-the-art (Yun and Toh, 2011).

Has been used in NLP: Sokolovska et al. (2010); Lavergne et al. (2010).
Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 75 / 155

http://tiny.cc/ssnlp

Projected Gradient
Instead of min

w
Ω(w) + Λ(w) , tackle min

w
Λ(w) subject to Ω(w) ≤ τ .

Building blocks:

loss gradient ∇̃Λ(w)

Euclidean projection PS(w), where S = {w : Ω(w) ≤ τ}

w← PS(w − η∇̃Λ(w))

...maybe using line search to adjust the step length.

Example: for S = {w : ‖w‖1 ≤ τ}, projection PS(w) has O(D log D) cost
(Duchi et al., 2008).

Viable and competitive alternative, which has been used in machine
learning and NLP (Duchi et al., 2008; Quattoni et al., 2009).

Shown later: projected gradient is a particular instance of the more
general proximal gradient methods.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 76 / 155

http://tiny.cc/ssnlp

Projected Gradient
Instead of min

w
Ω(w) + Λ(w) , tackle min

w
Λ(w) subject to Ω(w) ≤ τ .

Building blocks:

loss gradient ∇̃Λ(w)

Euclidean projection PS(w), where S = {w : Ω(w) ≤ τ}

w← PS(w − η∇̃Λ(w))

...maybe using line search to adjust the step length.

Example: for S = {w : ‖w‖1 ≤ τ}, projection PS(w) has O(D log D) cost
(Duchi et al., 2008).

Viable and competitive alternative, which has been used in machine
learning and NLP (Duchi et al., 2008; Quattoni et al., 2009).

Shown later: projected gradient is a particular instance of the more
general proximal gradient methods.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 76 / 155

http://tiny.cc/ssnlp

Projected Gradient
Instead of min

w
Ω(w) + Λ(w) , tackle min

w
Λ(w) subject to Ω(w) ≤ τ .

Building blocks:

loss gradient ∇̃Λ(w)

Euclidean projection PS(w), where S = {w : Ω(w) ≤ τ}

w← PS(w − η∇̃Λ(w))

...maybe using line search to adjust the step length.

Example: for S = {w : ‖w‖1 ≤ τ}, projection PS(w) has O(D log D) cost
(Duchi et al., 2008).

Viable and competitive alternative, which has been used in machine
learning and NLP (Duchi et al., 2008; Quattoni et al., 2009).

Shown later: projected gradient is a particular instance of the more
general proximal gradient methods.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 76 / 155

http://tiny.cc/ssnlp

Projected Gradient
Instead of min

w
Ω(w) + Λ(w) , tackle min

w
Λ(w) subject to Ω(w) ≤ τ .

Building blocks:

loss gradient ∇̃Λ(w)

Euclidean projection PS(w), where S = {w : Ω(w) ≤ τ}

w← PS(w − η∇̃Λ(w))

...maybe using line search to adjust the step length.

Example: for S = {w : ‖w‖1 ≤ τ}, projection PS(w) has O(D log D) cost
(Duchi et al., 2008).

Viable and competitive alternative, which has been used in machine
learning and NLP (Duchi et al., 2008; Quattoni et al., 2009).

Shown later: projected gradient is a particular instance of the more
general proximal gradient methods.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 76 / 155

http://tiny.cc/ssnlp

Projected Gradient
Instead of min

w
Ω(w) + Λ(w) , tackle min

w
Λ(w) subject to Ω(w) ≤ τ .

Building blocks:

loss gradient ∇̃Λ(w)

Euclidean projection PS(w), where S = {w : Ω(w) ≤ τ}

w← PS(w − η∇̃Λ(w))

...maybe using line search to adjust the step length.

Example: for S = {w : ‖w‖1 ≤ τ}, projection PS(w) has O(D log D) cost
(Duchi et al., 2008).

Viable and competitive alternative, which has been used in machine
learning and NLP (Duchi et al., 2008; Quattoni et al., 2009).

Shown later: projected gradient is a particular instance of the more
general proximal gradient methods.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 76 / 155

http://tiny.cc/ssnlp

From Gradient to Hessian: Newton’s Method

Assume F (w) = Ω(w) + Λ(w) is twice-differentiable.

Second order (quadratic) Taylor expansion around w′:

F (w) ≈ F (w′) +∇F (w′)︸ ︷︷ ︸
Gradient

>
(w −w′) +

1

2
(w −w′)> H(w′)︸ ︷︷ ︸

Hessian:

(w −w′)

Use the direction that minimizes this quadratic approximation:

w ← w − α(H(w))−1∇F (w)

with stepsize α usually determined by line search.

Drawback: may be costly (or impossible) to compute and invert the
Hessian! O(D3) for a näıve approach.

Quasi-Newton methods, namely L-BFGS, approximate the inverse
Hessian directly from past gradient information.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 77 / 155

http://tiny.cc/ssnlp

From Gradient to Hessian: Newton’s Method

Assume F (w) = Ω(w) + Λ(w) is twice-differentiable.

Second order (quadratic) Taylor expansion around w′:

F (w) ≈ F (w′) +∇F (w′)︸ ︷︷ ︸
Gradient

>
(w −w′) +

1

2
(w −w′)> H(w′)︸ ︷︷ ︸

Hessian:

(w −w′)

Use the direction that minimizes this quadratic approximation:

w ← w − α(H(w))−1∇F (w)

with stepsize α usually determined by line search.

Drawback: may be costly (or impossible) to compute and invert the
Hessian! O(D3) for a näıve approach.

Quasi-Newton methods, namely L-BFGS, approximate the inverse
Hessian directly from past gradient information.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 77 / 155

http://tiny.cc/ssnlp

From Gradient to Hessian: Newton’s Method

Assume F (w) = Ω(w) + Λ(w) is twice-differentiable.

Second order (quadratic) Taylor expansion around w′:

F (w) ≈ F (w′) +∇F (w′)︸ ︷︷ ︸
Gradient

>
(w −w′) +

1

2
(w −w′)> H(w′)︸ ︷︷ ︸

Hessian:

(w −w′)

Use the direction that minimizes this quadratic approximation:

w ← w − α(H(w))−1∇F (w)

with stepsize α usually determined by line search.

Drawback: may be costly (or impossible) to compute and invert the
Hessian! O(D3) for a näıve approach.

Quasi-Newton methods, namely L-BFGS, approximate the inverse
Hessian directly from past gradient information.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 77 / 155

http://tiny.cc/ssnlp

From Gradient to Hessian: Newton’s Method

Assume F (w) = Ω(w) + Λ(w) is twice-differentiable.

Second order (quadratic) Taylor expansion around w′:

F (w) ≈ F (w′) +∇F (w′)︸ ︷︷ ︸
Gradient

>
(w −w′) +

1

2
(w −w′)> H(w′)︸ ︷︷ ︸

Hessian:

(w −w′)

Use the direction that minimizes this quadratic approximation:

w ← w − α(H(w))−1∇F (w)

with stepsize α usually determined by line search.

Drawback: may be costly (or impossible) to compute and invert the
Hessian! O(D3) for a näıve approach.

Quasi-Newton methods, namely L-BFGS, approximate the inverse
Hessian directly from past gradient information.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 77 / 155

http://tiny.cc/ssnlp

Orthant-Wise Limited-memory Quasi Newton

OWL-QN: clever adaptation of L-BFGS to `1-regularization (Andrew and
Gao, 2007; Gao et al., 2007)

input: stepsize sequence (ηt)T
t=1

initialize w = 0
for t = 1, 2, . . . do

compute a particular subgradient gt := ∇̃Ω(w) + ∇̃Λ(w)
compute inverse Hessian approximation St “a la L-BFGS”
compute descent direction dt = −(St) gt

do line search for α, and update w ← w + αdt

clip w if necessary to stay in the same orthant
end for

Pros: provably convergent; updates are sparse due to the clipping.

Cons: not applicable to group-regularizers.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 78 / 155

http://tiny.cc/ssnlp

Orthant-Wise Limited-memory Quasi Newton

OWL-QN: clever adaptation of L-BFGS to `1-regularization (Andrew and
Gao, 2007; Gao et al., 2007)

input: stepsize sequence (ηt)T
t=1

initialize w = 0
for t = 1, 2, . . . do

compute a particular subgradient gt := ∇̃Ω(w) + ∇̃Λ(w)
compute inverse Hessian approximation St “a la L-BFGS”
compute descent direction dt = −(St) gt

do line search for α, and update w ← w + αdt

clip w if necessary to stay in the same orthant
end for

Pros: provably convergent; updates are sparse due to the clipping.

Cons: not applicable to group-regularizers.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 78 / 155

http://tiny.cc/ssnlp

Orthant-Wise Limited-memory Quasi Newton

OWL-QN: clever adaptation of L-BFGS to `1-regularization (Andrew and
Gao, 2007; Gao et al., 2007)

input: stepsize sequence (ηt)T
t=1

initialize w = 0
for t = 1, 2, . . . do

compute a particular subgradient gt := ∇̃Ω(w) + ∇̃Λ(w)
compute inverse Hessian approximation St “a la L-BFGS”
compute descent direction dt = −(St) gt

do line search for α, and update w ← w + αdt

clip w if necessary to stay in the same orthant
end for

Pros: provably convergent; updates are sparse due to the clipping.

Cons: not applicable to group-regularizers.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 78 / 155

http://tiny.cc/ssnlp

Proximal Gradient

Recall the problem: min
w

Ω(w) + Λ(w)

Key assumptions: ∇Λ(w) and proxΩ “easy”.

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt))

Key feature: each steps decouples the loss and the regularizer.

Projected gradient is a particular case, for proxΩ = PS.

Can be derived with different tools:

expectation-maximization (EM) (Figueiredo and Nowak, 2003);

majorization-minimization (Daubechies et al., 2004);

forward-backward splitting (Combettes and Wajs, 2006);

separable approximation (Wright et al., 2009).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 79 / 155

http://tiny.cc/ssnlp

Proximal Gradient

Recall the problem: min
w

Ω(w) + Λ(w)

Key assumptions: ∇Λ(w) and proxΩ “easy”.

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt))

Key feature: each steps decouples the loss and the regularizer.

Projected gradient is a particular case, for proxΩ = PS.

Can be derived with different tools:

expectation-maximization (EM) (Figueiredo and Nowak, 2003);

majorization-minimization (Daubechies et al., 2004);

forward-backward splitting (Combettes and Wajs, 2006);

separable approximation (Wright et al., 2009).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 79 / 155

http://tiny.cc/ssnlp

Proximal Gradient

Recall the problem: min
w

Ω(w) + Λ(w)

Key assumptions: ∇Λ(w) and proxΩ “easy”.

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt))

Key feature: each steps decouples the loss and the regularizer.

Projected gradient is a particular case, for proxΩ = PS.

Can be derived with different tools:

expectation-maximization (EM) (Figueiredo and Nowak, 2003);

majorization-minimization (Daubechies et al., 2004);

forward-backward splitting (Combettes and Wajs, 2006);

separable approximation (Wright et al., 2009).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 79 / 155

http://tiny.cc/ssnlp

Proximal Gradient

Recall the problem: min
w

Ω(w) + Λ(w)

Key assumptions: ∇Λ(w) and proxΩ “easy”.

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt))

Key feature: each steps decouples the loss and the regularizer.

Projected gradient is a particular case, for proxΩ = PS.

Can be derived with different tools:

expectation-maximization (EM) (Figueiredo and Nowak, 2003);

majorization-minimization (Daubechies et al., 2004);

forward-backward splitting (Combettes and Wajs, 2006);

separable approximation (Wright et al., 2009).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 79 / 155

http://tiny.cc/ssnlp

Proximal Gradient

Recall the problem: min
w

Ω(w) + Λ(w)

Key assumptions: ∇Λ(w) and proxΩ “easy”.

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt))

Key feature: each steps decouples the loss and the regularizer.

Projected gradient is a particular case, for proxΩ = PS.

Can be derived with different tools:

expectation-maximization (EM) (Figueiredo and Nowak, 2003);

majorization-minimization (Daubechies et al., 2004);

forward-backward splitting (Combettes and Wajs, 2006);

separable approximation (Wright et al., 2009).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 79 / 155

http://tiny.cc/ssnlp

Proximal Gradient

Recall the problem: min
w

Ω(w) + Λ(w)

Key assumptions: ∇Λ(w) and proxΩ “easy”.

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt))

Key feature: each steps decouples the loss and the regularizer.

Projected gradient is a particular case, for proxΩ = PS.

Can be derived with different tools:

expectation-maximization (EM) (Figueiredo and Nowak, 2003);

majorization-minimization (Daubechies et al., 2004);

forward-backward splitting (Combettes and Wajs, 2006);

separable approximation (Wright et al., 2009).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 79 / 155

http://tiny.cc/ssnlp

Majorization-Minimization Derivation
Assume Λ(w) has L-Lipschitz gradient: ‖∇Λ(w)−∇Λ(w′)‖ ≤ L‖w −w′‖.
Separable 2nd order approximation of Λ(w) around wt

Λ(w′) + (w −wt)>∇Λ(w′) +
1

2ηt
‖w −w′‖2 = Q(w,wt)

≥ Λ(w)

if ηt ≤ 1/L, with equality for w = wt .

Consequently, if wt+1 = arg minw Q(w,wt) + Ω(w),

Λ(wt+1) + Ω(wt+1) ≤ Q(wt+1,wt) + Ω(wt+1)

≤ Q(wt ,wt) + Ω(w1) = Λ(wt) + Ω(wt)

Easy to show that

wt+1 = arg min
w

Q(w,wt) + Ω(w) = proxηt Ω (wt − ηt∇Λ(wt)) .

Thus, with ηt ≤ 1/L: objective monotonically decreases.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 80 / 155

http://tiny.cc/ssnlp

Majorization-Minimization Derivation
Assume Λ(w) has L-Lipschitz gradient: ‖∇Λ(w)−∇Λ(w′)‖ ≤ L‖w −w′‖.
Separable 2nd order approximation of Λ(w) around wt

Λ(w′) + (w −wt)>∇Λ(w′) +
1

2ηt
‖w −w′‖2 = Q(w,wt) ≥ Λ(w)

if ηt ≤ 1/L, with equality for w = wt .

Consequently, if wt+1 = arg minw Q(w,wt) + Ω(w),

Λ(wt+1) + Ω(wt+1) ≤ Q(wt+1,wt) + Ω(wt+1)

≤ Q(wt ,wt) + Ω(w1) = Λ(wt) + Ω(wt)

Easy to show that

wt+1 = arg min
w

Q(w,wt) + Ω(w) = proxηt Ω (wt − ηt∇Λ(wt)) .

Thus, with ηt ≤ 1/L: objective monotonically decreases.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 80 / 155

http://tiny.cc/ssnlp

Majorization-Minimization Derivation
Assume Λ(w) has L-Lipschitz gradient: ‖∇Λ(w)−∇Λ(w′)‖ ≤ L‖w −w′‖.
Separable 2nd order approximation of Λ(w) around wt

Λ(w′) + (w −wt)>∇Λ(w′) +
1

2ηt
‖w −w′‖2 = Q(w,wt) ≥ Λ(w)

if ηt ≤ 1/L, with equality for w = wt .

Consequently, if wt+1 = arg minw Q(w,wt) + Ω(w),

Λ(wt+1) + Ω(wt+1) ≤ Q(wt+1,wt) + Ω(wt+1)

≤ Q(wt ,wt) + Ω(w1) = Λ(wt) + Ω(wt)

Easy to show that

wt+1 = arg min
w

Q(w,wt) + Ω(w) = proxηt Ω (wt − ηt∇Λ(wt)) .

Thus, with ηt ≤ 1/L: objective monotonically decreases.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 80 / 155

http://tiny.cc/ssnlp

Majorization-Minimization Derivation
Assume Λ(w) has L-Lipschitz gradient: ‖∇Λ(w)−∇Λ(w′)‖ ≤ L‖w −w′‖.
Separable 2nd order approximation of Λ(w) around wt

Λ(w′) + (w −wt)>∇Λ(w′) +
1

2ηt
‖w −w′‖2 = Q(w,wt) ≥ Λ(w)

if ηt ≤ 1/L, with equality for w = wt .

Consequently, if wt+1 = arg minw Q(w,wt) + Ω(w),

Λ(wt+1) + Ω(wt+1) ≤ Q(wt+1,wt) + Ω(wt+1)

≤ Q(wt ,wt) + Ω(w1) = Λ(wt) + Ω(wt)

Easy to show that

wt+1 = arg min
w

Q(w,wt) + Ω(w) = proxηt Ω (wt − ηt∇Λ(wt)) .

Thus, with ηt ≤ 1/L: objective monotonically decreases.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 80 / 155

http://tiny.cc/ssnlp

Monotonicity and Convergence

Proximal gradient, a.k.a., iterative shrinkage thresholding (IST):

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt)) .

Monotonicity: if ηt ≤ 1/L, then Λ(wt+1) + Ω(wt+1) ≤ Λ(wt) + Ω(wt).

Convergence of objective value (Beck and Teboulle, 2009)

(
Λ(wt) + Ω(wt)

)
−
(
Λ(w∗) + Ω(w∗)

)
= O

(
1

t

)

Important: monotonicity doesn’t imply convergence of w1,w2, ...,wt ,

Convergence (even with inexact steps) proved for ηt ≤ 2/L (Combettes
and Wajs, 2006).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 81 / 155

http://tiny.cc/ssnlp

Monotonicity and Convergence

Proximal gradient, a.k.a., iterative shrinkage thresholding (IST):

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt)) .

Monotonicity: if ηt ≤ 1/L, then Λ(wt+1) + Ω(wt+1) ≤ Λ(wt) + Ω(wt).

Convergence of objective value (Beck and Teboulle, 2009)

(
Λ(wt) + Ω(wt)

)
−
(
Λ(w∗) + Ω(w∗)

)
= O

(
1

t

)

Important: monotonicity doesn’t imply convergence of w1,w2, ...,wt ,

Convergence (even with inexact steps) proved for ηt ≤ 2/L (Combettes
and Wajs, 2006).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 81 / 155

http://tiny.cc/ssnlp

Monotonicity and Convergence

Proximal gradient, a.k.a., iterative shrinkage thresholding (IST):

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt)) .

Monotonicity: if ηt ≤ 1/L, then Λ(wt+1) + Ω(wt+1) ≤ Λ(wt) + Ω(wt).

Convergence of objective value (Beck and Teboulle, 2009)

(
Λ(wt) + Ω(wt)

)
−
(
Λ(w∗) + Ω(w∗)

)
= O

(
1

t

)

Important: monotonicity doesn’t imply convergence of w1,w2, ...,wt ,

Convergence (even with inexact steps) proved for ηt ≤ 2/L (Combettes
and Wajs, 2006).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 81 / 155

http://tiny.cc/ssnlp

Accelerating IST: SpaRSA

The step sizes ηt ≤ 2/L (guarantees convergence) and ηt ≤ 1/L
(monotonicity) are too conservative.

A bolder choice: let ηt mimic a Newton step (Barzilai and Borwein, 1988),

1

ηt
I ∼ H(wt) (Hessian)

Approximation in the mean squared sense over the previous step:

1

ηt
= arg min

α
‖α(wt −wt−1)− (∇Λ(wt)−∇Λ(wt−1))‖2

Resulting algorithm: SpaRSA (sparse reconstruction by separable
approximation); shown to converge (with a safeguard) and to be fast
Wright et al. (2009).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 82 / 155

http://tiny.cc/ssnlp

Accelerating IST: SpaRSA

The step sizes ηt ≤ 2/L (guarantees convergence) and ηt ≤ 1/L
(monotonicity) are too conservative.

A bolder choice: let ηt mimic a Newton step (Barzilai and Borwein, 1988),

1

ηt
I ∼ H(wt) (Hessian)

Approximation in the mean squared sense over the previous step:

1

ηt
= arg min

α
‖α(wt −wt−1)− (∇Λ(wt)−∇Λ(wt−1))‖2

Resulting algorithm: SpaRSA (sparse reconstruction by separable
approximation); shown to converge (with a safeguard) and to be fast
Wright et al. (2009).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 82 / 155

http://tiny.cc/ssnlp

Accelerating IST: SpaRSA

The step sizes ηt ≤ 2/L (guarantees convergence) and ηt ≤ 1/L
(monotonicity) are too conservative.

A bolder choice: let ηt mimic a Newton step (Barzilai and Borwein, 1988),

1

ηt
I ∼ H(wt) (Hessian)

Approximation in the mean squared sense over the previous step:

1

ηt
= arg min

α
‖α(wt −wt−1)− (∇Λ(wt)−∇Λ(wt−1))‖2

Resulting algorithm: SpaRSA (sparse reconstruction by separable
approximation); shown to converge (with a safeguard) and to be fast
Wright et al. (2009).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 82 / 155

http://tiny.cc/ssnlp

Accelerating IST: SpaRSA

The step sizes ηt ≤ 2/L (guarantees convergence) and ηt ≤ 1/L
(monotonicity) are too conservative.

A bolder choice: let ηt mimic a Newton step (Barzilai and Borwein, 1988),

1

ηt
I ∼ H(wt) (Hessian)

Approximation in the mean squared sense over the previous step:

1

ηt
= arg min

α
‖α(wt −wt−1)− (∇Λ(wt)−∇Λ(wt−1))‖2

Resulting algorithm: SpaRSA (sparse reconstruction by separable
approximation); shown to converge (with a safeguard) and to be fast
Wright et al. (2009).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 82 / 155

http://tiny.cc/ssnlp

Accelerating IST: FISTA

Idea: compute wt+1 based, not only on wt , but also on wt−1.

Fast IST algorithm (FISTA) (Beck and Teboulle, 2009):

bt+1 =
1+
√

1+4 b2
t

2

z = wt + bt−1
bt+1

(wt −wt−1)

wt+1 = proxηΩ (z− η∇Λ(z))

Convergence of objective value (Beck and Teboulle, 2009)

(
Λ(wt) + Ω(wt)

)
−
(
Λ(w∗) + Ω(w∗)

)
= O

(
1

t2

)
(vs O(1/t) for IST)

Convergence of iterates has not been shown.

Another two-step method: TwIST (two-step IST) (Bioucas-Dias and
Figueiredo, 2007).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 83 / 155

http://tiny.cc/ssnlp

Accelerating IST: FISTA

Idea: compute wt+1 based, not only on wt , but also on wt−1.

Fast IST algorithm (FISTA) (Beck and Teboulle, 2009):

bt+1 =
1+
√

1+4 b2
t

2

z = wt + bt−1
bt+1

(wt −wt−1)

wt+1 = proxηΩ (z− η∇Λ(z))

Convergence of objective value (Beck and Teboulle, 2009)

(
Λ(wt) + Ω(wt)

)
−
(
Λ(w∗) + Ω(w∗)

)
= O

(
1

t2

)
(vs O(1/t) for IST)

Convergence of iterates has not been shown.

Another two-step method: TwIST (two-step IST) (Bioucas-Dias and
Figueiredo, 2007).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 83 / 155

http://tiny.cc/ssnlp

Accelerating IST: FISTA

Idea: compute wt+1 based, not only on wt , but also on wt−1.

Fast IST algorithm (FISTA) (Beck and Teboulle, 2009):

bt+1 =
1+
√

1+4 b2
t

2

z = wt + bt−1
bt+1

(wt −wt−1)

wt+1 = proxηΩ (z− η∇Λ(z))

Convergence of objective value (Beck and Teboulle, 2009)

(
Λ(wt) + Ω(wt)

)
−
(
Λ(w∗) + Ω(w∗)

)
= O

(
1

t2

)
(vs O(1/t) for IST)

Convergence of iterates has not been shown.

Another two-step method: TwIST (two-step IST) (Bioucas-Dias and
Figueiredo, 2007).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 83 / 155

http://tiny.cc/ssnlp

Accelerating IST: FISTA

Idea: compute wt+1 based, not only on wt , but also on wt−1.

Fast IST algorithm (FISTA) (Beck and Teboulle, 2009):

bt+1 =
1+
√

1+4 b2
t

2

z = wt + bt−1
bt+1

(wt −wt−1)

wt+1 = proxηΩ (z− η∇Λ(z))

Convergence of objective value (Beck and Teboulle, 2009)

(
Λ(wt) + Ω(wt)

)
−
(
Λ(w∗) + Ω(w∗)

)
= O

(
1

t2

)
(vs O(1/t) for IST)

Convergence of iterates has not been shown.

Another two-step method: TwIST (two-step IST) (Bioucas-Dias and
Figueiredo, 2007).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 83 / 155

http://tiny.cc/ssnlp

Least Angle Regression (LARS)
LARS only applies to ŵ(λ) = arg min

w
λ‖w‖1 + ‖Aw − y‖2

Key ideas (Efron et al., 2004; Osborne et al., 2000)

“regularization path” ŵ(λ) is piecewise linear (Markowitz, 1952);
the cusps can be identified in closed form;
simply jump from one cusp to the next.

Cons: doesn’t apply to group regularizers; exponential worst case
complexity (Mairal and Yu, 2012).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 84 / 155

http://tiny.cc/ssnlp

Least Angle Regression (LARS)
LARS only applies to ŵ(λ) = arg min

w
λ‖w‖1 + ‖Aw − y‖2

Key ideas (Efron et al., 2004; Osborne et al., 2000)

“regularization path” ŵ(λ) is piecewise linear (Markowitz, 1952);
the cusps can be identified in closed form;
simply jump from one cusp to the next.

Cons: doesn’t apply to group regularizers; exponential worst case
complexity (Mairal and Yu, 2012).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 84 / 155

http://tiny.cc/ssnlp

Least Angle Regression (LARS)
LARS only applies to ŵ(λ) = arg min

w
λ‖w‖1 + ‖Aw − y‖2

Key ideas (Efron et al., 2004; Osborne et al., 2000)

“regularization path” ŵ(λ) is piecewise linear (Markowitz, 1952);
the cusps can be identified in closed form;
simply jump from one cusp to the next.

Cons: doesn’t apply to group regularizers; exponential worst case
complexity (Mairal and Yu, 2012).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 84 / 155

http://tiny.cc/ssnlp

Least Angle Regression (LARS)
LARS only applies to ŵ(λ) = arg min

w
λ‖w‖1 + ‖Aw − y‖2

Key ideas (Efron et al., 2004; Osborne et al., 2000)

“regularization path” ŵ(λ) is piecewise linear (Markowitz, 1952);
the cusps can be identified in closed form;
simply jump from one cusp to the next.

Cons: doesn’t apply to group regularizers; exponential worst case
complexity (Mairal and Yu, 2012).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 84 / 155

http://tiny.cc/ssnlp

Homotopy/Continuation Methods

LARS is related to a more general family: homotopy/continuation
methods.

Consider ŵ(λ) = arg min
w

λΩ̄(w) + Λ(w)

Key ideas

start with high value of λ, such that ŵ(λ) is easy (e.g., zero);

slowly decrease λ while “tracking” the solution;

“tracking” means: use the previous ŵ(λ) to “warm start” the solver
for the next problem.

It’s a meta-algorithm of general applicability when using “warm startable”
solvers (Figueiredo et al., 2007; Hale et al., 2008; Osborne et al., 2000).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 85 / 155

http://tiny.cc/ssnlp

Homotopy/Continuation Methods

LARS is related to a more general family: homotopy/continuation
methods.

Consider ŵ(λ) = arg min
w

λΩ̄(w) + Λ(w)

Key ideas

start with high value of λ, such that ŵ(λ) is easy (e.g., zero);

slowly decrease λ while “tracking” the solution;

“tracking” means: use the previous ŵ(λ) to “warm start” the solver
for the next problem.

It’s a meta-algorithm of general applicability when using “warm startable”
solvers (Figueiredo et al., 2007; Hale et al., 2008; Osborne et al., 2000).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 85 / 155

http://tiny.cc/ssnlp

Homotopy/Continuation Methods

LARS is related to a more general family: homotopy/continuation
methods.

Consider ŵ(λ) = arg min
w

λΩ̄(w) + Λ(w)

Key ideas

start with high value of λ, such that ŵ(λ) is easy (e.g., zero);

slowly decrease λ while “tracking” the solution;

“tracking” means: use the previous ŵ(λ) to “warm start” the solver
for the next problem.

It’s a meta-algorithm of general applicability when using “warm startable”
solvers (Figueiredo et al., 2007; Hale et al., 2008; Osborne et al., 2000).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 85 / 155

http://tiny.cc/ssnlp

Some Stuff We Didn’t Talk About

shooting method (Fu, 1998);

grafting (Perkins et al., 2003) and grafting-light (Zhu et al., 2010);

forward stagewise regression (Hastie et al., 2007);

alternating direction method of multipliers (ADMM) (Figueiredo and
Bioucas-Dias, 2011).

Next: We’ll talk about online algorithms.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 86 / 155

http://tiny.cc/ssnlp

Some Stuff We Didn’t Talk About

shooting method (Fu, 1998);

grafting (Perkins et al., 2003) and grafting-light (Zhu et al., 2010);

forward stagewise regression (Hastie et al., 2007);

alternating direction method of multipliers (ADMM) (Figueiredo and
Bioucas-Dias, 2011).

Next: We’ll talk about online algorithms.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 86 / 155

http://tiny.cc/ssnlp

Outline

1 Introduction

2 Loss Functions and Sparsity

3 Structured Sparsity

4 Algorithms

Convex Analysis

Batch Algorithms

Online Algorithms

5 Applications

6 Conclusions

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 87 / 155

http://tiny.cc/ssnlp

Why Online?

1 Suitable for large datasets

2 Suitable for structured prediction

3 Faster to approach a near-optimal region

4 Slower convergence, but this is fine in machine learning

cf. “the tradeoffs of large scale learning” (Bottou and Bousquet, 2007)

What we will say can be straighforwardly extended to the mini-batch case.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 88 / 155

http://tiny.cc/ssnlp

Why Online?

1 Suitable for large datasets

2 Suitable for structured prediction

3 Faster to approach a near-optimal region

4 Slower convergence, but this is fine in machine learning

cf. “the tradeoffs of large scale learning” (Bottou and Bousquet, 2007)

What we will say can be straighforwardly extended to the mini-batch case.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 88 / 155

http://tiny.cc/ssnlp

Why Online?

1 Suitable for large datasets

2 Suitable for structured prediction

3 Faster to approach a near-optimal region

4 Slower convergence, but this is fine in machine learning

cf. “the tradeoffs of large scale learning” (Bottou and Bousquet, 2007)

What we will say can be straighforwardly extended to the mini-batch case.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 88 / 155

http://tiny.cc/ssnlp

Why Online?

1 Suitable for large datasets

2 Suitable for structured prediction

3 Faster to approach a near-optimal region

4 Slower convergence, but this is fine in machine learning

cf. “the tradeoffs of large scale learning” (Bottou and Bousquet, 2007)

What we will say can be straighforwardly extended to the mini-batch case.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 88 / 155

http://tiny.cc/ssnlp

Why Online?

1 Suitable for large datasets

2 Suitable for structured prediction

3 Faster to approach a near-optimal region

4 Slower convergence, but this is fine in machine learning

cf. “the tradeoffs of large scale learning” (Bottou and Bousquet, 2007)

What we will say can be straighforwardly extended to the mini-batch case.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 88 / 155

http://tiny.cc/ssnlp

Why Online?

1 Suitable for large datasets

2 Suitable for structured prediction

3 Faster to approach a near-optimal region

4 Slower convergence, but this is fine in machine learning

cf. “the tradeoffs of large scale learning” (Bottou and Bousquet, 2007)

What we will say can be straighforwardly extended to the mini-batch case.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 88 / 155

http://tiny.cc/ssnlp

Plain Stochastic (Sub-)Gradient Descent

min
w

Ω(w)︸ ︷︷ ︸
regularizer

+
1

N

N∑
i=1

L(w, xi , yi)︸ ︷︷ ︸
empirical loss

,

input: stepsize sequence (ηt)T
t=1

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
(sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)
end for

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 89 / 155

http://tiny.cc/ssnlp

Plain Stochastic (Sub-)Gradient Descent

min
w

Ω(w)︸ ︷︷ ︸
regularizer

+
1

N

N∑
i=1

L(w, xi , yi)︸ ︷︷ ︸
empirical loss

,

input: stepsize sequence (ηt)T
t=1

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
(sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)
end for

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 89 / 155

http://tiny.cc/ssnlp

What’s the Problem with SGD?

(Sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)

`2-regularization Ω(w) = λ
2‖w‖

2
2 =⇒ ∇̃Ω(w) = λw

w ← (1− ηtλ)w︸ ︷︷ ︸
scaling

− ηt∇̃L(w; xt , yt)

`1-regularization Ω(w) = λ‖w‖1 =⇒ ∇̃Ω(w) = λsign(w)

w ← w − ηtλsign(w)︸ ︷︷ ︸
constant penalty

− ηt∇̃L(w; xt , yt)

Problem: iterates are never sparse!

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 90 / 155

http://tiny.cc/ssnlp

What’s the Problem with SGD?

(Sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)
`2-regularization Ω(w) = λ

2‖w‖
2
2 =⇒ ∇̃Ω(w) = λw

w ← (1− ηtλ)w︸ ︷︷ ︸
scaling

− ηt∇̃L(w; xt , yt)

`1-regularization Ω(w) = λ‖w‖1 =⇒ ∇̃Ω(w) = λsign(w)

w ← w − ηtλsign(w)︸ ︷︷ ︸
constant penalty

− ηt∇̃L(w; xt , yt)

Problem: iterates are never sparse!

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 90 / 155

http://tiny.cc/ssnlp

What’s the Problem with SGD?

(Sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)
`2-regularization Ω(w) = λ

2‖w‖
2
2 =⇒ ∇̃Ω(w) = λw

w ← (1− ηtλ)w︸ ︷︷ ︸
scaling

− ηt∇̃L(w; xt , yt)

`1-regularization Ω(w) = λ‖w‖1 =⇒ ∇̃Ω(w) = λsign(w)

w ← w − ηtλsign(w)︸ ︷︷ ︸
constant penalty

− ηt∇̃L(w; xt , yt)

Problem: iterates are never sparse!

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 90 / 155

http://tiny.cc/ssnlp

What’s the Problem with SGD?

(Sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)
`2-regularization Ω(w) = λ

2‖w‖
2
2 =⇒ ∇̃Ω(w) = λw

w ← (1− ηtλ)w︸ ︷︷ ︸
scaling

− ηt∇̃L(w; xt , yt)

`1-regularization Ω(w) = λ‖w‖1 =⇒ ∇̃Ω(w) = λsign(w)

w ← w − ηtλsign(w)︸ ︷︷ ︸
constant penalty

− ηt∇̃L(w; xt , yt)

Problem: iterates are never sparse!

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 90 / 155

http://tiny.cc/ssnlp

Plain SGD with `2-regularization

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 91 / 155

http://tiny.cc/ssnlp

Plain SGD with `2-regularization

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 91 / 155

http://tiny.cc/ssnlp

Plain SGD with `2-regularization

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 91 / 155

http://tiny.cc/ssnlp

Plain SGD with `2-regularization

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 91 / 155

http://tiny.cc/ssnlp

Plain SGD with `2-regularization

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 91 / 155

http://tiny.cc/ssnlp

Plain SGD with `2-regularization

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 91 / 155

http://tiny.cc/ssnlp

Plain SGD with `2-regularization

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 91 / 155

http://tiny.cc/ssnlp

Plain SGD with `2-regularization

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 91 / 155

http://tiny.cc/ssnlp

Plain SGD with `2-regularization

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 91 / 155

http://tiny.cc/ssnlp

Plain SGD with `2-regularization

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 91 / 155

http://tiny.cc/ssnlp

Plain SGD with `1-regularization

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 92 / 155

http://tiny.cc/ssnlp

Plain SGD with `1-regularization

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 92 / 155

http://tiny.cc/ssnlp

Plain SGD with `1-regularization

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 92 / 155

http://tiny.cc/ssnlp

Plain SGD with `1-regularization

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 92 / 155

http://tiny.cc/ssnlp

Plain SGD with `1-regularization

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 92 / 155

http://tiny.cc/ssnlp

Plain SGD with `1-regularization

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 92 / 155

http://tiny.cc/ssnlp

Plain SGD with `1-regularization

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 92 / 155

http://tiny.cc/ssnlp

Plain SGD with `1-regularization

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 92 / 155

http://tiny.cc/ssnlp

Plain SGD with `1-regularization

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 92 / 155

http://tiny.cc/ssnlp

Plain SGD with `1-regularization

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 92 / 155

http://tiny.cc/ssnlp

“Sparse” Online Algorithms

SGD with Cumulative Penalty (Tsuruoka et al., 2009)

Truncated Gradient (Langford et al., 2009)

Online Forward-Backward Splitting (Duchi and Singer, 2009)

Regularized Dual Averaging (Xiao, 2010)

Online Proximal Gradient (Martins et al., 2011a)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 93 / 155

http://tiny.cc/ssnlp

“Sparse” Online Algorithms

SGD with Cumulative Penalty (Tsuruoka et al., 2009)

Truncated Gradient (Langford et al., 2009)

Online Forward-Backward Splitting (Duchi and Singer, 2009)

Regularized Dual Averaging (Xiao, 2010)

Online Proximal Gradient (Martins et al., 2011a)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 93 / 155

http://tiny.cc/ssnlp

Cumulative Penalties (Tsuruoka et al., 2009)

an attempt to reconcile SGD and `1 regularizarion, maintaining
algorithmic efficiency

computational trick: accumulates the penalties, and applies them
all at once when a feature fires (due to Carpenter (2008))

clipping: if the total penalty is greater than the magnitude of the
feature weight wj , clip wj to zero

but store the amount of clipping for future use.

leads to very sparse models

however: no proof of convergence

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 94 / 155

http://tiny.cc/ssnlp

Cumulative Penalties (Tsuruoka et al., 2009)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 95 / 155

http://tiny.cc/ssnlp

Cumulative Penalties (Tsuruoka et al., 2009)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 95 / 155

http://tiny.cc/ssnlp

Cumulative Penalties (Tsuruoka et al., 2009)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 95 / 155

http://tiny.cc/ssnlp

Cumulative Penalties (Tsuruoka et al., 2009)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 95 / 155

http://tiny.cc/ssnlp

Cumulative Penalties (Tsuruoka et al., 2009)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 95 / 155

http://tiny.cc/ssnlp

Cumulative Penalties (Tsuruoka et al., 2009)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 95 / 155

http://tiny.cc/ssnlp

Cumulative Penalties (Tsuruoka et al., 2009)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 95 / 155

http://tiny.cc/ssnlp

Cumulative Penalties (Tsuruoka et al., 2009)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 95 / 155

http://tiny.cc/ssnlp

Cumulative Penalties (Tsuruoka et al., 2009)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 95 / 155

http://tiny.cc/ssnlp

Cumulative Penalties (Tsuruoka et al., 2009)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 95 / 155

http://tiny.cc/ssnlp

“Sparse” Online Algorithms

SGD with Cumulative Penalty (Tsuruoka et al., 2009)

Truncated Gradient (Langford et al., 2009)

Online Forward-Backward Splitting (Duchi and Singer, 2009)

Regularized Dual Averaging (Xiao, 2010)

Online Proximal Gradient (Martins et al., 2011a)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 96 / 155

http://tiny.cc/ssnlp

Truncated Gradient (Langford et al., 2009)

input: laziness coefficient K , stepsize sequence (ηt)T
t=1

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
(sub-)gradient step: w ← w − ηt∇̃L(θ; xt , yt)
if t/K is integer then

truncation step: w ← w − sign(w) (|w| − ηtKτ)︸ ︷︷ ︸
soft-thresholding

end if
end for

take gradients only with respect to the loss

every K rounds: a “lazy” soft-thresholding step

Langford et al. (2009) also suggest other forms of truncation

converges to ε-accurate objective after O(1/ε2) iterations

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 97 / 155

http://tiny.cc/ssnlp

Truncated Gradient (Langford et al., 2009)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 98 / 155

http://tiny.cc/ssnlp

Truncated Gradient (Langford et al., 2009)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 98 / 155

http://tiny.cc/ssnlp

Truncated Gradient (Langford et al., 2009)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 98 / 155

http://tiny.cc/ssnlp

Truncated Gradient (Langford et al., 2009)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 98 / 155

http://tiny.cc/ssnlp

Truncated Gradient (Langford et al., 2009)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 98 / 155

http://tiny.cc/ssnlp

Truncated Gradient (Langford et al., 2009)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 98 / 155

http://tiny.cc/ssnlp

Truncated Gradient (Langford et al., 2009)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 98 / 155

http://tiny.cc/ssnlp

Truncated Gradient (Langford et al., 2009)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 98 / 155

http://tiny.cc/ssnlp

Truncated Gradient (Langford et al., 2009)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 98 / 155

http://tiny.cc/ssnlp

Truncated Gradient (Langford et al., 2009)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 98 / 155

http://tiny.cc/ssnlp

“Sparse” Online Algorithms

SGD with Cumulative Penalty (Tsuruoka et al., 2009)

Truncated Gradient (Langford et al., 2009)

Online Forward-Backward Splitting (Duchi and Singer, 2009)

Regularized Dual Averaging (Xiao, 2010)

Online Proximal Gradient (Martins et al., 2011a)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 99 / 155

http://tiny.cc/ssnlp

Online Forward-Backward Splitting (Duchi and
Singer, 2009)

input: stepsize sequences (ηt)T
t=1, (ρt)T

t=1

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
gradient step: w ← w − ηt∇L(w; xt , yt)
proximal step: w ← proxρt Ω(w)

end for

generalizes truncated gradient to arbitrary regularizers Ω
can tackle non-overlapping or hierarchical group-Lasso, but arbitrary
overlaps are difficult to handle (more later)

practical drawback: without a laziness parameter, iterates are
usually not very sparse

converges to ε-accurate objective after O(1/ε2) iterations

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 100 / 155

http://tiny.cc/ssnlp

“Sparse” Online Algorithms

SGD with Cumulative Penalty (Tsuruoka et al., 2009)

Truncated Gradient (Langford et al., 2009)

Online Forward-Backward Splitting (Duchi and Singer, 2009)

Regularized Dual Averaging (Xiao, 2010)

Online Proximal Gradient (Martins et al., 2011a)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 101 / 155

http://tiny.cc/ssnlp

Regularized Dual Averaging (Xiao, 2010)

input: coefficient η0

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
gradient step: s ← s +∇L(w; xt , yt)
proximal step: w ← η0

√
t × proxΩ(−s/t)

end for

based on the dual averaging technique (Nesterov, 2009)

in practice: quite effective at getting sparse iterates (the proximal
steps are not vanishing)

O(C1/ε
2 + C2/

√
ε) convergence, where C1 is a Lipschitz constant,

and C2 is the variance of the stochastic gradients

drawback: requires storing two vectors (w and s), and s is not sparse

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 102 / 155

http://tiny.cc/ssnlp

What About Group Sparsity?

Both online forward-backward splitting (Duchi and Singer, 2009) and
regularized dual averaging (Xiao, 2010) can handle groups

All that is necessary is to compute proxΩ(w)

easy for non-overlapping and tree-structured groups

But what about general overlapping groups?

Martins et al. (2011a): a prox-grad algorithm that can handle arbitrary
overlapping groups

decompose Ω(w) =
∑J

j=1 Ωj (w) where each Ωj is non-overlapping

then apply proxΩj
sequentially

still convergent (Martins et al., 2011a)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 103 / 155

http://tiny.cc/ssnlp

“Sparse” Online Algorithms

SGD with Cumulative Penalty (Tsuruoka et al., 2009)

Truncated Gradient (Langford et al., 2009)

Online Forward-Backward Splitting (Duchi and Singer, 2009)

Regularized Dual Averaging (Xiao, 2010)

Online Proximal Gradient (Martins et al., 2011a)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 104 / 155

http://tiny.cc/ssnlp

Online Proximal Gradient (Martins et al., 2011a)

input: gravity sequence (σt)T
t=1, stepsize sequence (ηt)T

t=1

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
gradient step: w ← w − ηt∇L(θ; xt , yt)
sequential proximal steps:
for j = 1, 2, . . . do

w ← proxηtσt Ωj
(w)

end for
end for

PAC Convergence. ε-accurate solution after T ≤ O(1/ε2) rounds

Computational efficiency. Each gradient step is linear in the
number of features that fire.
Each proximal step is linear in the number of groups M.
Both are independent of D.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 105 / 155

http://tiny.cc/ssnlp

Online Proximal Gradient (Martins et al., 2011a)

input: gravity sequence (σt)T
t=1, stepsize sequence (ηt)T

t=1

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
gradient step: w ← w − ηt∇L(θ; xt , yt)
sequential proximal steps:
for j = 1, 2, . . . do

w ← proxηtσt Ωj
(w)

end for
end for

PAC Convergence. ε-accurate solution after T ≤ O(1/ε2) rounds

Computational efficiency. Each gradient step is linear in the
number of features that fire.
Each proximal step is linear in the number of groups M.
Both are independent of D.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 105 / 155

http://tiny.cc/ssnlp

Implementation Tricks (Martins et al., 2011b)

Budget driven shrinkage. Instead of a regularization constant,
specify a budget on the number of selected groups. Each proximal
step sets σt to meet this target.

Sparseptron. Let L(w) = w>(f(x , ŷ)− f(x , y)) be the perceptron
loss. The algorithm becomes perceptron with shrinkage.

Debiasing. Run a few iterations of sparseptron to identify the
relevant groups. Then run a unregularized learner at a second stage.

Memory efficiency. Only a
small active set of features need
to be maintained. Entire groups
can be deleted after each
proximal step.
Many irrelevant features are
never instantiated.

0 5 10 15
0

2

4

6
x 10

6

Epochs

Fe

at
ur

es

MIRA

Sparceptron + MIRA (B=30)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 106 / 155

http://tiny.cc/ssnlp

Implementation Tricks (Martins et al., 2011b)

Budget driven shrinkage. Instead of a regularization constant,
specify a budget on the number of selected groups. Each proximal
step sets σt to meet this target.

Sparseptron. Let L(w) = w>(f(x , ŷ)− f(x , y)) be the perceptron
loss. The algorithm becomes perceptron with shrinkage.

Debiasing. Run a few iterations of sparseptron to identify the
relevant groups. Then run a unregularized learner at a second stage.

Memory efficiency. Only a
small active set of features need
to be maintained. Entire groups
can be deleted after each
proximal step.
Many irrelevant features are
never instantiated.

0 5 10 15
0

2

4

6
x 10

6

Epochs

Fe

at
ur

es

MIRA

Sparceptron + MIRA (B=30)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 106 / 155

http://tiny.cc/ssnlp

Summary of Algorithms

Converges? Rate? Sparse? Groups? Overlaps?
Coordinate descent X ? X Maybe No
Prox-grad (IST) X O(1/ε) Yes/No X Not easy
OWL-QN X ? Yes/No No No
SpaRSA X O(1/ε) Yes/No X Not easy
FISTA X O(1/

√
ε) Yes/No X Not easy

ADMM (C-SALSA) X ? No X X
Online subgradient X O(1/ε2) No X No
Cumulative penalty ? ? X No No
Truncated gradient X O(1/ε2) X No No
FOBOS X O(1/ε2) Sort of X Not easy
RDA X O(1/ε2) X X Not easy
Online prox-grad X O(1/ε2) X X X

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 107 / 155

http://tiny.cc/ssnlp

Outline

1 Introduction

2 Loss Functions and Sparsity

3 Structured Sparsity

4 Algorithms

Convex Analysis

Batch Algorithms

Online Algorithms

5 Applications

6 Conclusions

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 108 / 155

http://tiny.cc/ssnlp

Applications of Structured Sparsity in NLP

Relatively few to date (but this list may not be exhaustive).

1 Martins et al. (2011b):

Phrase chunking
Named entity recognition
Dependency parsing

2 Semisupervised lexicon expansion (Das and Smith, 2012)

3 Unsupervised tagging (Graça et al., 2009)

4 Sociolinguistic association discovery (Eisenstein et al., 2011)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 109 / 155

http://tiny.cc/ssnlp

Applications of Structured Sparsity in NLP

Relatively few to date (but this list may not be exhaustive).

1 Martins et al. (2011b):

Phrase chunking
Named entity recognition
Dependency parsing

2 Semisupervised lexicon expansion (Das and Smith, 2012)

3 Unsupervised tagging (Graça et al., 2009)

4 Sociolinguistic association discovery (Eisenstein et al., 2011)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 109 / 155

http://tiny.cc/ssnlp

Martins et al. (2011b): Group by Template

Feature templates provide a straightforward way to define non-overlapping
groups.

To achieve group sparsity, we optimize:

min
w

1

N

N∑
n=1

L(w; xn, yn)︸ ︷︷ ︸
empirical loss

+ Ω(w)︸ ︷︷ ︸
regularizer

where we use the `2,1 norm:

Ω(w) = λ

M∑
m=1

dm‖wm‖2

for M groups/templates.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 110 / 155

http://tiny.cc/ssnlp

Chunking

CoNLL 2000 shared task (Sang and Buchholz, 2000)

Unigram features: 96 feature templates using POS tags, words, and
word shapes, with various context sizes

Bigram features: 1 template indicating the label bigram

Baseline: L2-regularized MIRA, 15 epochs, all features,
cross-validation to choose regularization strength

Template-based group lasso: 5 epochs of sparseptron + 10 of
MIRA

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 111 / 155

http://tiny.cc/ssnlp

Chunking Experiments

Baseline Template-based group lasso
templates 96 10 20 30 40
model size 5,300,396 71,075 158,844 389,065 662,018

F1 (%) 93.10 92.99 93.28 93.59 93.42

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 112 / 155

http://tiny.cc/ssnlp

0 5 10 15
0

2

4

6
x 106

Epochs

Fe

at
ur

es

MIRA
Sparceptron + MIRA (B=30)

Memory requirement of sparseptron is < 7.5% of that of the baseline.
(Oscillations are due to proximal steps after every 1,000 instances.)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 113 / 155

http://tiny.cc/ssnlp

Applications of Structured Sparsity in NLP

Relatively few to date (but this list may not be exhaustive).

1 Martins et al. (2011b):

Phrase chunking
Named entity recognition
Dependency parsing

2 Semisupervised lexicon expansion (Das and Smith, 2012)

3 Unsupervised tagging (Graça et al., 2009)

4 Sociolinguistic association discovery (Eisenstein et al., 2011)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 114 / 155

http://tiny.cc/ssnlp

Named Entity Recognition

CoNLL 2002/2003 shared tasks (Sang, 2002; Sang and De Meulder,
2003): Spanish, Dutch, and English

Unigram features: 452 feature templates using POS tags, words, word
shapes, prefixes, suffixes, and other string features, all with various
context sizes

Bigram features: 1 template indicating the label bigram

Baselines:

L2-regularized MIRA, 15 epochs, all features, cross-validation to choose
regularization strength
sparseptron with lasso, different values of C

Template-based group lasso: 5 epochs of sparseptron + 10 of
MIRA

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 115 / 155

http://tiny.cc/ssnlp

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

Spanish Dutch English

MIRA
Lasso (0.1)
Lasso (0.5)
Lasso (1)
Group Lasso (100)
Group Lasso (200)
Group Lasso (300)

Named entity models: number of features. (Lasso C = 1/λN.)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 116 / 155

http://tiny.cc/ssnlp

60

65

70

75

80

85

Spanish Dutch English

MIRA
Lasso (0.1)
Lasso (0.5)
Lasso (1)
Group Lasso (100)
Group Lasso (200)
Group Lasso (300)

Named entity models: F1 accuracy on the test set. (Lasso C = 1/λN.)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 117 / 155

http://tiny.cc/ssnlp

Applications of Structured Sparsity in NLP

Relatively few to date (but this list may not be exhaustive).

1 Martins et al. (2011b):

Phrase chunking
Named entity recognition
Dependency parsing

2 Semisupervised lexicon expansion (Das and Smith, 2012)

3 Unsupervised tagging (Graça et al., 2009)

4 Sociolinguistic association discovery (Eisenstein et al., 2011)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 118 / 155

http://tiny.cc/ssnlp

Non-projective Dependency Parsing

CoNLL-X shared task (Buchholz and Marsi, 2006): Arabic, Danish,
Dutch, Japanese, Slovene, and Spanish

Arc-factored models (McDonald et al., 2005)

684 feature templates by conjoining words, shapes, lemmas, and POS
of the head and the modifier, contextual POS, distance and
attachment direction

Baselines:

MIRA with all features
filter-based template selection (information gain)
standard lasso

Our methods: template-based group lasso; coarse-to-fine
regularization

Budget sizes: 200, 300, and 400

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 119 / 155

http://tiny.cc/ssnlp

Non-projective Dependency Parsing (c’ed)

2 4 6 8 10 12

x 10
6

76.5

77

77.5

78

78.5

Number of Features

U
A

S
 (

%
)

Arabic

0 5 10 15

x 10
6

89

89.2

89.4

89.6

89.8

90
Danish

0 2 4 6 8

x 10
6

92

92.5

93

93.5
Japanese

0 2 4 6 8 10

x 10
6

81

82

83

84
Slovene

0 0.5 1 1.5 2

x 10
7

82

82.5

83

83.5

84
Spanish

0 5 10 15

x 10
6

74

74.5

75

75.5

76
Turkish

Group−Lasso
Group−Lasso (C2F)
Lasso
Filter−based (IG)

Template-based group lasso is better at selecting feature templates than
the IG criterion, and slightly better than coarse-to-fine.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 120 / 155

http://tiny.cc/ssnlp

Which features get selected?

Qualitative analysis of selected templates:

Arabic Danish Japanese Slovene Spanish Turkish
Bilexical ++ + +
Lex. → POS + +
POS → Lex. ++ + + + +
POS → POS ++ +
Middle POS ++ ++ ++ ++ ++ ++
Shape ++ ++ ++ ++
Direction + + + + +
Distance ++ + + + + +

(Empty: none or very few templates selected; +: some templates
selected; ++: most or all templates selected.)

Morphologically-rich languages with small datasets (Turkish and
Slovene) avoid lexical features.

In Japanese, contextual POS appear to be especially relevant.

Take this with a grain of salt: some patterns may be properties of
the datasets, not the languages!

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 121 / 155

http://tiny.cc/ssnlp

Which features get selected?

Qualitative analysis of selected templates:

Arabic Danish Japanese Slovene Spanish Turkish
Bilexical ++ + +
Lex. → POS + +
POS → Lex. ++ + + + +
POS → POS ++ +
Middle POS ++ ++ ++ ++ ++ ++
Shape ++ ++ ++ ++
Direction + + + + +
Distance ++ + + + + +

(Empty: none or very few templates selected; +: some templates
selected; ++: most or all templates selected.)

Morphologically-rich languages with small datasets (Turkish and
Slovene) avoid lexical features.

In Japanese, contextual POS appear to be especially relevant.

Take this with a grain of salt: some patterns may be properties of
the datasets, not the languages!

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 121 / 155

http://tiny.cc/ssnlp

Applications of Structured Sparsity in NLP

Relatively few to date (but this list may not be exhaustive).

1 Martins et al. (2011b):

Phrase chunking
Named entity recognition
Dependency parsing

2 Semisupervised lexicon expansion (Das and Smith, 2012)

3 Unsupervised tagging (Graça et al., 2009)

4 Sociolinguistic association discovery (Eisenstein et al., 2011)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 122 / 155

http://tiny.cc/ssnlp

Lexicon Expansion (Das and Smith, 2012)

Desired: mapping from words (types) to categories (e.g., POS or
semantic predicates)

Allow ambiguity, but not too much!

Given some words’ mappings and a large corpus

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 123 / 155

http://tiny.cc/ssnlp

Lexicon Expansion (Das and Smith, 2012)

Approach:

1 Calculate distributional vectors for words

2 Construct a graph with words as vertices; edges from a word to the
k-most similar distributional vectors

3 “Link” known words to empirical distributions

4 “Propagate” label distributions throughout the graph (Corduneanu
and Jaakkola, 2003; Zhu et al., 2003; Subramanya and Bilmes, 2008,
2009; Talukdar and Crammer, 2009)

Known as graph-based semisupervised learning.

See Noah’s talk about this work on Wednesday!

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 124 / 155

http://tiny.cc/ssnlp

Example (Das and Smith, 2011)



























 






 



 












Green words are observed in FrameNet data, each with a single frame
(category); other words come from a larger, unlabeled corpus.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 125 / 155

http://tiny.cc/ssnlp

Graph-Based SSL

Here we reason about types, not tokens (instances).

Regularized empirical risk minimization doesn’t quite describe this
setting.

Instead, think of maximum a posteriori inference in a factor graph
G = (V,F,E):

p({v}v∈V) =
1

Z

∏
f ∈F

φf ({v}v∈V:(v ,f)∈E)

where V are random variables, F are factors, and E are edges.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 126 / 155

http://tiny.cc/ssnlp

Factor Graph Representation of Graph-Based SSL

X1

X4 X3

X2

Shaded variables X̂1 and X̂4 take the values of empirical distributions over
categories for words 1 and 4. Shaded factors encourage inferred
distributions X1 and X4 to be similar to them. Solid white factors
encourage smoothness across the graph, and dashed unary factors can be
used to encourage sparsity.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 127 / 155

http://tiny.cc/ssnlp

Unary Factors

Here, qn(y) is an unnormalized distribution over categories given the word
associated with the nth vertex.

Three unary factor conditions:

Uniform squared `2: −λ
∑

n

∑
y

(
qn(y)− 1

|Y|

)2

Used in past work (Subramanya et al., 2010); with quadratic pairwise
penalties and normalized q, generalizes Zhu et al. (2003)

Lasso (`1) for global sparsity: −λ
∑

n

∑
y

|qn(y)|

Elitist lasso (squared `1,2; Kowalski and Torrésani, 2009) for
per-vertex sparsity):

−λ
∑

n

(∑
y

|qn(y)|

)2

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 128 / 155

http://tiny.cc/ssnlp

Experimental Results: Expanding the FrameNet
Lexicon

Vertices: lemmatized, coarse POS-tagged word types

Each qn(·) is a(n unnormalized) distribution over 877 semantic frames

9,263 vertices with labels, 55,217 unlabeled

Accuracy is for unknown predicates, partial match score (SemEval
2007)

accuracy lexicon size

supervised 46.62 –

Das and Smith (2011)
(normalized qn, squared `2-uniform) 62.35 128,960

squared `2-uniform 62.81 128,232

`1 62.43 128,771

squared `1,2 65.28 45,554

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 129 / 155

http://tiny.cc/ssnlp

Applications of Structured Sparsity in NLP

Relatively few to date (but this list may not be exhaustive).

1 Martins et al. (2011b):

Phrase chunking
Named entity recognition
Dependency parsing

2 Semisupervised lexicon expansion (Das and Smith, 2012)

3 Unsupervised tagging (Graça et al., 2009)

4 Sociolinguistic association discovery (Eisenstein et al., 2011)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 130 / 155

http://tiny.cc/ssnlp

Unsupervised Tagging (Graça et al., 2009)

Posterior regularization (Ganchev et al., 2010): penalize
probabilistic models based on properties of their posterior
distributions.

One such property: for each token, the number of labels with nonzero
probability.

Related idea: Ravi and Knight (2009) directly minimized the number
of tag bigram types allowed by the model (using ILP).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 131 / 155

http://tiny.cc/ssnlp

Understanding Posterior Regularization

Begin with a generative model pw(X ,Y). We are unsupervised here,
so Y is always hidden.

This leads to log marginal likelihood as loss:
L(w; xn) = − log

∑
y∈Y pw(xn, y).

For a given x , define a set of distributions
Qx ,ξ = {q(Y | x) | Eq[f(x ,Y)]− b ≤ ξ}.
For a model distribution pw(X ,Y), define a regularizer:

Ω(w, ξ) = σ‖ξ‖β +
N∑

n=1

min
q∈Qxn,ξ

KL(q(·)‖pw(· | xn))

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 132 / 155

http://tiny.cc/ssnlp

Optimization for Posterior Regularization

An iterative EM-like algorithm can be used to locally optimize the
regularized loss:

E-step: calculate posteriors pw(Y | xn), ∀n. (Hinges on local
factorization of pw.)

Project onto Qxn : for each n:

∀y , q(y | xn) ∝ pw(y | xn)e−λ
∗
n
>f(xn,y)

where λ∗ are the solution to the dual of the optimization problem
inside Ω. (Hinges on local factorization of f.)

M-step: solve quasi-supervised problem using q to fill in the
distribution over Y :

min
w

N∑
n=1

∑
y

−q(y | xn) log pw(xn, y))

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 133 / 155

http://tiny.cc/ssnlp

Posterior Sparsity (Graça et al., 2009)

Define indicator features:

fi ,w ,t(xn, y) =


1 if xn contains the ith occurrence of w at position j

and y [j] = t
0 otherwise

bi ,w ,t = 0

Regularize with the `∞,1 norm (ξ is solved for and substituted):

Ω(w) = σ
∑
w ,t

max
i

Epw [fi ,w ,t]︸ ︷︷ ︸
`∞︸ ︷︷ ︸

`1

+
N∑

n=1

min
q∈Qxn

KL(q(·)‖pw(· | xn))

The dual form of the optimization problem is solvable with projected
gradient descent.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 134 / 155

http://tiny.cc/ssnlp

From Ganchev et al. (2010), figure 11. (Left) initial tag distributions for
20 instances of a word. (Middle) Optimal dual variables λ; each row sums
to σ = 20. (Right) q concentrates posteriors for all instances on the NN
tag, reducing the `∞,1 norm from ≈ 4 to ≈ 1.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 135 / 155

http://tiny.cc/ssnlp

Unsupervised Tagging Results (Graça et al., 2009)

Average accuracy (standard deviation in parentheses) over 10 different
runs (random seeds identical across models) for 200 iterations. Sparse PR
constraint strength is give in parentheses.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 136 / 155

http://tiny.cc/ssnlp

Applications of Structured Sparsity in NLP

Relatively few to date (but this list may not be exhaustive).

1 Martins et al. (2011b):

Phrase chunking
Named entity recognition
Dependency parsing

2 Semisupervised lexicon expansion (Das and Smith, 2012)

3 Unsupervised tagging (Graça et al., 2009)

4 Sociolinguistic association discovery (Eisenstein et al., 2011)

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 137 / 155

http://tiny.cc/ssnlp

Sociolinguistic Association Discovery

Dataset:

geotagged tweets from 9,250 authors
mapping of locations to the U.S. Census’ ZIP code tabulation areas
(ZCTAs)
a ten-dimensional vector of statistics on demographic attributes

Can we learn a compact set of terms used on Twitter that associate
with demographics?

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 138 / 155

http://tiny.cc/ssnlp

Sociolinguistic Association Discovery (Eisenstein
et al., 2011)

Setup: multi-output regression.

xn is a P-dimensional vector of independent variables; matrix is
X ∈ RN×P

yn is a T -dimensional vector of dependent variables; matrix is
Y ∈ RN×T

wp,t is the regression coefficient for the pth variable in the tth task;
matrix is W ∈ RP×T

Regularized objective with squared error loss typical for regression:

min
W

Ω(W) + ‖Y − XW‖2
F

Regressions are run in both directions.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 139 / 155

http://tiny.cc/ssnlp

Structured Sparsity with `∞,1

Drive entire rows of W to zero (Turlach et al., 2005): “some
predictors are useless for any task”

Ω(W) = λ
∑T

t=1 maxp wp,t

Optimization with blockwise coordinate ascent (Liu et al., 2009) and
some tricks to maintain sparsity:

Scale X to achieve variance 1 for each predictor
Precompute C = X>Y − N x̄>ȳ, where x̄ and ȳ are mean row vectors
for X, Y, respectively
Precompute D = X>X− N x̄>x̄
More regression tricks in Eisenstein et al. (2011)

Related work: Duh et al. (2010) used multitask regression and `2,1 to
select features useful for reranking across many instances (application
in machine translation).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 140 / 155

http://tiny.cc/ssnlp

Predicting Demographics from Text (Eisenstein
et al., 2011)

Predict 10-dimensional ZCTA characterization from words tweeted in
that region (vocabulary is P = 5, 418)
Measure Pearson’s correlation between prediction and correct value
(average over tasks, cross-validated test sets)
Compare with truncated SVD, greatest variance across authors, most
frequent words

10
2

10
3

0.16

0.18

0.2

0.22

0.24

0.26

0.28

number of features

a
ve

ra
g

e
 c

o
rr

e
la

tio
n

multi−output lasso
SVD
highest variance
most frequent

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 141 / 155

http://tiny.cc/ssnlp

Predictive Words (Eisenstein et al., 2011)

Significant p < 0.05 positive (+) and negative (-) associations in a
69-feature model (see the paper for the rest).

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 142 / 155

http://tiny.cc/ssnlp

Predicting Text from Demographics (Eisenstein
et al., 2011)

Embed the model in a feature induction outer loop: “screen and
clean” (Wu et al., 2010)

Compare language model perplexity of models with no demographic
features, raw demographic features (10), and 37 discovered
conjunctive features.

Significant reduction compared to both baselines.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 143 / 155

http://tiny.cc/ssnlp

Predictive Demographic Features (Eisenstein et al.,
2011)

Selected demographic features and words with high and low log-odds
associated with each.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 144 / 155

http://tiny.cc/ssnlp

Outline

1 Introduction

2 Loss Functions and Sparsity

3 Structured Sparsity

4 Algorithms

Convex Analysis

Batch Algorithms

Online Algorithms

5 Applications

6 Conclusions

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 145 / 155

http://tiny.cc/ssnlp

Summary

Sparsity is desirable in NLP: feature selection, runtime, memory
footprint, interpretability

Beyond plain sparsity: structured sparsity can be promoted through
group-Lasso regularization

Choice of groups reflects prior knowledge about the desired sparsity
patterns.

We have seen examples for feature template selection, grid sparsity,
and elite discovery, but many more are possible!

Small/medium scale: many batch algorithms available, with fast
convergence (IST, FISTA, SpaRSA, ...)

Large scale: online proximal-gradient algorithms suitable to explore
large feature spaces

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 146 / 155

http://tiny.cc/ssnlp

Thank you!

Questions?

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 147 / 155

http://tiny.cc/ssnlp

Acknowledgments

National Science Foundation (USA), CAREER grant IIS-1054319

Fundação para a Ciência e Tecnologia (Portugal), grant
PEst-OE/EEI/LA0008/2011.

Fundação para a Ciência e Tecnologia and Information and
Communication Technologies Institute (Portugal/USA), through the
CMU-Portugal Program.

Priberam: QREN/POR Lisboa (Portugal), EU/FEDER programme,
Discooperio project, contract 2011/18501.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 148 / 155

http://tiny.cc/ssnlp

References I
Amaldi, E. and Kann, V. (1998). On the approximation of minimizing non zero variables or unsatisfied relations in linear

systems. Theoretical Computer Science, 209:237–260.

Andrew, G. and Gao, J. (2007). Scalable training of L1-regularized log-linear models. In Proc. of ICML. ACM.

Bakin, S. (1999). Adaptive regression and model selection in data mining problems. PhD thesis, Australian National University.

Barzilai, J. and Borwein, J. (1988). Two point step size gradient methods. IMA Journal of Numerical Analysis, 8:141–148.

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal
on Imaging Sciences, 2(1):183–202.

Bioucas-Dias, J. and Figueiredo, M. (2007). A new twist: two-step iterativeshrinkage/thresholding algorithms for image
restoration. IEEE Transactions on Image Processing, 16:2992–3004.

Blumensath, T. (2012). Compressed sensing with nonlinear observations and related nonlinear optimisation problems. Technical
report, arXiv/1205.1650.

Bottou, L. and Bousquet, O. (2007). The tradeoffs of large scale learning. NIPS, 20.

Buchholz, S. and Marsi, E. (2006). CoNLL-X shared task on multilingual dependency parsing. In Proc. of CoNLL.

Candès, E., Romberg, J., and Tao, T. (2006a). Robust uncertainty principles: Exact signal reconstruction from highly
incomplete frequency information. IEEE Transactions on Information Theory, 52:489–509.

Candès, E., Romberg, J., and Tao, T. (2006b). Stable signal recovery from incomplete and inaccurate measurements.
Communications in Pure and Applied Mathematics, 59:1207–1223.

Carpenter, B. (2008). Lazy sparse stochastic gradient descent for regularized multinomial logistic regression. Technical report,
Technical report, Alias-i.

Caruana, R. (1997). Multitask learning. Machine Learning, 28(1):41–75.

Cessie, S. L. and Houwelingen, J. C. V. (1992). Ridge estimators in logistic regression. Journal of the Royal Statistical Society;
Series C, 41:191–201.

Chen, S. and Rosenfeld, R. (1999). A Gaussian prior for smoothing maximum entropy models. Technical report,
CMU-CS-99-108.

Claerbout, J. and Muir, F. (1973). Robust modelling of erratic data. Geophysics, 38:826–844.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 149 / 155

http://tiny.cc/ssnlp

References II
Combettes, P. and Wajs, V. (2006). Signal recovery by proximal forward-backward splitting. Multiscale Modeling and

Simulation, 4:1168–1200.

Corduneanu, A. and Jaakkola, T. (2003). On information regularization. In Proc. of UAI.

Das, D. and Smith, N. A. (2011). Semi-supervised frame-semantic parsing for unknown predicates. In Proc. of ACL.

Das, D. and Smith, N. A. (2012). Graph-based lexicon expansion with sparsity-inducing penalties. In Proceedings of NAACL.

Daubechies, I., Defrise, M., and De Mol, C. (2004). An iterative thresholding algorithm for linear inverse problems with a
sparsity constraint. Communications on Pure and Applied Mathematics, 11:1413–1457.

Davis, G., Mallat, S., and Avellaneda, M. (1997). Greedy adaptive approximation. Journal of Constructive Approximation,
13:57–98.

Della Pietra, S., Della Pietra, V., and Lafferty, J. (1997). Inducing features of random fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19:380–393.

Donoho, D. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52:1289–1306.

Duchi, J., Shalev-Shwartz, S., Singer, Y., and Chandra, T. (2008). Efficient projections onto the L1-ball for learning in high
dimensions. In ICML.

Duchi, J. and Singer, Y. (2009). Efficient online and batch learning using forward backward splitting. JMLR, 10:2873–2908.

Duh, K., Sudoh, K., Tsukada, H., Isozaki, H., and Nagata, M. (2010). n-best reranking by multitask learning. In Proceedings of
the Joint Fifth Workshop on Statistical Machine Translation and Metrics.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. Annals of Statistics, 32:407–499.

Eisenstein, J., Smith, N. A., and Xing, E. P. (2011). Discovering sociolinguistic associations with structured sparsity. In Proc. of
ACL.

Figueiredo, M. and Bioucas-Dias, J. (2011). An alternating direction algorithm for (overlapping) group regularization. In Signal
processing with adaptive sparse structured representations–SPARS11. Edinburgh, UK.

Figueiredo, M. and Nowak, R. (2003). An EM algorithm for wavelet-based image restoration. IEEE Transactions on Image
Processing, 12:986–916.

Figueiredo, M., Nowak, R., and Wright, S. (2007). Gradient projection for sparse reconstruction: application to compressed
sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing: Special Issue on Convex
Optimization Methods for Signal Processing, 1:586–598.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 150 / 155

http://tiny.cc/ssnlp

References III
Friedman, J., Hastie, T., Rosset, S., Tibshirani, R., and Zhu, J. (2004). Discussion of three boosting papers. Annals of

Statistics, 32(1):102–107.

Fu, W. (1998). Penalized regressions: the bridge versus the lasso. Journal of computational and graphical statistics, pages
397–416.

Ganchev, K., Graça, J., Gillenwater, J., and Taskar, B. (2010). Posterior regularization for structured latent variable models.
JMLR, 11:2001–2049.

Gao, J., Andrew, G., Johnson, M., and Toutanova, K. (2007). A comparative study of parameter estimation methods for
statistical natural language processing. In Proc. of ACL.

Genkin, A., Lewis, D., and Madigan, D. (2007). Large-scale Bayesian logistic regression for text categorization. Technometrics,
49:291–304.

Goodman, J. (2004). Exponential priors for maximum entropy models. In Proc. of NAACL.

Graça, J., Ganchev, K., Taskar, B., and Pereira, F. (2009). Posterior vs. parameter sparsity in latent variable models. Advances
in Neural Information Processing Systems.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research,
3:1157–1182.

Hale, E., Yin, W., and Zhang, Y. (2008). Fixed-point continuation for l1-minimization: Methodology and convergence. SIAM
Journal on Optimization, 19:1107–1130.

Hastie, T., Taylor, J., Tibshirani, R., and Walther, G. (2007). Forward stagewise regression and the monotone lasso. Electronic
Journal of Statistics, 1:1–29.

Haupt, J. and Nowak, R. (2006). Signal reconstruction from noisy random projections. IEEE Transactions on Information
Theory, 52:4036–4048.

Jenatton, R., Audibert, J.-Y., and Bach, F. (2009). Structured variable selection with sparsity-inducing norms. Technical report,
arXiv:0904.3523.

Jenatton, R., Mairal, J., Obozinski, G., and Bach, F. (2011). Proximal methods for hierarchical sparse coding. Journal of
Machine Learning Research, 12:2297–2334.

Kazama, J. and Tsujii, J. (2003). Evaluation and extension of maximum entropy models with inequality constraints. In Proc. of
EMNLP.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 151 / 155

http://tiny.cc/ssnlp

References IV
Kim, S. and Xing, E. (2010). Tree-guided group lasso for multi-task regression with structured sparsity. In Proc. of ICML.

Kowalski, M. and Torrésani, B. (2009). Sparsity and persistence: mixed norms provide simple signal models with dependent
coefficients. Signal, Image and Video Processing, 3(3):251–264.

Krishnapuram, B., Carin, L., Figueiredo, M., and Hartemink, A. (2005). Sparse multinomial logistic regression: Fast algorithms
and generalization bounds. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27:957–968.

Lanckriet, G. R. G., Cristianini, N., Bartlett, P., Ghaoui, L. E., and Jordan, M. I. (2004). Learning the kernel matrix with
semidefinite programming. JMLR, 5:27–72.

Langford, J., Li, L., and Zhang, T. (2009). Sparse online learning via truncated gradient. JMLR, 10:777–801.

Lavergne, T., Cappé, O., and Yvon, F. (2010). Practical very large scale CRFs. In Proc. of ACL.

Liu, H., Palatucci, M., and Zhang, J. (2009). Blockwise coordinate descent procedures for the multi-task lasso, with applications
to neural semantic basis discovery. In Proceedings of the 26th Annual International Conference on Machine Learning, pages
649–656. ACM.

Mairal, J., Jenatton, R., Obozinski, G., and Bach, F. (2010). Network flow algorithms for structured sparsity. In Advances in
Neural Information Processing Systems.

Mairal, J. and Yu, B. (2012). Complexity analysis of the lasso regularization path. Technical report, arXiv:1205.0079.

Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7:77–91.

Martins, A. F. T., Figueiredo, M. A. T., Aguiar, P. M. Q., Smith, N. A., and Xing, E. P. (2011a). Online learning of structured
predictors with multiple kernels. In Proc. of AISTATS.

Martins, A. F. T., Smith, N. A., Aguiar, P. M. Q., and Figueiredo, M. A. T. (2011b). Structured Sparsity in Structured
Prediction. In Proc. of Empirical Methods for Natural Language Processing.

Martins, A. F. T., Smith, N. A., Xing, E. P., Aguiar, P. M. Q., and Figueiredo, M. A. T. (2010). Turbo parsers: Dependency
parsing by approximate variational inference. In Proc. of EMNLP.

McDonald, R. T., Pereira, F., Ribarov, K., and Hajic, J. (2005). Non-projective dependency parsing using spanning tree
algorithms. In Proc. of HLT-EMNLP.

Muthukrishnan, S. (2005). Data Streams: Algorithms and Applications. Now Publishers, Boston, MA.

Negahban, S., Ravikumar, P., Wainwright, M., and Yu, B. (2012). A unified framework for high-dimensional analysis of
m-estimators with decomposable regularizers. Technical report, Department of EECS, UC Berkeley.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 152 / 155

http://tiny.cc/ssnlp

References V
Nesterov, Y. (2009). Primal-dual subgradient methods for convex problems. Mathematical programming, 120(1):221–259.

Obozinski, G., Taskar, B., and Jordan, M. (2010). Joint covariate selection and joint subspace selection for multiple
classification problems. Statistics and Computing, 20(2):231–252.

Osborne, M., Presnell, B., and Turlach, B. (2000). A new approach to variable selection in least squares problems. IMA Journal
of Numerical Analysis, 20:389–403.

Perkins, S., Lacker, K., and Theiler, J. (2003). Grafting: Fast, incremental feature selection by gradient descent in function
space. Journal of Machine Learning Research, 3:1333–1356.

Plan, Y. and Vershynin, R. (2012). Robust 1-bit compressed sensing and sparse logistic regression: A convex programming
approach. Technical report, arXiv/1202.1212.

Quattoni, A., Carreras, X., Collins, M., and Darrell, T. (2009). An efficient projection for l1,∞ regularization. In Proc. of ICML.

Ratnaparkhi, A. (1996). A maximum entropy model for part-of-speech tagging. In Proc. of EMNLP.

Ravi, S. and Knight, K. (2009). Minimized models for unsupervised part-of-speech tagging. In Proc. of ACL.

Sang, E. (2002). Introduction to the CoNLL-2002 shared task: Language-independent named entity recognition. In Proc. of
CoNLL.

Sang, E. and Buchholz, S. (2000). Introduction to the CoNLL-2000 shared task: Chunking. In Proceedings of CoNLL-2000 and
LLL-2000.

Sang, E. and De Meulder, F. (2003). Introduction to the CoNLL-2003 shared task: Language-independent named entity
recognition. In Proc. of CoNLL.

Schaefer, R., Roi, L., and Wolfe, R. (1984). A ridge logistic estimator. Communications in Statistical Theory and Methods,
13:99–113.

Schmidt, M. and Murphy, K. (2010). Convex structure learning in log-linear models: Beyond pairwise potentials. In Proc. of
AISTATS.

Shevade, S. and Keerthi, S. (2003). A simple and efficient algorithm for gene selection using sparse logistic regression.
Bioinformatics, 19:2246–2253.

Shor, N. (1985). Minimization Methods for Non-differentiable Functions. Springer.

Sokolovska, N., Lavergne, T., Cappé, O., and Yvon, F. (2010). Efficient learning of sparse conditional random fields for
supervised sequence labelling. IEEE Journal of Selected Topics in Signal Processing, 4(6):953–964.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 153 / 155

http://tiny.cc/ssnlp

References VI
Stojnic, M., Parvaresh, F., and Hassibi, B. (2009). On the reconstruction of block-sparse signals with an optimal number of

measurements. Signal Processing, IEEE Transactions on, 57(8):3075–3085.

Subramanya, A. and Bilmes, J. (2008). Soft-supervised learning for text classification. In Proc. of EMNLP.

Subramanya, A. and Bilmes, J. (2009). Entropic graph regularization in non-parametric semi-supervised classification. In Proc.
of NIPS.

Subramanya, A., Petrov, S., and Pereira, F. (2010). Efficient graph-based semi-supervised learning of structured tagging models.
In Proc. of EMNLP.

Talukdar, P. P. and Crammer, K. (2009). New regularized algorithms for transductive learning. In Proc. of the ECML-PKDD.

Taylor, H., Bank, S., and McCoy, J. (1979). Deconvolution with the `1 norm. Geophysics, 44:39–52.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society B., pages
267–288.

Tikhonov, A. (1943). On the stability of inverse problems. In Dokl. Akad. Nauk SSSR, volume 39, pages 195–198.

Tillmann, A. and Pfetsch, M. (2012). The computational complexity of RIP, NSP, and related concepts in compressed sensing.
Technical report, arXiv/1205.2081.

Tseng, P. and Yun, S. (2009). A coordinate gradient descent method nonsmooth seperable approximation. Mathematical
Programmin (series B), 117:387–423.

Tsuruoka, Y., Tsujii, J., and Ananiadou, S. (2009). Stochastic gradient descent training for l1-regularized log-linear models with
cumulative penalty. In Proc. of ACL.

Turlach, B. A., Venables, W. N., and Wright, S. J. (2005). Simultaneous variable selection. Technometrics, 47(3):349–363.

van de Geer, S. (2008). High-dimensional generalized linear models and the lasso. The Annals of Statistics, 36:614–645.

Wiener, N. (1949). Extrapolation, Interpolation, and Smoothing of Stationary Time Series. Wiley, New York.

Williams, P. (1995). Bayesian regularization and pruning using a Laplace prior. Neural Computation, 7:117–143.

Wright, S., Nowak, R., and Figueiredo, M. (2009). Sparse reconstruction by separable approximation. IEEE Transactions on
Signal Processing, 57:2479–2493.

Wu, J., Devlin, B., Ringquist, S., Trucco, M., and Roeder, K. (2010). Screen and clean: A tool for identifying interactions in
genome-wide association studies. Genetic Epidemiology, 34(3):275–285.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 154 / 155

http://tiny.cc/ssnlp

References VII

Xiao, L. (2010). Dual averaging methods for regularized stochastic learning and online optimization. Journal of Machine
Learning Research, 11:2543–2596.

Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling supervised methods. In Proc. of ACL.

Yuan, L., Liu, J., and Ye, J. (2011). Efficient methods for overlapping group lasso. In Advances in Neural Information
Processing Systems 24, pages 352–360.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal
Statistical Society (B), 68(1):49.

Yun, S. and Toh, K.-C. (2011). A coordinate gradient descent method for L1-regularized convex minimization. Computational
Optimization and Applications, 48:273–307.

Zhao, P., Rocha, G., and Yu, B. (2009). Grouped and hierarchical model selection through composite absolute penalties. Annals
of Statistics, 37(6A):3468–3497.

Zhu, J., Lao, N., and Xing, E. (2010). Grafting-light: fast, incremental feature selection and structure learning of markov
random fields. In Proc. of International Conference on Knowledge Discovery and Data Mining, pages 303–312.

Zhu, X., Ghahramani, Z., and Lafferty, J. D. (2003). Semi-supervised learning using Gaussian fields and harmonic functions. In
Proc. of ICML.

Martins, Figueiredo, Smith (IST, CMU) Structured Sparsity in NLP http://tiny.cc/ssnlp 155 / 155

http://tiny.cc/ssnlp

	Introduction
	Loss Functions and Sparsity
	Structured Sparsity
	Algorithms
	Convex Analysis
	Batch Algorithms
	Online Algorithms

	Applications
	Conclusions
	References
	References

