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Our Amazing Team (December 2019, pre-COVID)
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DeepSPIN

ERC starting grant (2018–23)
Topics: deep learning, structured prediction, NLP
More details: https://deep-spin.github.io
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Natural Language Processing over Time

Old times: rule-based systems

Mid-90s (“empirical revolution”): statistical methods (HMMs, PCFGs, IBM
models)

2000+: structured prediction, linear models with rich features (CRFs,
structured SVMs), feature engineering/selection
Today: neural models, attention, transformers, ...

Structure, feature selection, and neural networks can go together!
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Natural Language Processing over Time

(Slide from 2017)

André Martins (IST) Sparse Communication TALN 2021 5 / 64



Natural Language Processing over Time

(Slide from 2017)

André Martins (IST) Sparse Communication TALN 2021 5 / 64



Transformers Are Big Bulldozers

Very powerful, but highly overparametrized.
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This Talk: Bet on Sparsity

What’s inside a bulldozer? Can we redesign its components?

Sparsity can be useful:
for interpretability
for discovering linguistic
structure
for efficiency
for generating.
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From Sparse Modeling ...

Mostly used with linear models, lots of work in the 2000s
Main idea: embed a sparse regularizer (e.g. `1-norm) in the learning
objective
Irrelevant features get zero weight and can be discarded
Extensions to structured sparsity (group-lasso, fused-lasso, etc.)

... to Sparse Communication:

Mostly used with neural networks, most work after 2015
Main idea: sparse neuron activations (biological plausibility)
Predictions are triggered by a few neurons only (input-dependent)
Example: ReLUs, dropout, sparse attention mechanisms
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This Talk
An inventory of transformations that capture sparsity and structure:

All differentiable (efficient forward and backward propagation)
Adaptively sparse
Can be used at hidden or output layers
Effective in many NLP tasks.

Building block:

z p

Sparse transformations from the Euclidean space to the simplex4.
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Outline

1 Sparse Attention Mechanisms
Sparsemax and Entmax

Adaptively Sparse Transformers

Other Transformations

2 Sparse Losses
Sparse Sequence-to-Sequence Models

Entmax Sampling

3 Conclusions
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Recap: Softmax and Argmax

Softmax exponentiates and normalizes:

softmax(z) =
exp(z)∑K

k=1 exp(zk)

Fully dense: softmax(z) > 0,∀z
Used both as a loss function (cross-entropy) and for attention.

Argmax can be written as:

argmax(z) := arg max
p∈4

z>p

= lim
τ→0+

softmax(z/τ) (temperature trick)

Retrieves a one-hot vector for the highest scored index.
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softmax(z)
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(Same z = [1.0716,−1.1221,−0.3288, 0.3368, 0.0425])

Argmax is an extreme case of sparsity, but it is discontinuous.
Is there a sparse and differentiable alternative?
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Sparsemax (Martins & Astudillo, 2016, ICML)

Euclidean projection of z onto the probability simplex4:

sparsemax(z) := arg min
p∈4
‖p − z‖2

= arg max
p∈4

z>p − 1
2
‖p‖2.

Likely to hit the boundary of the simplex, in which case sparsemax(z)
becomes sparse (hence the name)
End-to-end differentiable
Forward pass: O(K logK ) or O(K ), (almost) as fast as softmax
Backprop: sublinear, better than softmax!

André Martins (IST) Sparse Communication TALN 2021 13 / 64



Sparsemax in 2D and 3D
(Martins & Astudillo, 2016, ICML)

− 3 − 2 − 1 0 1 2 3
t

0.0

0.2

0.4

0.6

0.8

1.0 softmax1([t,0])

sparsemax1([t,0])

Sparsemax is piecewise linear, but asymptotically similar to softmax.
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Ω-Regularized Argmax (Niculae & Blondel, 2017, NeurIPS)

For convex Ω, define the Ω-regularized argmax transformation:

argmax Ω(z) := arg max
p∈4

z>p − Ω(p)

Argmax corresponds to no regularization, Ω ≡ 0
Softmax amounts to entropic regularization, Ω(p) =

∑K
i=1 pi logpi

Sparsemax amounts to `2-regularization, Ω(p) = 1
2‖p‖

2

Is there something in-between?
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Entmax (Peters, Niculae & Martins, 2019, ACL)

Parametrized by α ≥ 0:

Ωα(p) :=

{
1

α(α−1)

(
1−

∑K
i=1 p

α
i

)
if α 6= 1∑K

i=1 pi logpi if α = 1.

Related to Tsallis generalized entropies (Tsallis, 1988).

Argmax corresponds to α→∞
Softmax amounts to α→ 1
Sparsemax amounts to α = 2.

Key result: always sparse for α > 1, sparsity increases with α

Forward pass for general α can be done with a bissection algorithm
Backward pass runs in sublinear time.
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Entmax in 2D (Peters, Niculae & Martins, 2019, ACL)

α = 1.5 is a sweet spot!

Efficient exact algorithm (nearly as fast as softmax), smooth, and good
empirical performance.

Pytorch code: https://github.com/deep-spin/entmax
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Sparse Transformations (Peters, Niculae & Martins, 2019, ACL)
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Example: Sparse Attention for Machine Translation
(Peters, Niculae & Martins, 2019, ACL)

Selects source words
when generating a target
word (sparse alignments)
Better interpretability
Can also model fertility:
constrained sparsemax
(Malaviya, Ferreira & Martins,
2018, ACL)
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Example: Sparse Attention for Explainability
(Treviso & Martins, 2020, BlackboxNLP)

Explainer Layperson

ŷ m
ỹ 

Classifier

A classifier makes a prediction
An “explainer” (embedded or not in the classifier) generates a sparse
message that explains the classifier’s decision
The layperson receives the message and tries to guess the classifier’s
prediction (also called simulatability, forward simulation/prediction)
Communication success rate: how often the two predictions match?
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From Sparse Modeling to Sparse Communication
(Treviso & Martins, 2020, BlackboxNLP)

Model interpretability Prediction explainability

Wrappers • Forward selection
• Backward elimination (Kohavi &

John, 1997)

• Input reduction (Feng et al., 2018)
• Erasure (leave-one-out) (Li et al.,

2016; Serrano & Smith, 2019)
• LIME (Ribeiro et al., 2016)

Filters • PMI (Church & Hanks, 1990)
• recursive feature elimination

(Guyon et al., 2002)

• Input gradient (Li et al., 2016)
• LRP (Bach et al., 2015)
• top-k softmax attention

Embedded • `1-regularization (Tibshirani, 1996)
• elastic net (Zou & Hastie, 2005)

• Stochastic attention (Xu et al.,
2015; Lei et al., 2016; Bastings et al.,
2019)

• Sparse attention
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Comparing Explainers
(Treviso & Martins, 2020, BlackboxNLP)

SST IMDB AgNews Yelp SNLI

Clf. Explainer CSR ACCL CSR ACCL CSR ACCL CSR ACCL CSR ACCL

C Random 69.41 70.07 67.30 66.67 92.38 91.14 58.27 53.06 75.83 68.74
C Erasure 80.12 81.22 92.17 88.72 97.31 95.41 78.72 68.90 77.88 70.04
C Top-k gradient 79.35 79.24 86.30 83.93 96.49 94.86 70.54 62.86 76.74 69.40
C Top-k softmax 84.18 82.43 93.06 89.46 97.59 95.61 81.00 70.18 78.66 71.00
Cent Top-k 1.5-entmax 85.23 83.31 93.32 89.60 97.29 95.67 82.20 70.78 80.23 73.39
Csp Top-k sparsemax 85.23 81.93 93.34 89.57 95.92 94.48 82.50 70.99 82.89 74.76

Cent Selec. 1.5-entmax 83.96 82.15 92.55 89.96 97.30 95.66 81.38 70.41 77.25 71.44
Csp Selec. sparsemax 85.23 81.93 93.24 89.66 95.92 94.48 83.55 71.60 82.04 73.46
Cbern Bernoulli 82.37 78.42 91.66 86.13 96.91 94.43 84.93 66.89 76.81 69.65
Chk HardKuma 85.17 80.40 94.72 90.16 97.11 95.45 87.39 71.64 74.98 71.48

See paper for human experiments.

In general, attention > erasure� gradient methods (in terms of CSR).
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Questions

Which α to choose?
The bigger the α, the higher propensity to sparsity.
What if we have many attention heads, and we don’t know how sparse
we want each one to be?
Can we learn α from data?

André Martins (IST) Sparse Communication TALN 2021 23 / 64



Transformer (Vaswani et al., 2017)

Attention in three places:
Self-attention in the encoder
Self-attention in the decoder
Contextual attention.

Multi-head attention: 6 layers, 8
attention heads (48 total).
Each head involves a query, a key, and a
value matrix:

V̄ = softmax
(

QK>√
dk

)
V.
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Adaptively Sparse Transformers
(Correia, Niculae & Martins, 2019, EMNLP)

Key idea: replace softmax in attention heads by α-entmax!

Recall: α controls propensity to sparsity
Learn each α ∈ [1, 2] adaptively!
One α for each attention head and each layer.
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Related Work: Other Sparse Transformers
(Child et al., 2019; Sukhbaatar et al., 2019)

Our model allows non-contiguous attention for each head, learned
adaptively.
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Accuracies and Learned α
(Correia, Niculae & Martins, 2019, EMNLP)

Bimodal for the encoder, mostly unimodal for the decoder.
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Trajectories of α During Training
(Correia, Niculae & Martins, 2019, EMNLP)

Most heads become denser in the beginning, before converging.

Dense attention more beneficial while the network is still uncertain,
becomes sparser as the network learns.
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Previous Position Head
(Correia, Niculae & Martins, 2019, EMNLP)

(Learned α = 1.91)
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Interrogation-Detecting Head
(Correia, Niculae & Martins, 2019, EMNLP)

(Learned α = 1.05)
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Subword-Merging Head
(Correia, Niculae & Martins, 2019, EMNLP)

(Learned α = 1.91)
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Other Related Transformations

Constrained softmax (Martins & Kreutzer, 2017, EMNLP),

Constrained sparsemax (Malaviya, Ferreira & Martins, 2018, ACL):

Allows placing a budget on how much attention a word can receive
Useful to model fertility in NMT

Fusedmax (Niculae & Blondel, 2017, NeurIPS):

Can promote structured sparsity (e.g. contiguous words more likely to
be selected together)

SparseMAP (Niculae, Martins, Blondel & Cardie, 2018, ICML):

Extends sparsemax to sparse structured prediction
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SparseMAP
(Niculae et al., 2018, ICML)

Generalizes sparsemax to sparse structured prediction
Works both as output layer and hidden layer
As hidden layer, similar to structured attention networks (Kim et al., 2017),
but sparse!
Efficient forward/backprop requiring only an argmax (MAP) oracle!
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Example: Latent Structured Alignments in SNLI
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Example: Dependency Parsing

Suitable for capturing ambiguity in natural language!
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LP-SparseMAP (Niculae & Martins, 2020, ICML)

Extension of SparseMAP
for latent factor graphs!

Can handle latent logic
variables and constraints.

Example: latent syntax
with valency constraints.
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Dynamic Computation Graphs and Exact Expectations
(Niculae, Martins & Cardie, 2018, EMNLP)

(Correia, Niculae, Aziz & Martins, 2020, NeurIPS)

When combinatorial structures are used as latent variables in a neural
network, it may become intractable to compute expectations:

Have to sum through exponentially many terms (one per structure)

SparseMAP offers a solution to this! Only a sparse subset of structure will
have non-zero terms in the summation!

We do this for:

Discriminative models with dynamic computation graphs
(Niculae, Martins & Cardie, 2018, EMNLP)

Generative models (combinatorial discrete VAEs)
(Correia, Niculae, Aziz & Martins, 2020, NeurIPS)
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Sparse and Continuous Attention
(Martins, Farinhas, Treviso, Niculae, Aguiar & Figueiredo, 2020, NeurIPS)

So far: attention over a finite set (words, pixel regions, etc.)
We generalize attention to arbitrary sets, possibly continuous.

=⇒
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Example: Visual Question Answering

What is the woman looking at? tv

1E-19

1E-08

1E-01

1E+01

computer

057

9

computer

Is the man wearing a hat? yes

1E-06

1E-01

3E+00

no

0
4

56

no

(original image) (discrete attention) (continuous softmax) (continuous sparsemax)
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Outline

1 Sparse Attention Mechanisms
Sparsemax and Entmax

Adaptively Sparse Transformers

Other Transformations

2 Sparse Losses
Sparse Sequence-to-Sequence Models

Entmax Sampling

3 Conclusions
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Entmax Losses

Entmax can also be used as a loss in the output layer (to replace
logistic/cross-entropy loss)
However, not expressed as a log-likelihood (which could lead to log(0)
problems due to sparsity)
Instead, we build a entmax loss inspired by Fenchel-Young losses.
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Entmax Transformations and Losses
(Blondel, Martins & Niculae, 2020, JMLR)

For α > 1, losses have margins
Interesting case: 1.5-entmax (specialized forward pass algorithm).

Pytorch code: https://github.com/deep-spin/entmax
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Sparse Sequence-to-Sequence (Peters, Niculae & Martins, 2019, ACL)

Key idea:

Replace all instances of softmax by sparsemax or α-entmax.
We consider both sparsity in the attention mechanism and sparsity in
the output layer

Two tasks:

Machine translation (word-based)
Morphological inflection (character-based).
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Training and Inference

Training
Minimize token-level loss:

L(θ) =
∑

(x,y)∈D

|y |∑
t=1

L(yt , z t)

=
∑

(x,y)∈D

|y |∑
t=1

−log[softmax(z t)]yt

Inference
Approximate MAP decoding:

ŷ = argmax
y∈V ∗

pθ(y | x)

= argmax
y∈V ∗

|y |∏
t=1

pθ(yt | x , y<t)

= argmax
y∈V ∗

|y |∏
t=1

softmax(z t)yt
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What’s the Problem Here?

pθ(y | x) =

|y |∏
t=1

pθ(yt | x , y<t).

The chain rule favors short sequences!

Softmax→ all strings have positive probability
Often the empty string is the most likely sequence (Stahlberg & Byrne, 2019)

Beam search prunes it.
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Cat Got Your Tongue?

<s>

this is a look </s>

that was one view in

and so of gaze to

</s> it for to on

· · ·
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Cat Got Your Tongue?

<s>

this is a look </s>

that was one view in

and so of gaze to

</s> it for to on

· · ·

p(·) = 10−5

p(·) = 10−4
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Can Entmax Save Us? (Peters, Niculae & Martins, 2019, ACL)

α = 1
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0

0.2

0.4

0.6

0.8

1

α = 1.5

1.5-entmax(z)

0

0.2

0.4

0.6

0.8

1

α = 2

sparsemax(z)

0

0.2

0.4

0.6

0.8

1

α =∞

argmax(z)

0

0.2

0.4

0.6

0.8

1

(Same z = [1.0716,−1.1221,−0.3288, 0.3368, 0.0425])
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Cat Got Your Tongue? Maybe Not.

<s>

this is a look </s>

that was one view in

and so of gaze to

</s> it for to on

· · ·

p(·) = 10−5

p(·) = 10−4
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Cat Got Your Tongue? Maybe Not.

<s>

this is a look </s>

that was one view in

and so of gaze to

</s> it for to on

· · ·

p(·) = 10−3

p(·) = 0
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Example: Machine Translation
(Peters et al., 2019, ACL)

(Source: “Dies ist ein weiterer Blick auf den Baum des Lebens.”)

Only a few words get non-zero probability at each time step
Auto-completion when several words in a row have probability 1
Useful for predictive translation.
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Sparsity in Attention and in Output Layer
(Peters et al., 2019, ACL)

Sparsity in the output leads to higher accuracy
Sparse attention leads to more interpretable alignments.

1.5-entmax attains better
performance faster.
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Example: Morphological Inflection

Only a few inflected words get nonzero probability.
Variants with double/gated attention: Peters & Martins (2019, SIGMORPHON).
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Entmax and Label Smoothing (Peters & Martins, 2021, NAACL)

Sparse functions do mitigate the cat-got-your-tongue problem for MT
Fenchel-Young Label Smoothing: FY loss with smoothed target
instead of a one-hot label

LΩ,ε(z , eyt ) := LΩ(z , (1− ε)eyt + εu).

4 3 2 1 0 1 2
s

0.0

0.5

1.0

1.5

2.0 Cross-entropy = 0.0
Cross-entropy = 0.2
Cross-entropy = 0.5

4 3 2 1 0 1 2
s

0.0

0.5

1.0

1.5

2.0 Sparsemax loss = 0.0
Sparsemax loss = 0.2
Sparsemax loss = 0.5
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Entmax Loss and Label Smoothing (Peters & Martins, 2021, NAACL)

Grapheme-to-Phoneme (SIGMORPHON 2020 Task 1):

Single Ensemble
α ε WER ↓ PER ↓ WER ↓ PER ↓

1 0 18.14 3.95 14.74 2.96
0.15 15.55 3.09 13.87 2.77

1.5 0 15.25 3.05 13.79 2.77
0.04 14.18 2.86 13.47 2.69

Machine Translation (BLEU scores; WMT14 is En-De):

α ε De-En En-De Ja-En En-Ja Ro-En En-Ro WMT14

1 0 27.05 23.36 20.52 26.94 29.41 22.84 25.10
> 0 27.72 24.24 20.99 27.28 30.03 23.15 25.21

1.5 0 28.12 24.03 21.23 27.58 30.27 23.74 25.46
> 0 28.11 24.36 21.34 27.58 30.37 23.47 25.45
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Entmax Sampling (Martins, Marinho & Martins, 2020, EMNLP)

Use the entmax loss for training language models.
At test time, sample from this sparse distribution.
Better quality with less repetitions than other methods:

1.0 1.5 2.0 2.5 3.0 3.5 4.0
n

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Di
st

in
ct

-n

human
entmax
nucleus
softmax-t
top-k
unlikelihood
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Story Completion on WritingPrompts

Fine-tuned GPT-2; repetitions and off-topic text are highlighted.

Context: “Are they ready to go live?" Zuko asked. “Yup, in just a minute" Tomi
replied as he leaned back in his reclining chair. This was a moment that
the entire galaxy would see. After 10 years...
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Story Completion on WritingPrompts

Fine-tuned GPT-2; repetitions and off-topic text are highlighted.

Context: “Are they ready to go live?" Zuko asked. “Yup, in just a minute" Tomi
replied as he leaned back in his reclining chair. This was a moment that
the entire galaxy would see. After 10 years...

Greedy: ... of study, the scientists had finally come to the conclusion that the
universe was not a place for living. The scientists had been studying
the universe for over a century. They had been studying the universe
for over a century.
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Story Completion on WritingPrompts

Fine-tuned GPT-2; repetitions and off-topic text are highlighted.

Context: “Are they ready to go live?" Zuko asked. “Yup, in just a minute" Tomi
replied as he leaned back in his reclining chair. This was a moment that
the entire galaxy would see. After 10 years...

Top-k : ... of studying this phenomenon, the team had finally come up with a
plan to studywhat the aliens were doing. The teamwould be looking
for a way to create a space station. “And what would you call it?"
“What would you call the space station?"
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Story Completion on WritingPrompts

Fine-tuned GPT-2; repetitions and off-topic text are highlighted.

Context: “Are they ready to go live?" Zuko asked. “Yup, in just a minute" Tomi
replied as he leaned back in his reclining chair. This was a moment that
the entire galaxy would see. After 10 years...

Nucleus: ... of diligent testing, and some test run after that, the results were
well received. “they’re waiting for you, because there’s no way they
would.” Stowedly at a local wedding place, the two archaeologists spoke
together.
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Story Completion on WritingPrompts

Fine-tuned GPT-2; repetitions and off-topic text are highlighted.

Context: “Are they ready to go live?" Zuko asked. “Yup, in just a minute" Tomi
replied as he leaned back in his reclining chair. This was a moment that
the entire galaxy would see. After 10 years...

Entmax: ... of hibernation, Tomi was back. These last days had been a signif-
icant step forward in his mission. This time, Tomi was not alone. All
the empires had aligned together and the world’s leadership began
to openly support his mission.
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Human Evaluation of Story Completion

Fluency Coherence Engagement

Greedy 2.5 2.3 2.3
top-k 3.3 2.9 2.9
Nucleus 3.5 3.1 3.2
Unlikelihood 3.3 3.0 3.2
Entmax 3.5 3.2 3.6
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Human Evaluation of Dialogue Generation

We followed the ConvAI2 challenge: 12 volunteers had 30 conversations
each with models using the different sampling methods.

The model’s personas were randomly selected from the PersonaChat
validation set.

Fluency Consistency Engagement

Greedy 4.1 3.0 2.5
top-k 4.0 3.2 3.3
Nucleus 4.1 3.4 3.3
Entmax 4.1 3.6 3.9
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Outline

1 Sparse Attention Mechanisms
Sparsemax and Entmax

Adaptively Sparse Transformers

Other Transformations

2 Sparse Losses
Sparse Sequence-to-Sequence Models

Entmax Sampling

3 Conclusions
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Conclusions

Transformations from real numbers to distributions are ubiquitous
We introduced new transformations that handle sparsity, constraints,
and structure
All are differentiable and their gradients are efficient to compute
Can be used as hidden layers or as output layers
The sparsity can be adaptive
Encouraging results in NMT and other tasks
Sparse communication potentially useful as a path for explainability.
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Thank You!

DeepSPIN (“Deep Structured Prediction in NLP”)

ERC starting grant, started in 2018
Topics: deep learning, structured prediction, NLP
More details: https://deep-spin.github.io
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