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Abstract

Text summarization is one of the oldest prob-
lems in natural language processing. Popu-
lar approaches rely on extracting relevant sen-
tences from the original documents. As a side
effect, sentences that are too long but partly
relevant are doomed to either not appear in the
final summary, or prevent inclusion of other
relevant sentences. Sentence compression is a
recent framework that aims to select the short-
est subsequence of words that yields an infor-

a promising framework with applications, for exam-
ple, in headline generation (Dorr et al., 2003; Jin,
2003), little work has been done to include it as a
module in document summarization systems. Most
existing approaches (with some exceptions, like the
vine-growth model of Daug, 2006) use a two-stage
architecture, either by first extracting a certain num-
ber of salient sentences and then feeding them into
a sentence compressor, or by first compressing all
sentences and extracting later. However, regardless
of which operation is performed first—compression

mative and grammatical sentence. This work
proposes a one-step approach for document
summarization that jointly performs sentence
extraction and compression by solving an in-
teger linear program. We report favorable ex-
perimental results on newswire data.

or extraction—two-step “pipeline” approaches may
fail to find overall-optimal solutions; often the sum-
maries are not better that the ones produced by ex-
tractive summarization. On the other hand, a pilot
study carried out by Lin (2003) suggests that sum-
marization systems that perform sentence compres-
sion have the potential to beat pure extractive sys-
tems if they model cross-sentence effects.

In this work, we address this issue by merging the

Automatic text summarization dates back to th? sks of sentence extraction and sentence compres-
1950s and 1960s (Luhn, 1958, Ba_xendgle, 195_8;_ E ion into aglobal optimization problem. A careful
_m“”dson’ 1969). Today, the prollferat|o_n Of dlgltaldesign of the objective function encourages “sparse
information makes research on summarization tec@’olutions " i.e., solutions that involve only a small
nologies more important than ever before. Inthe lagt| - o'f sen’tences whose compressions are to be

two decadgs, machl_ne learning t_ech_mques have bel‘ﬁ%luded in the summary. Our contributions are:
employed inextractive summarization of single

documents (Kupiec et al., 1995; Aone et al., 1999 e cast joint sentence extraction and compression
Osborne, 2002) and multiple documents (Radev and 55 an integer linear program (ILP);

McKeown, 1998; Carbonell and Goldstein, 1998; _ _

Radev et al., 2000). Most of this work aims only® V& Provide a new formulation of sentence com-
to extractrelevant sentences from the original doc- Pression using dependency parsing information
uments and present them as the summary: this sim-that only requires a linear number of variables,
plification of the problem yields scalable solutions. and combine it with a bigram model;

Some attention has been devoted by the NLP We show how the full model can be trained in a
community to the related problem séntence com-  max-margin framework. Since a dataset of sum-
pression (Knight and Marcu, 2000): given a long maries comprised of extracted, compressed sen-
sentence, how to maximalgompresét into a gram- tences is unavailable, we present a procedure that
matical sentence that still preserves all the rele- trains the compression and extraction models sep-
vant information? While sentence compression is arately and tunes a parameter to interpolate the

1 Introduction



two models. Maximal Marginal Relevance (MMR). For long

Th . del and the full ( documents or large collections, it becomes impor-
€ compression model and the TUT System arg, 4, penalize theedundancyamong the extracted
compared with state-of-the-art baselines in standa

) , : , ntences. Carbonell and Goldstein (1998) proposed
newswire datasets. This paper is organized as fq reedily adding sentences to the summsitp max-
lows: §2—3 provide an overview of our two building

- imize, at each step, a score of the form
blocks, sentence extraction and sentence compres-

sion. §4 describes our method to perform one-step ) . scorege(t;) — (1 — A) - scorged(ti, S),  (2)
sentence compression and extractigh.shows ex-
periments in newswire data. Finall§6 concludes where scorg(t;) is as in Eq. 1 and scog(t;, S)

the paper and suggests future work. accounts for theedundancybetweery; and the cur-
_ o rent summarys. In our experiments, redundancy is
2 Extractive summarization the 1-gram cosine similarity between the sentence

Extractive summarization builds a summary by exti @nd the current summary. The trade-off be-

tracting a few informative sentences from the doculWeen relevance and redundancy is controlied by
ments. LetD 2 {t,,...,ty} be aset of sentences,? € [0, 1], which is tuned on development data. .
contained in a single or in multiple related docu- McDonald (2007) proposed a non-greedy variant

mentst The goal is to extract the best sequence SAf MMR that takes into account the redundancy be-
sentencest; t;.) that summarize) whose tween each pair of candidate sentences. This is cast
12 K . . . .
total length does not exceed a fixed budgetjof &S @ global optimization problem:
words. We describe some well-known approaches 5 ‘
that wil serve as our experimental baselines. S = arg m3XA 2,5 SCOMGei(ti)
. 1-X)- SCOrgeq(t;, ti), (3
Extract the leading sentences (Lead). For ( ) Litigyes Gedltis15), (3)
single-document summarization, the simplest A T A
. ) . . Where scorg|(t;) = 0O, frel(t;), SCOrgeq(t;, t;) =
method consists of greedily extracting the leading+ Rit:) refrel() Fedlti, )

. . fred(t;, t;), andfie(t;) andfieq(t;, t;) are feature
sentences while they fit into the summary. A sen- "¢ red(ti, ) rel(ti) andfrea(ts, £;) are
. . o . vectors with corresponding learned weight vectors
tence is skipped if its inclusion exceeds the budg

. , . ebm andéeq. He has shown how the relevance-based
and the next is examined. This performs extremelx1 .
well in newswire articl due to the iournalist ethod and the MMR framework (in the non-greedy

N newswire artcles, due to the JournalistiCe, m of Eqg. 3) can be cast as an ILP. By introducing
convention of summarizing the article first. - ;

indicator variablesjs;)i—1,.. v and ()i j=1,...m

Rank by relevance (Rel). This method ranks sen- with the meanings
tences by a relevance score, and then extracts the top

ones that can fit into the summary. The score is typ- ;; — { 1 if t; is to be extracted

ically a linear function of feature values: 0 otherwise
o 1 if ¢; andt; are both to be extracted
score(ti) 2 0 f(t;) = S0 0afats), (D) Hii =\ 0 otherwise

(4)
Here, eachfy(t;) is a feature extracted from sen-one can reformulate Eq. 3 as an ILP with{)/?)
tencet;, andd, is the corresponding weight. In our variables and constraints:
experiments, relevance features include (i) the recip-

rocal position in the document, (ii) a binary feature max__> A Zﬁl 14 SCOrge|(t;) — (5)
indicating whether the sentence is the first one, and""""’ Ve
(iii) the 1-gram and 2-gram cosine similarity with (L= A) - D252 D=1 HijSCOrged(ti, t5),

the headline and with the full document. : . :
T _ B ~subject to binary constraints;, i;; € {0,1}, the
For s_lmpI|C|ty, we descrlpe a unified framework for Smgl?length constraingz‘f 1 N; < J (whereN; is the
and multi-document summarization, although they may require i=1 1"

specialized strategies. Here we experiment only with singiddumber of words of théth sentence), and the fol-

document summarization and assume.., t,r are ordered.  lowing “agreement constraints” farj = 1,..., M



(that impose the logical relation;; = p; A 115): 2000; Daurg and Marcu, 2002), heuristic methods
that parse the sentence and then trim constituents ac-

pig < iy pij < g, i 2= i+ — 10 (6)  cording to linguistic criteria (Dorr et al., 2003; Zajic

. . et al., 2006), a pure discriminative model (McDon-
Let us provide a compact representation of the pro-

gram in Eq. 5 that will be used later. Define ourvec?lld’ 2006), and an ILP formulation (Clarke and La-

tor of parameters & 2 [A\rel, —(1—\)8ed. Pack- pata, 2008). We next give an overview of the two

. latter approaches.
ing all the feature vectors (one for each sentence, an

. : . McDonald (2006) uses the outputs of two parsers
one for each pair of sentences) into a maKix

(a phrase-based and a dependency parser) as fea-

Fre O ; tures in a discriminative model that decomposes
0 Freq ] ’ (7) over pairs of consecutive words. Formally, given a

sentence = (w1, ..., wy), the score of a compres-

with Fret £ [fa(ti)i<icy and Freq = sionc = (wj,,...,w;, ) decomposes as:

[fred(ts, tj)]1<i<j<m, and packing all the variables

;i andy;; into a vectory, the program in Eq. 5 can scordc;t) = Zfzg O f(t, ji_1,51) 9)

be compactly written as

Fé[

wheref(¢, 5;_1, ;) are feature vectors that depend
max 0'Fp, (8) on the original sentenaeand consecutive positions
ji—1 andj;, and@ is a learned weight vector. The
subject to binary and linear constraints @n This factorization in Eq. 9 allows exact decoding with dy-
formulation requiresO(M?) variables and con- namic programming.
straints. If we do not penalize sentence redundancy, Clarke and Lapata (2008) cast the problem as an

the redundancy term may be dropped; in this simplaLP. In their formulation, Eq. 9 may be expressed as:
caseF = F\g, the vectoru only contains the vari-

ables(u;), and the program in Eqg. 8 only requires N - .
O(M) variables and constraints. Our method (to be ~ SCOT&c;t) = > i £(t,0,0) +
presented iG4) will build on this latter formulation. =1

N
3 Sentence Compression ZﬁiHTf(t, in+1)+
=1
Despite its simplicity, extractive summarization has N-1 N
a few shortcomings: for example, if the original sen- Z Z ;0 £(t,4,7), (10)

tences are too long or embed several clauses, there i=1 j=it+1

is no way of preventing lengthy sentences from ap-

pearing in the final summary. Treentence com- whereq;, 3;, andy;; are additional binary variables
pressionframework (Knight and Marcu, 2000) aims With the following meanings:

to select the bessubsequencef words that still
yields a short, informative and grammatical sen®
tence. Such a sentence compressor is given a seng; = 1 iff word w; ends the compression;

«; = 1 iff word w; starts the compression;

A .
tencet = (wi,..., wy) as input and outputs a sub-o . _ 1 iff words w; andw; appear consecutively
sequence of lengtl, ¢ = (wj,,...,w;,), with in the compression;
1 <41 < ... <jr < N. We may represent

this output as a binary vecterof length N, where  and subject to the following agreement constraints:
sj = 1 iff word wj; is included in the compression.

Note that there ar®(2") possible subsequences. SN g =1
N _
3.1 Related Work Y Bio= 1
. . R ) J=1_
Past approaches to sentence compression include sj = aj+ 2 Y

a noisy channel formulation (Knight and Marcu, s; = ﬁi+2§\fzi+1 Yij- (12)



This framework also allows the inclusion of con-Consider feature vectofs, (¢, 7), fio(¢, 7), fo1(¢, 7),
straints to enforce grammaticality. andfy(t, j), that look at the surface sentence and at
To compress a sentence, one needs to maximittee status of the worgland its headr(;); these fea-

the score in Eg. 10 subject to the constraints itures have corresponding weight vectérs, 61,

Eq. 11. Representing the variables through 601, and@y,. The score ot is written as:
N .
va <041,...,OJN,ﬁ1,.. . ,ﬁN,’)/H,. -'a’YNN> SCOI‘&C; t) = Zj:l Za,be{o,l} Vjabe(jbfab(u])
i . _(12) = Za,be{o,l} e;erabVab
and packing the feature vectors into a maffixwe _ oTF 15
obtain the ILP - v (15)
max 6 Fv (13) where Fup £ [fu(t,1). ... Eu(t, V)], vy 2

_ _ _ _ (Viab)j=1,...N» 8 = (011,010,001,000), andF
subject to linear and integer constraints on the varpjag(F,,, F1, Fo1, Foo) (a block-diagonal matrix).
abless andv. This particular formulation requires e have reached in Eq. 15 an ILP isomorphic to
O(N?) variables and constraints. the one in Eq. 13, but only wit(N) variables.
There are some agreement constraints between the
3.2 Proposed Method variablesv ands that reflect the logical relations in
We propose an alternative model for sentence corfg. 14; these may be written as linear inequalities
pression that may be formulated as an ILP, as itef. EQ. 6), yieldingO(N) constraints.
Eqg. 13, but with onlyO(N) variables and con-  Given this proposal an§3.1, it is also straight-
straints. This formulation is based on the output of forward to extend this model to include bigram fea-
dependency parser. tures as in Eqg. 10; the combination of dependency
Directed arcs in a dependency tree link pairs ofelation features and bigram features yields a model
words, namely &eadto its modifier A dependency thatis more powerful than both models in Eq. 15 and
parse tree is characterized by a set of labeled arEgl. 10. Such a model is expressible as an ILP with
of the form (head, modifier, label); see Fig.1 for ar0(/N?) variables and constraints, making use of the
example. Given a sentente= (w1, ..., wy), we Vvariabless, v, a, 8 and~. In §5, we compare the
write i = 7(j) to denote that théth word is the performance of this model (called “Bigram”) and the
head (the “parent”) of thgth word; if j is the root, modelin Eq. 15 (called “NoBigram’j.

we write w(j) = 0. Lets be the binary vector de- _ _ .
4 Joint Compression and Extraction

PUNC

We next describe our joint model for sentence com-

ROOT

ne on pression and extraction. Lé? = {t;,...,ty} be
NMOD  SBJ Ve pp m a set of sentences as §@, each expressed as a se-
NN N quence of wordst; £ (w1, ..., w;y,). Following
$ Mr. Tomash will remain as a director emeritus . .
§3, we represent eompressiomf ¢; as a binary vec-
. . tors; = (s;1,...,s;N.), wheres;; = 1 iff word w,;
Figure 1: A dependency parse for an English sentence’; " (it siv,) " "
example from McDonald and Satta (2007). 21t should be noted that more efficient decoders are possible

that do not require solving an ILP. In particular, inference in the
scribing a possible compressierfor the sentence NoBigram variant can performed in polynomial time with dy-

. . . namic programming algorithms that propagate messages along
t. For each worg, we consider four possible CaSeSyye dependency parse tree; for the Bigram variant, dynamic pro-

accounting for the inclusion or not gfand7(j) i gramming can still be employed with some additional storage.
the compression. We introduce (mutually exclusive®ur ILP formulation, however, is more suited to the final goal
binary variables;11, ;10, vjo1, andv;oo to indicate  Of performing document summarization (of which our sentence

. compression model will be a component); furthermore, it also
each of these cases, i.e., foh € {0,1}, P ponent); ’

allows the straightforward inclusion of global linguistic con-
straints, which, as shown by Clarke and Lapata (2008), can
Vjab = s;=al Sr(j) = b. (14) greatly improve the grammaticality of the compressions.



is included in the compression. Now, definsuan- which states, for each sentengethatt; should be
maryof D as a set of sentences obtaineddsjract- ignored or have at leaptV; words extracted. We fix
ing andcompressingentences fronD. More pre- p = 0.8, enforcing compression rates below 86%.
cisely, letyu, ..., uar be binary variables, one for  To learn the model parametefis= (6., 6..), we
each sentencg in D; defineu,; = 1 iff a compres- can use a max-margin discriminative learning al-
sion of sentence; is used in the summary. A sum-gorithm like MIRA (Crammer and Singer, 2003),
mary of D is then represented by the binary variwhich is quite effective and scalable. However, there
ables(u1, ..., 1y, s1,--.,s0). Notice that these is not (to our knowledge) a single dataset of ex-
variables are redundant: tractedand compressed sentences. Instead, as will
. be described in Sec. 5.1, there are separate datasets
pi=0 & Viefl.. . Ni} s =0, (16) ¢ iracted sentences, and datasets of compressed
i.e., an empty compression means that the senterg@ntences. Therefore, instead of globally learning
is not to be extracted. In the sequel, it will becoméhe model parameter8,= (0., 6.), we propose the
clear why this redundancy is convenient. following strategy to learn them separately:
Most approaches up to now are concerned with ei-
ther extractionor compressionnot both at the same ® Learné; using a corpus of extracted sentences,
time. We will combine the extraction scores in EQ. & | earng’, using a corpus of compressed sentences,
and the compression scores in Eg. 15 to obtain a sin- L
gle, global optimization probler;we rename the *® Tuner so thatd = (6,70.) has goqd perfor-
extraction features and parameter&toandé. and mance on development c!ata. (This is necegsary
the compression features and parametei tand since each set of weights is learned up to scaling.)
o.: .
E}ﬂ,}é GZFeN n Zi]\il 0TF v, (17) 5 Experiments
subject to agreement constraints on the variables
ands; (see Egs. 11 and 14), and new agreement coRer our experiments, two datasets were used:
straints on the variablgs andss, . . ., sj; to enforce
the relation in Eq. 16:

5.1 Datasets, Evaluation and Environment

The DUC 2002 dataset. This is a collection of

newswire articles, comprised of 59 document clus-
Sij < pus, Vi=1,... . MVj=1,...,N; ters. Each document within the collections (out of
pi < Z;V:il sij, Vi=1,...,M a total of 567 documents) has one or two manually

(18) created abstracts with approximately 100 words.
The constraint that the length of the summary cannot

exceed/ words is encoded as: Clarke’s dataset for sentence compression. This
M N is the dataset used by Clarke and Lapata (2008). It
> i1 Zj:ﬂ sij < J. (19)  contains manually created compressions of 82 news-

wddaper articles (1,433 sentences) from the British Na-

All variables are further restricted to be binary. ' :
tional Corpus and the American News Text corpus.

also want to avoid picking just a few words from
many sentences, which typically leads to ungram-

matical summaries. Hence it is desirable to obtain TO evaluate the sentence compressor alone, we
“sparse” solutions with only a few sentences extmeasured the compression rate and the precision,
tracted and compressed (and most componengs ofrecall, and F;-measure (both macro and micro-
are zero) To do so, we add the constraint averaged) with respect to the “gold” compressed

Z;.V:il 5ij > uipN;, i=1,..., M, (20) “There are alternative ways to achieve “sparseness,” either
in a soft way, by adding a termA ). u; to the objective, or
%In what follows, we use the formulation in Eq.\8ith-  using a different hard constraint, liRe, u; < K, to limit the
out the redundancy terms; however these can be included itumber of sentences from which to pick words.
a straightforward way, naturally increasing the number of vari- http://duc.nist.gov
ables/constraints. Shttp://homepages.inf.ed.ac.uk/s0460084/data



Compression Micro-Av. Macro-Av.

Ratio P R Fy P R P
HedgeTrimmer | 57.64% 0.7099 0.5925 0.6459 0.7195 0.6547 0.6367
McDonald (2006)| 71.40% 0.7444 0.7697 0.7568 0.7711 0.7852 0.7696
NoBigram 71.20% 0.7399 0.7626 0.7510 0.7645 0.7730 0.7604
Bigram 71.35% 0.7472 0.7720 0.7594 0.7737 0.7848 0.7710

Table 1: Results for sentence compression in the Clarke’s test dataset (441 sentences) for our implementation of the
baseline systemdigedgeTrimmeand the system described in McDonald, 2006), and the two variants of our model,
NoBigram and Bigram. The compression ratio associated with the reference compressed sentences in this dataset is
69.06%. In the rightmost column, the statistically indistinguishable best results are emboldened, based on a paired
t-test applied to the sequencef measuresy( < 0.01).

sentences, calculated on unigrams. tive model described by McDonald (2006), which
To evaluate the full system, we used Rouye- captures “soft syntactic evidence” (we reproduced

(Lin and Hovy, 2002), a populan-gram recall- the same set of features). Both systems require

based automatic evaluation measure. This scogephrase-structure parser; we used Collins’ parser

compares the summary produced by a system wif€ollins, 1999)° the latter system also derives fea-

one or more valid reference summaries. tures from a dependency parser; we used the MST-
All our experiments were conducted on a PC wittParser (McDonald et al., 200%).

a Intel dual-core processor with 2.66 GHz and 2 Gb We implemented the two variants of our compres-

RAM memory. We used ILOG CPLEX, a commer-sor described if§3.2.

cial integer programming solver. The interface wit

CPLEX was coded in Java. r]\IoB|gram. This variant factors the compression

score as a sum over individual scores, each depend-
5.2 Sentence Compression ing on the inclusion or not of each word and its head
in the compression (see Eq. 15). An upper bound of

We split lear_kes dataset into two partitions, N 006 was placed on the compression ratio. As stated
used for training (1,188 sentences) and the other f% §3.2, inference amounts to solving an ILP with

testing (441 sentences). This dataset includes o N) variables and constraintsy being the sen-

manual compression for. each sentence, that we Y&hce length. We also used MSTParser to obtain the
as reference for evaluation purposes. Compressnarépendency parse trees

ratio, i.e., the fraction of words included in the com-

pressed sentences, is 69.32% (micro-averaged ogram. This variant includes an extra term stand-

the training partition). ing for abigram score which factors as a sum over
For comparison, two baselines were implepairs of consecutive words. As in McDonald (2006),

mented: a simple compressor based on Hedge Triwe include features that depend on the “in-between”

mer, the headline generation system of Dorr et awords in the original sentence that are to be omitted

(2003) and Zajic et al. (2008)and the discrimina- in the compressioht As stated in§3.2, inference

through this model can be done by solving an ILP

7 I i I i - - -
Notice that thl_s e\_/aluatlon score is n(_)t a.ble_to_properly CaRyith O(NZ) variables and constraints.
ture the grammaticality of the compression; this is a known is-

sue that typically is addressed by requiring human judgmentsstep of the algorithm) already provides significant compression,
8Hedge Trimmer applies a deterministic compression proceys illustrated in Table 1.

dure whose first step is to identify the lowest leftm8stode in ®http://people.csail.mit.edu/meollins/code.

the parse tree that contain®N®and aVP; this node is taken as html

the root of the compressed sentence (i.e., all words that are not'°nttp://sourceforge.net/projects/mstparser

spanned by this node are discarded). Further steps described'The major difference between this variant and model of

by Dorr et al. (2003) include removal of low content units, andvicDonald (2006) is that the latter employs “soft syntactic ev-

an “iterative shortening” loop that keeps removing constituentglence” asnput features, while we make the dependency rela-

until a desired compression ratio is achieved. The best resulisns part of theoutputfeatures. All the non-syntactic features

were obtained without iterative shortening, which is explainedre the same. Apart from this, notice that our variant does not

by the fact that the selection of the lowest leftm8stode (first employ a phrase-structure parser.



For both variants, we used MSTParser to obtain Rouge-1 Rouge-2

ead 0.384+0.080 0.177+0.083
the dependgncy parse t_ree's. 'Th('a model parameterFLQeI 0.380+ 0.074 0.178% 0.080
are learned in a pure discriminative way through a pyvr ) = 0.25 0.392+ 0.071 0.178+ 0.077
max-margin approach. We used the 1-best MIRA Pipeline 0.380+ 0.073 0.173+ 0.073

algorithm (Crammer and Singer, 2003; McDonald Rel+NoBigry = 1.5 | 0.403+0.080  0.18Gk 0.082
et al., 2005) for training; this is a fast online algo- _Re!*Bigrn =40 | 0.403+0.076 0.180k 0.076

rithm that requires solylng the inference problem. a{’able 2: Results for sentence extraction in the DUC2002
each step. Although inference amounts t0 solViNgataset (140 documents). Bold indicates the best results
an ILP, which in the worst case scales exponentiallyith statistical significance, according to a pairetbst
with the size of the sentence, training the model i§ < 0.01); Rouge-2 scores of all systems except Pipeline
in practice very fast for the NoBigram model (a feware indistinguishable according to the same test, with
minutes in the environment described§s.1) and 0.05.

fast enough for the Bigram model (a couple of hours

using the same equipment). This is explained by th@ram compression mode]3.2) and (ii) the Bigram
fact that sentences don’t usually exceed a few t€Rgiant. Each variant was trained with the proce-
of words, and because of the structure of the ILP$y,re described 4. To keep tractability, the in-
whose constraint matrices are very sparse. ference ILP problem was relaxed (the binary con-
Table 1 depicts the micro- and macro-averagegraints were relaxed to unit interval constraints) and
precision, recall and;-measure. We can see thatyon-integer solution values were rounded to produce
both variants outperform the Hedge Trimmer basey y/gjiqg summary, both for training and testiHy.
line by a great margin, and are in line with the sysyyhenever this procedure yielded a summary longer

tem of McDonald (2006); however, none of our varithan 100 words, we truncated it to fit the word limit.
ants employ a phrase-structure parser. We also 0b-rape 5 depicts the results of each of the above

serve that our simpler NoBigram variant, which USeSystems in terms of Rouge-1 and Rouge-2 scores.

a linear-sized ILP, achieves results similar to thesgs can see that both variants of our system are able

two systems. to achieve the best results in terms of Rouge-1 and
Rouge-2 scores. The suboptimality of extracting and

o _ compressing in separate stages is clear from the ta-
For the summarization task, we split the DUC 200%|e, as Pipeline performs worse than the pure ex-

dataset into a training partition (427 documents) anglactive systems. We also note that the configuration
a testing partition (140 documents). The traininge| + Bigram is not able to outperform Rel + No-

partition was further split into a training and a degjgram, despite being computationally more expen-
velopment set. We evaluated the performance @fye (about 25 minutes to process the whole test set,

Lead, Rel, and MMR as baselines (all are describeghainst the 7 minutes taken by the Rel + NoBigram
in §2). Weights for Rel were learned via the SVM-riant). Fig. 2 exemplifies the summaries produced

Rank algorithm:? to create a gold-standard ranking.py, our system. We see that both variants were able

we sorted the sentences by Rouge—z_s"c"qmith '€~ toinclude new pieces of information in the summary
spect to the human created summaries). We includginout sacrificing grammaticality.

a Pipeline baseline as well, which ranks all sentences 1y .ce results suggest that our system, being capa-
_by releva_nce, then_ mclude_s their compressions (uﬁle of performing joint sentence extraction and com-
ing the Bigram variant) while they fit into the Sum'pression to summarize a document, offers a power-
mary. q ] ¢ o del ful alternative to pure extractive systems. Finally, we

 We tested two variants of our joint model, COM-, 0 that ng labeled datasets currently exist on which
bining the Rel extraction model with (i) the NoBi- - 1| model could have been trained with super-

25yMRank is implemented in the SV toolkit Vision; therefore, although inference is performed
(Joachims, 1999Nnttp://svmlight.joachims.org .

13A similar system was implemented that optimizes the *See Martins et al. (2009) for a study concerning the impact
Rouge-1 score instead, but it led to inferior performance. of LP relaxations in the learning problem.

5.3 Joint Compression and Extraction



MMR baseline: encourages “sparse” summaries that involve only a
Australian novelist Peter Carey was awarded the coveted Bookefayy sentences. Experiments in newswire data sug-
Prize for fiction Tuesday night for his love story, “Oscar and Lu- . . . .
cinda”. gest that our system is a valid alternative to exist-
A panel of five judges unanimously announced the award of theing extraction-based systems. However, it is worth
$26,250 prize after an 80-minute deliberation during a banquet atnoting that further evaluation (e g human judg—
London’s ancient Guildhall. ¢ ds to b ied out t o £ th lit
Carey, who lives in Sydney with his wife and son, said in a brief men S) needs _O e carrie . out 1o asger . € quality
speech that like the other five finalists he had been asked to atten®f OUr summaries, e.g., their grammatlcallty, some-

with & short speech in his pocket in case he won. thing that the Rouge scores cannot fully capture.

Rel + NoBigram: Future work will address the possibility of in-
Australian novelist Peter Carey was awarded tmvetedBooker  Cluding linguistic features and constraints to further
Prize for fictionTuesday nighfor his love story, “Oscar and Lu- improve the grammaticality of the produced sum-

cinda”. .
A panel of five judgesunanimouslyannounced the award of the maries.

$26,250 prize after aB0-minutedeliberation during a banquet at  Another straightforward extension is the inclusion
London’s ancient Guildhall.
The judges made their selection from 102 books published in Britain_Of a redqnda}ncy term and a query relevance 'tel"m
in the past 12 monthand which they read in their homes. in the objective function. For redundancy, a simi-
Carey, whomﬁvei in Shydnfey vaithlhis vgifehagdbson, séEC% brief . lar idea of that of McDonald (2007) can be applied,
speech thatike the other five finalists he had been asked to attend . | .. . ) .
with a short speech in his pocket in case he won. yleI(_jlng a ILP_ WIthO(M + N) variables and con-

straints (\/ being the number of sentences advdhe
Rel + Bigram: total number of words). However, such model will
Australian novelist Peter Carey was awarded ievetedBooker take into account the redundancy among the origi-
(I:Dirrzé(;"f_or fiction Tuesday nighfor his love story, “Oscar and Lu- nal sentences and not their compressions; to model
A panel of five judgesunanimouslyannounced the award of the the redundancy accross compressions, a pOSSib”'
$26,250 prize after aBO-minutedeliberation during a banquet at ity is to consider a linear redundancy score (similar
London’s ancient Guildhall. . TP . . .
He was unsuccessful in the prize competition in 1985 when histo cosine Slmllarlty’ but without the normallzatlon),

. . . 2

novel, “lllywhacker,” was among the final six. which would result in an ILP WlthO(N + ZZ Pi )
Carey called the award ayteat honor” and he thanked the prize  Variables and constraints, whdfe< M is the num-

sponsors for “provokingo muchpassionate discussi@bout liter- ber of sentences in which WO[di occurs: this is no
ature _ perhapgthere will bemoretomorrow”. 9 !
worse tharO(M=N).

We also intend to model discourse, which, as

Figure 2: Summaries produced by the strongest basshown by Dauré and Marcu (2002), plays an im-
line (MMR) and the two variants of our system. Deletedyortant role in document summarization. Another
words aremarked as such future direction is to extend our ILP formulations

to more sophisticated models that go beyond word
jointly, our training procedure had to learn sepadeletion, like the ones proposed by Cohn and Lapata
rately the extraction and the compression model§2008).
and to tune a scalar parameter to trade off the two
models. We conjecture that a better model coul
have been learned if a labeled dataset with extract
compressed sentences existed.

Carey was thenly non-Briton in the final six
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