Supplementary Material

A Proof of Prop. 2

Reflexivity $(v \leq_G v, \forall v \in V)$ comes from the fact that the identity element 1_G leaves any v unchanged, and therefore $v \in Gv \subseteq \mathcal{O}_G(v)$. To prove transitivity, it suffices to show that

$$\mathcal{O}_G(\boldsymbol{w}) \subseteq \mathcal{O}_G(\boldsymbol{v}) \quad \Leftrightarrow \quad \boldsymbol{w} \preceq_G \boldsymbol{v}.$$
 (15)

The direct statement (\Rightarrow) follows from reflexivity: since $w \in \mathcal{O}_G(w) \subseteq \mathcal{O}_G(v)$, this implies $w \in \mathcal{O}_G(v)$. For the converse statement (\Leftarrow), note that $w \in \mathcal{O}_G(v)$ implies that $w = \sum_i c_i h_i v$ for $\{h_i\} \subseteq G$ and non-negative scalars $\{c_i\}$ that sum to one; using the linearity of the action, we then have that $gw = \sum_i c_i gh_i v \in \mathcal{O}_G(v)$ for any $g \in G$, which implies $Gw \subseteq \mathcal{O}_G(v)$ and $\mathcal{O}_G(w) \subseteq \mathcal{O}_G(v)$ (due to convexity of $\mathcal{O}_G(v)$).

B Proof of Prop. 14

Let us start by noting that, for arbitrary $h \in G$,

$$\min_{h \in G} \frac{1}{2} \|h\boldsymbol{w} - \boldsymbol{a}\|^{2} = \min_{h \in G} \frac{1}{2} \|h\boldsymbol{w}\|^{2} - \langle h\boldsymbol{w}, \boldsymbol{a} \rangle + \frac{1}{2} \|\boldsymbol{a}\|^{2} \\
= \frac{1}{2} \|\boldsymbol{w}\|^{2} + \frac{1}{2} \|\boldsymbol{a}\|^{2} - m(\boldsymbol{w}, \boldsymbol{a}) \\
= \frac{1}{2} \|\boldsymbol{w} - \tilde{\boldsymbol{a}}\|^{2},$$
(16)

where $\tilde{a} \in Ga$ is such that $m(w, a) = \langle w, \tilde{a} \rangle$; the optimal *h* satisfies $\tilde{a} = h^{-1}a$; and the second step is justified by the fact that *G* is a subgroup of O(d), hence its action is norm-preserving. Due to Moreau's decomposition theorem [34], we have that the projection in line 5 can be computed via proximal operator associated with $I^*_{O_G(v)} = m_G(., v)$; namely we have that the (unique) minimizer w^* in line 5 satisfies $w^* = a - \operatorname{prox}_{m_G(.,v)}(a)$. Evaluating the proximal operator boils down to solving the following problem:

$$\min_{\boldsymbol{u}\in V} \frac{1}{2} \|\boldsymbol{u}-\boldsymbol{a}\|^{2} + m_{G}(\boldsymbol{u},\boldsymbol{v}) = \min_{\boldsymbol{u}\in K_{G}(\boldsymbol{a})} \frac{1}{2} \|\boldsymbol{u}-\boldsymbol{a}\|^{2} + m_{G}(\boldsymbol{u},g\boldsymbol{v})
= \min_{\boldsymbol{u}\in K_{G}(g\boldsymbol{v})} \frac{1}{2} \|\boldsymbol{u}-\boldsymbol{a}\|^{2} + \langle \boldsymbol{u},g\boldsymbol{v}\rangle
= \min_{\boldsymbol{u}\in K_{G}(g\boldsymbol{v})} \frac{1}{2} \|\boldsymbol{u}-(\boldsymbol{a}-g\boldsymbol{v})\|^{2} + \text{constant}, \quad (17)$$

where we used Eq. 16 and the fact that $gv \in K_G(a)$. This leads to the result.

C Proof of Convergence of the Continuation Algorithm

We show that for any $\epsilon > 0$, the sequence $(L(w_1), L(w_2), ...)$ is strictly decreasing. Convergence follows from the fact that this sequence is lower bounded by the unregularized objective value $\min_{w} L(w)$, assumed finite. The proof consists of two steps:

- 1. Showing that, for any $\epsilon > 0$, w_t lies in the interior of $\mathcal{O}_G(v_{t+1})$. This follows from the fact that v'_t , w_t , and their convex combination all belong to the region cone $K_G(w_t)$; in this region the pre-order induced by G is a cone ordering w.r.t. the polar cone of K_G , from which we can derive $w_t \in O_G(\alpha v'_t + (1 \alpha)w_t)$, leading to the desired statement.
- 2. Showing that $(L(w_1), L(w_2), ...)$ strictly decreases before the algorithm terminates. This is a simple consequence of the previous fact. Since $w_t \in O_G(v_{t+1})$, we must have $L(w_{t+1}) \leq L(w_t)$. If this holds with equality, then $w_{t+1} = w_t$ is an optimal solution at the (t+1)th iteration, but since it lies in the interior of $O_G(v_{t+1})$, we have $||w_{t+1}||_{Gv_{t+1}} < 1$ and the algorithm will terminate. Therefore we must have $L(w_{t+1}) < L(w_t)$ for the algorithm to proceed.